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EXACT SOLUTIONS OF A CLASS OF DIFFERENTIAL
EQUATIONS OF LAMÉ’S TYPE AND ITS

APPLICATIONS TO CONTACT GEOMETRY

BANG-YEN CHEN

ABSTRACT. The study of linear differential equations
with one or more of their coefficients involving Jacobi’s elliptic
functions was initiated by Picard. Among such linear differen-
tial equations perhaps the most famous one is the equation of
Lamé. The methods of finding the exact solutions of the Lamé
equation have been investigated by many mathematicians. In
this note we investigate a class of differential equations of
Lamé’s type which arise naturally in the study of Legendre
curves in contact geometry. We present the exact solutions of
this class of differential equations and apply them to deter-
mine explicitly the Legendre curves associated with the exact
solutions of this class of differential equations.

1. Introduction. The study of linear differential equations with
coefficients involving uniform doubly periodic functions of the indepen-
dent variable was initiated by Picard. For instance, Picard had shown
that every linear differential equation with uniform doubly periodic co-
efficients and possessing only uniform solutions has always at least one
solution which is a doubly periodic function of the second kind. Among
linear differential equations with uniform doubly periodic coefficients
perhaps the most famous one is the equation of Lamé:

d2y

dx2
= [n(n+ 1)k2sn2(x, k) + c]y.

The methods of finding the exact solutions of the Lamé equation have
been studied by many mathematicians. For a recent study on Lamé’s
equation and its applications to physics, see, for instance, [4].

Legendre curves are known to play an important role in the study
of contact manifolds, e.g., a diffeomorphism of a contact manifold
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is a contact transformation if and only if it maps Legendre curves
to Legendre curves. The investigation of Legendre curves from the
Riemannian point of view has been investigated in [1, 2] among others.

Legendre curves in a 3-sphere or in a three-dimensional anti-de Sitter
space-time H3

1 arise from the solutions of the differential equation:

(1.1) z′′(x) = iλ(x)z′(x)− cz(x)

where λ(x) is a real-valued function and c is a nonzero constant. It is
well known in the theory of differential equations that exact solutions
of second order differential equations are usually difficult to obtain. In
this note we show that the exact solutions of equation (1.1) can actually
be derived for every real-valued solution λ of the second order nonlinear
differential equation:

(1.2) λ′′ = −cλ− 2
9
λ3.

Since the solutions of (1.2) are “generically” given by functions involv-
ing Jacobi’s elliptic functions, this leads to another interesting class
of differential equations whose coefficients also involve Jacobi’s elliptic
functions. In this note, we also show the precise way to construct the
Legendre curves in S3(c) or in H3

1 (c) using the exact solutions of such
differential equations.

2. Exact solutions and Legendre curves. By a contact manifold
we mean a smooth manifold M2n+1 together with a 1-form η such that
η ∧ (dη)n �= 0. A curve γ = γ(t) in a contact manifold is called a
Legendre curve if η(γ′(t)) = 0 along γ.

Let Cn+1 and Cn+1
1 denote respectively the complex Euclidean (n+

1)-space and the complex pseudo-Euclidean (n+ 1)-space with metric

g = −dz1dz̄1 +
n+1∑
j=2

dzjdz̄j .

We put S2n+1(c) = {z = (z1, . . . , zn+1) ∈ Cn+1 : 〈z, z〉 = (1/c) >
0} and H2n+1

1 (c) = {z = (z1, z2, . . . , zn+1) ∈ Cn+1
1 : 〈z, z〉 =

(1/c) < 0}, where 〈 , 〉 denotes the inner product induced from the
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metrics. H2n+1
1 (c) is known as an anti-de Sitter space-time. It is

well known that both S2n+1(c) and H2n+1
1 (c) admit canonical contact

structures induced from the complex structures on Cn+1 and on Cn+1
1 ,

respectively.

The following lemmas from [2] provide a simple relationship between
Legendre curves and differential equation (1.1).

