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HARMONIC MAPPINGS RELATED TO
SCHERK’S SADDLE-TOWER MINIMAL SURFACES

PETER DUREN AND WILLIAM R. THYGERSON

1. Introduction. A harmonic mapping is a complex-valued univa-
lent harmonic function defined in some domain of the complex plane.
Harmonic mappings are of interest in differential geometry because
they provide isothermal coordinates for nonparametric minimal sur-
faces, leading to the classical Weierstrass-Enneper representation in
terms of analytic functions. (See, for instance, [8], [9], [2], [6], [4].)
More recently, harmonic mappings have been studied from the view-
point of complex analysis, as generalizations of conformal mappings,
see [1], [3].

The purpose of this note is to investigate a family of harmonic
mappings that arise in connection with Scherk’s classical “saddle-
tower” minimal surface (see [2] or [9]) and its generalizations recently
found by Karcher [7]. The mappings in question are defined on the
unit disk D by

(1) Fn(z) = − 2
n

n∑
k=1

αk log |z − αk|, n = 3, 4, . . . ,

where α = e2πi/n is a primitive nth root of unity. Each function Fn is
clearly harmonic in D, but its univalence is not so obvious a priori. A
direct proof of the univalence will be given in Section 2. Meanwhile,
some Mathematica-produced images of the disk under Fn are displayed
in Figure 1 for n = 3, 4, 6, and 10. The figure shows the images
of equally spaced concentric circles and radial segments, giving in
particular a graphical demonstration of the univalence. The infinite
spires correspond to the nth roots of unity: 1, α, α2, . . . , αn−1. It is
clear from the formula (1) that Fn maps each radial segment from 0 to
αk onto the radial half-line in the same direction. In fact, essentially
the same geometric argument (pairing symmetric terms of the sum)
shows that Fn maps each intermediate segment from 0 to αk−1/2 onto
a radial segment in the same direction.
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After studying the mappings Fn more closely, we explain in Section 3
how they arise in canonical representations of Scherk’s surfaces. The
final section discusses some asymptotic properties of Fn as n tends to
infinity.

2. Geometric properties of the harmonic mappings. The
univalence of Fn in D will now be proved by showing that each of the
mappings actually has the starlikeness property visually apparent in
Figure 1. In other words, the argument of Fn(eiθ) is strictly increasing.

Theorem 1. For each integer n ≥ 3, the harmonic function Fn

defined by (1) maps the unit disk univalently onto a strictly starlike
region with n-fold rotational symmetry.

Proof. Further inspection of the formula reveals that Fn(0) = 0 and
that Fn has the symmetries

Fn(αz) = αFn(z) and Fn(z̄) = Fn(z).

We have already noted that Fn(z) → ∞ and arg{Fn(z)} → 2kπ/n
as z → αk, for each k = 0, 1, . . . , n − 1. Thus it will suffice to show
that the argument of Fn(eiθ) increases from 0 to π/n as θ increases
from 0 to π/n. It will then follow from the above symmetries that
arg{Fn(z)} increases by exactly 2π as z moves once around the unit
circle in the counterclockwise direction. Since, as will be shown, Fn

is locally an orientation-preserving map, the argument principle for
harmonic functions [5] can then be invoked to conclude that Fn maps
the unit disk univalently onto the region bounded by the curve that is
the image of the unit circle.

In order to show that arg{Fn(eiθ)} increases from 0 to π/n as θ goes
from 0 to π/n, we will need an expression for the derivative. For this
purpose the two partial-fraction expansions

(2)
1 + zn−2

zn − 1
=

2
n

n∑
k=1

cos(2kπ/n)
z − αk

and

(3)
1− zn−2

zn − 1
=

2i
n

n∑
k=1

sin(2kπ/n)
z − αk
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will be useful. With the notation

(4) u = Re
{∫ z

0

1 + zn−2

1− zn
dz

}
, v = Im

{∫ z

0

1− zn−2

1− zn
dz

}
,

n = 3 n = 4

n = 6 n = 10

FIGURE 1. Image of the disk under the mapping Fn.
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we therefore find

u = − 2
n

n∑
k=1

cos
(
2kπ
n

)
log |z − αk|

and

v = − 2
n

n∑
k=1

sin
(
2kπ
n

)
log |z − αk|,

so that Fn(z) = u+ iv.