Lemma 1. Let c be a positive number and z = (z1, z2) : I → S3(c) ⊂
C2 a unit speed curve where I is either an open interval or a circle. If
z : I → C2 satisfies

(A) z′′(x) = iλ(x)z′(x)− cz(x)

for some nonzero real-valued function λ on I, it defines a Legendre
curve in S3(c).

Conversely, if z defines a Legendre curve in S3(c), it satisfies differ-
ential equation (A) for some real-valued function λ.

Lemma 2. Let c be a negative number and z = (z1, z2) : I →
H3

1 (c) ⊂ C2
1 a unit speed curve where I is an open interval. If

z : I → C2
1 satisfies

(B) z′′(x) = iλ(x)z′(x)− cz(x)

for some nonzero real-valued function λ on I, then it defines a Legendre
curve in H3

1 (C).

Conversely, if z defines a Legendre curve in H3
1 (c), then it satisfies

differential equation (B) for some real-valued function λ.

The main purpose of this note is to prove the following.

Theorem. For any constant c and any nontrivial real-valued solution
λ = λ(x) of the differential equation

(2.1) λ′′ = −cλ− 2
9
λ3,

we have
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(i) the differential equation

(2.2) z′′(x) = iλ(x)z′(x)− cz(x)
has the following two independent complex-valued solutions

z1(x) = λ(x) exp
(
i

3

∫
λ(x) dx

)
,(2.3)

z2(x) = z1(x)
∫ {

9
λ2(x)

exp
(
i

3

∫ x

λ(t) dt
)}

dx.(2.4)

(ii) If c > 0, then for any nontrivial solution λ(x) of (2.1), there
exist two real numbers α, γ and two solutions of (2.2) in the forms of
(2.3) and (2.4) such that z(x) = (αz2(x), αγz1(x)) defines a unit speed
Legendre curve in S3(c) ⊂ C2, and

(iii) if c < 0, then for any nontrivial solution λ(x) of (2.1), there exist
two real numbers α, γ and two solutions of (2.2) in the forms of (2.3)
and (2.4) such that one of the following two maps

z(x) = (αγz1(x), αz2(x)), z(x) = (αz2(x), αγz1(x))

defines a unit speed Legendre curve in H3
1 (c) ⊂ C2

1.

Proof. Let c be a given constant and λ a nontrivial solution of the
differential equation (2.1). We put

(2.5) z1(x) = ψ(x)w(x), w(x) = exp
(
i

3

∫
λ(x) dx

)
.

Then we have

(2.6)
z′1 =

(
ψ′ +

i

3
λψ

)
w,

z′′1 =
(
ψ′′ +

2
3
iλψ′ +

i

3
λ′ψ − λ2

9
ψ

)
w.

Thus z1(x) = ψ(x)w(x) is a solution of (2.2) for some real-valued
function ψ(x) if and only if ψ satisfies the following system of differential
equations

ψ′′ = −
(
c+

2
9
λ2

)
ψ(2.7)

λψ′ = λ′ψ.(2.8)
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Since λ satisfies (2.1), ψ = λ is a solution of (2.7) (2.8). Therefore,
z1(x) = λ(x) exp((i/3)

∫
λ(x) dx) is a solution of (2.2). The second

independent solution z2 = z1(x)
∫ {(9/λ2(x)) exp((i/3)

∫ x
λ(t) dt)} dx

can be obtained by applying the method of reduction of order.

Now let F (x) and v(x) be anti-derivatives of λ(x)/3 and of (9/λ2)eiF (x),
respectively. We put

(2.9) u(x) = eiF (x), w(x) = 〈u(x), v(x)〉.

Then we have

(2.10) u′ =
i

3
λu, v′ =

9
λ2
u, w′ =

1
3
〈iu, v〉λ+ 9

λ2
.

From (2.10) we find

(2.11) w′′ +
λ2

9
w =

λ′

λ
− 81λ′

λ4
.