On the other hand, it can be seen from (1) by direct geometric
estimates that Re {Fn(eiθ)} > 0 for 0 < θ ≤ π/n. Thus in particular
Fn(eiθ) 	= 0 and

arg{Fn(eiθ)} = Im {logFn(eiθ)},
so that

(5)
d

dθ
arg{Fn(eiθ)} = |Fn(eiθ)|−2 Im

{
Fn(eiθ)

d

dθ
Fn(eiθ)

}
.

Now, letting fn(z) and gn(z) denote the two integrals in (4), we can
write

(6) Fn(z) = Re {fn(z)}+ i Im {gn(z)},
and

d

dθ
Fn(eiθ) = Re {ieiθf ′

n(e
iθ)}+ i Im {ieiθg′n(e

iθ)}.
But simple calculations show that

ieiθf ′
n(e

iθ) = −cos((n/2)− 1)θ
sin(nθ/2)

,

ieiθg′n(e
iθ) = i

sin((n/2)− 1)θ
sin(nθ/2)

.

Thus, with the notation sgn {Fn(eiθ)} = eiϕn , we find from (5) that

(7)
d

dθ
arg{Fn(eiθ)} = |Fn(eiθ)|−1 sin

[(
n

2
− 1

)
θ + ϕn

]
> 0
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whenever 0 < θ < (π/n) and 0 < ϕn < (π/n) + (π/2). As already
observed, however, arg{Fn(eiθ)} moves from 0 to π/n as θ goes from
0 to π/n. Because (7) shows that ϕn = arg{Fn(eiθ)} is increasing
whenever it lies in a certain two-sided neighborhood of π/n, the
conclusion is that it must increase to π/n as θ increases from 0 to
π/n. (Recall that Re {Fn(eiθ)} > 0 in that interval, so that Fn(eiθ)
cannot wind around the origin.) As previously noted, this shows by
symmetry that arg{Fn(eiθ)} increases by exactly 2π as θ goes from 0
to 2π.

In order to complete the proof of univalence, we must now compute
the dilatation of the mapping Fn. This is the quantity

ωn(z) = ∂Fn/∂z̄
/
∂Fn/∂z.

In making the calculation it is again convenient to use the representa-
tion (6), or

Fn(z) =
1
2
[fn(z) + fn(z)] +

1
2
[gn(z)− gn(z)].

This shows that

(8) ∂Fn/∂z =
1
2
[f ′

n(z) + g′n(z)] =
1

1− zn

and

(9) ∂Fn/∂z̄ =
1
2
[f ′

n(z)− g′n(z)] =
zn−2

1− zn
;

so the dilatation is ωn(z) = zn−2. Since |ωn(z)| < 1 in D, the
mapping Fn is everywhere orientation-preserving. It then follows from
the argument principle for harmonic functions [5] that Fn is univalent
in D and it maps D onto the region inside the curve w = Fn(eiθ). This
completes the proof of the theorem.

3. The corresponding minimal surfaces. We now turn to the
connection between the harmonic mappings just discussed and Scherk’s
saddle-tower minimal surfaces. Scherk’s classical surface is defined by
the equation

sin t = sinh u sinh v
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in rectangular coordinates (u, v, t), and is depicted in Figure 2. It turns
out that the harmonic mapping F4 provides isothermal parameters
for Scherk’s saddle-tower surface; and for each even integer n ≥ 6
the mappings Fn lift to the generalized versions of Scherk’s surface
recently discovered by Karcher [7]. These connections are based on the
Weierstrass-Enneper representation of a minimal surface, which will
now be briefly reviewed.

Let p(z) be an analytic function and q(z) a meromorphic function in
the unit disk D, with p vanishing only at the poles (if any) of q and
having a zero of precise order 2m wherever q has a pole of order m.
Then the formulas

u = Re
{∫ z

0

p(1 + q2) dz
}

v = Im
{∫ z

0

p(1− q2) dz
}

t = 2Im
{∫ z

0

pq dz

}

define an isothermal (i.e., an angle-preserving) parametric represen-
tation of a regular minimal surface known as its Weierstrass-Enneper
representation. Conversely, every regular minimal surface has locally
an isothermal representation of this form. In particular, the projection
of any such representation onto the (u, v)-plane defines a harmonic
mapping w = u + iv = f(z) of D whose dilatation can be calculated
as ω = q2. Thus in order for a sense-preserving harmonic mapping to
be the projection of an isothermally represented minimal surface, its
dilatation must necessarily be the square of an analytic function.