Also, from (2.1) we find

(2.12) λ′2 = 9b− cλ2 − λ4

9
,

where b is a constant. By using (2.1), (2.3) and a direct computation,
we may prove that

(2.13) w = c1 cosF (x) + c2 sinF (x)− λ′

bλ
,

is the general solution of the differential equation (2.11) where c1, c2
are constants.

Since z2 = λuv and 〈v, v〉′ = (18/λ2)w, (2.4) and (2.13) yield

(2.14)
〈z2, z2〉 = 9

b
+ c3λ2 + 18c1λ2

∫ (
1
λ2
cosF (x)

)
dx

+ 18c2λ2

∫ (
1
λ2
sinF (x)

)
dx,

where c3 is a constant.
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On the other hand, by (2.3) and (2.4), we have

(2.15)
〈z2, (c1 + ic2)z1〉 = 9c1λ2

∫ (
1
λ2
cosF (x)

)
dx

+ 9c2λ2

∫ (
1
λ2
sinF (x)

)
dx.

Therefore, we obtain

(2.16) 〈z2 − (c1 + ic2)z1, z2 − (c1 + ic2)z1〉 = 9
b
+ (c3 + c21 + c

2
2)λ

2.

On the other hand, we have

z2 − (c1 + ic2)z1 = z1
( ∫ (

9
λ2
cosF (x)

)
dx− c1

)

+ iz1

( ∫ (
9
λ2
sinF (x)

)
dx− c2

)
.

Therefore, by choosing a suitable anti-derivative, sayG(x), of (9/λ2)eiF (x)

for z2 in (2.4), we have

〈z2, z2〉 = 9
b
+ c3λ2 =

9
b
+ c3〈z1, z1〉(2.17)

〈v, v〉 = 9
bλ2

+ c3.(2.18)

For simplicity, we put G(x) =
∫ x

x0
(9/λ2(t))eiF (t) dt. Combining (2.9)

and (2.18), we obtain

(2.19) 〈G(x), G(x)〉 = 9
bλ2(x)

+ c3.

Now, by taking the first and second derivatives of (2.18) and applying
(2.1) and (2.12), we find

(2.20) 〈u, v〉 = − λ
′

bλ
, 〈iu, v〉 = λ

3b
.
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Since

(2.21) z′1 = λ
′u+

i

3
λ2u, z′2 =

(
λ′ +

i

3
λ2

)
uv +

9u2

λ
,

(2.9), (2.12) and (2.19) imply

(2.22) 〈z′1, z′1〉 = 9b− cλ2, 〈z′2, z′2〉 =
9c
b
+ c3(9b− cλ2).

Case a). c > 0. In this case (2.22) implies b > 0. On the other hand,
(2.19) yields 0 = (9/(bλ2(x0))) + c3. Thus, c3 < 0. We put

(2.23) z(x) = (αz2(x), αγz1(x)),

where c3 = −γ2, α = (1/3)
√
b/c. By applying (2.17), (2.22) and

(2.23), we obtain 〈z, z〉 = (1/c), 〈z′, z′〉 = 1. Since the map z = z(x)
given by (2.23) satisfies the differential equation (2.1). Thus, according
to Lemma 2.1, z = z(x) defines a unit speed Legendre curve in
S3(c) ⊂ C2. This proves statement (ii).

Case b). c < 0. In this case we have c3 > 0. This can be seen as
follows. If c3 < 0, then (2.22) implies b > 0. On the other hand, (2.17)
implies b > 0. This is a contradiction. Therefore, c3 > 0 and there is a
positive number γ such that c3 = γ2.

Case b-1). b > 0. In this case we put

(2.24) z(x) = (αz2(x), αγz1(x)),

where α = (1/3)
√
b/(−c). By applying (2.17), (2.22) and (2.24),

we may obtain 〈z, z〉 = (1/c), 〈z′, z′〉 = 1. Since z = z(x) satisfies
differential equation (1.1), Lemma 2.2 implies that z = z(x) defines a
unit speed Legendre curve in H3

1 (c) ⊂ C2
1.