Conversely, it can be shown (see [6] or [4]) that the condition is also
sufficient. In other words, a sense-preserving harmonic mapping f lifts
to a minimal surface represented by isothermal parameters, if and only
if the dilatation of f has no zero of odd order.

One simple example is to take p(z) = 1 and q(z) = z. The resulting
harmonic mapping of D is f(z) = z + (1/3)z̄3, which lifts to a well-
known minimal surface called Enneper’s surface. More generally, the
choices p(z) = 1 and q(z) = zn produce the harmonic mapping
f(z) = z + (1/2n+ 1)z̄2n+1 and a generalization of Enneper’s surface.
For another example, the choices p(z) = 2/(1 − z4) and q(z) = iz
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FIGURE 2. Scherk’s classical saddle-tower surface.

lead to a standard harmonic mapping of D onto a square inscribed in
the unit disk. It lifts to a saddle-surface with vertical walls known as
Scherk’s first surface, described by the equation t = log(cos v/ cosu).
Corresponding harmonic mappings onto inscribed regular 2n-gons lift
to multiple saddle-surfaces which may be viewed as generalizations of
Scherk’s first surface.

Scherk’s saddle-tower surface, also known variously as Scherk’s sec-
ond surface or Scherk’s fifth surface, results from the choices p(z) =
1/(1−z4) and q(z) = z. The associated harmonic mapping is w = F4(z)
as defined by (1), which lifts to a surface of height

t =
1
2
arg

{
1 + z2

1− z2

}
.

More generally, the partial-fraction expansions (2) and (3) show that,
for any integer m ≥ 2, the choices p(z) = 1/(1 − z2m) and q(z) =
zm−1 produce the harmonic mapping w = F2m(z). An elementary
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integration gives the corresponding minimal surface with height

t =
1
m

arg
{
1 + zm

1− zm

}
.

These “multiple saddle-towers” are Karcher’s generalizations of Scherk’s
surfaces. Note that, because the harmonic mapping Fn has dilatation
ω(z) = zn−2, it lifts to a minimal surface if and only if n is an even in-
teger. The procedure suggests a natural framework in which Karcher’s
surfaces might have been discovered, since the mappings F2m are ob-
vious candidates for generalizations of F4. The strategy may perhaps
prove fruitful in discovering generalizations of other minimal surfaces:
calculate the underlying harmonic mapping and attempt to generalize
it.

4. Further properties of the mappings. We conclude with two
more remarks about the harmonic mappings Fn. First we show that Fn

approaches the identity as n tends to infinity. Curiously, the two other
classes of harmonic mappings, offered above as examples in generalizing
Enneper’s surface and Scherk’s first surface, are easily seen to have the
same property.

Theorem 2. The harmonic mappings Fn(z), as defined by (1),
converge to z as n tends to infinity, uniformly on each compact subset
of D.

Proof. We shall outline two proofs. The first is longer but more
elegant. With z held fixed, the expression (1) can be viewed as a
Riemann sum for the integral

− 1
π

∫ 2π

0

eiϕ log |z − eiϕ| dϕ =
i

π

∫
T

log |z − ζ| dζ = z,

where T denotes the unit circle. The integral is easily calculated
through an integration by parts and an appeal to the Poisson formula.

The second proof is more prosaic. According to (2) and (3), the
mapping has the form Fn(z) = u + iv, where u and v are given by
(4). But the integrands in (4) both tend to 1 as n → ∞, uniformly
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on compact subsets of D, so it is clear that Fn(z) → z as n → ∞,
uniformly on compact subsets of D.

Finally we remark that, although the mappings Fn are unbounded,
they map the disk onto regions of finite area. In fact, the area An

is easily calculated and is seen to remain bounded as n → ∞. The
Jacobian of Fn is found from (8) and (9), so that

An =
∫∫

D

{|∂Fn/∂z|2 − |∂Fn/∂z̄|2} dx dy

=
∫ 1

0

∫ 2π

0

1− r2n−4

|1− rneinθ|2 r dr dθ

=
∫ 1

0

r(1− r2n−4)(1− r2n) dr

=
2n2(n− 2)

(2n− 1)(n2 − 1)
π < π, n ≥ 3.

Note that An → π as n → ∞, a property consistent with Theorem 2.
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