Case b-2). b < 0. In this case we put

(2.25) z(x) = (αγz1(x), αz2(x)),
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where α = (1/3)
√
b/c. By applying an argument similar to that of

Case b-2), we know that z = z(x) defines a unit speed Legendre curve
in H3

1 (c) ⊂ C2
1. This proves statement (iii).

3. Some examples. Let cn(u, k), dn(u, k), sn(u, k) denote the three
main Jacobi’s elliptic functions with modulus k and complementary
modulus k1. The other Jacobi’s elliptic functions are defined by taking
reciprocals and quotients (see [3] for details). For example, we have

(3.1) cd (u) =
cn(u)
dn(u)

, sd(u) =
sn(u)
dn(u)

, nd(u) =
1

dn(u)
.

Example 1. The following Jacobi’s elliptic functions

(3.2)
λ(x) = 3akk1sd(ax, k), 3adn(ax, k), 3akcn(ax, k),

3ak1nd(ax, k), 3adn(ax, 1)

are respectively solutions of the differential equation λ′′ = −cλ −
(2/9)λ3 for

(3.3)
c = (1− 2k2)a2, (k2 − 2)a2, (1− 2k2)a2,

(k2 − 2)a2, −a2.

Example 2. According to Theorem (i), for each a > 0 and each k
with 0 < k < 1, the following differential equations of Lamé type:

z′′(x) = 3akk1i sd(ax, k)z′ + (2k2 − 1)a2z,(3.4)
z′′(x) = 3aki cn(ax, k)z′ + (2k2 − 1)a2z,(3.5)
z′′(x) = 3ak1i nd(ax, k)z′ + (2− k2)a2z,(3.6)
z′′(x) = 3aidn(ax, k)z′ + (2− k2)a2z,(3.7)
z′′(x) = 3aidn(ax, 1)z′ + a2z(3.8)

have independent solutions given respectively by

{
z1 = sd(ax, k)(k cd(ax, k) + ik1nd(ax, k)),

z2 = (k cd(ax, k) + ik1nd(ax, k))(k1cd(ax, k)− ik nd(ax, k)),

(3.9)
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{
z1 = cn(ax, k)(dn(ax, k) + ik sn(ax, k)),

z2 = (dn(ax, k) + ik sn(ax, k))(k1sn(ax, k) + ik dn(ax, k)),

(3.10)

{
z1 = nd(ax, k)(k1sd(ax, k)− i cd(ax, k)),
z2 = (k1cd(ax, k) + i sd(ax, k))(k1sd(ax, k)− i cd (ax, k)),

(3.11)

{
z1 = dn(ax, k)(cn(ax, k) + i sn(ax, k)),

z2 = (k2
1sn(ax, k)− i cn(ax, k))(cn(ax, k) + i sn(ax, k)),

(3.12)

{
z1 = dn(ax, 1)(dn(ax, 1) + i sn(ax, 1)),

z2 = (dn(ax, 1) + i sn(ax, 1))(sn(ax, 1) + i
2nd(ax, 1)).

(3.13)

Applying Theorem (ii) and (iii) we have the following.

Example 3. For each a > 0 and each k with 0 < k <
√
1/2,

(3.14)
ψa(x) =

1
a
√
1−2k2

(
k cd(ax, k)+i

√
1−k2 nd(ax, k)

)
(√

1−k2 cd(ax, k)−ik nd(ax, k),
√
1−2k2 sd(ax, k)

)

is a Legendre curve in S3(c) with c = (1− 2k2)a2.

Example 4. For each a > 0 and each k with 1/
√
2 < k < 1,

ψa(x) =
1

a
√
2k2−1

(
k cd(ax, k)+i

√
i−k2 nd(ax, k)

)
((√

1−k2 cd(ax, k)−ik nd(ax, k)
)
,

√
2k2−1 sd(ax, k)

)
,

(3.15)

is a Legendre curve in H3
1 (c) with c = (1− 2k2)a2 < 0.
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