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ALPERIN’S CONJECTURE AND THE SUBGROUP
STRUCTURE OF A FINITE GROUP

I.M. ISAACS

1. Introduction. In this mostly expository paper, we show how
information about the subgroup structure of a finite group G can be
used to determine certain numerical invariants of the group. Among
the invariants we will consider are the number k(G) of conjugacy classes
of G and the closely related quantity kπ(G), which is the number of
classes of π-elements of G, where π is a set of prime numbers. For each
prime p we will also consider the more subtle invariant zp(G), defined
to be the number of ordinary irreducible characters of G that have
p-defect zero. (Recall that these are the characters χ ∈ Irr (G) such
that the integer |G|/χ(1) is not divisible by p.) If p does not divide
|G|, we see that every irreducible character has p-defect zero, and thus
zp(G) = k(G) in this case. In general, however, it is much more difficult
to determine zp(G) from the structure of G. The problem of doing this
was proposed by Brauer [1] and solved by Robinson [6]. Unfortunately,
Robinson’s solution is fairly technical, and it does not seem to yield a
direct algorithm for computing zp(G) from the subgroup structure of
G.

The validity of our computation of class numbers is very easily
established, but the application of our method to the determination of
zp(G) relies on the unproved Alperin weight conjecture (AWC), which
we shall explain in Section 3. (But the AWC is known to hold for
p-solvable groups [4], and so our algorithm for determining zp(G) is
definitely valid in that case.)

In fact, the AWC is one of the most significant outstanding problems
in finite group representation theory, and it has been a focus of in-
tense interest and activity by many researchers. It seems appropriate,
therefore, that an account of this conjecture and of at least one of its
potential applications should be made accessible to as wide an audi-
ence as possible. That is one of the goals of this paper, which we have
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attempted to make self-contained. Although a number of variations of
the AWC have been formulated, we will limit our attention to the most
basic version, and we use it to give an elementary argument that proves
the validity of our algorithm for computing zp(G) from the subgroup
structure of G. We stress, however, that there is little in this paper
that is really new, except possibly for the point of view. (In particular,
others have observed that the AWC yields methods for determining
the number of p-defect zero characters of a group from its subgroup
structure.)

Let us be precise about what we mean by the “subgroup structure”
of a finite group G. If H ⊆ G is a subgroup, we write [H] to denote the
orbit of H in the conjugation action of G on its subgroups, and we let
H denote the collection of all such classes of subgroups of G. We define
the nonnegative-integer valued function B, of two variables on H, by
setting B([K], [H]) to be the number of G-conjugates of K contained
in each conjugate of H. This function can, of course, be presented as
a square matrix with rows and columns indexed by H, and in which
the ([K], [H])-entry is B([K], [H]). (This matrix is closely related to
the so-called “Burnside matrix” of G.) In addition to the containment
information encoded in B, we shall also need to know the orders of
the various subgroups of G. For the purposes of this paper, therefore,
we define the subgroup-structure of G to be the matrix corresponding
to B together with the column vector, indexed by H, in which the
[H]-entry is the order |H| of the subgroup H. We stress that, by our
definition, the subgroup structure of G is a certain array of integers; it
does not explicitly include information about the isomorphism types of
the various subgroups.

The following easy result is essentially due to Hirsch [3]. We shall
see that it enables us to compute the class number k(G) from a
knowledge of the subgroup structure of G together with exactly one
bit of additional information for each member of H: if [H] ∈ H, we
need to know whether or not H is abelian.

Theorem A (Hirsch). Given a finite group, G, there exists a unique
integer-valued function f defined on H such that f([K]) = 0 if K is
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nonabelian, and such that for every subgroup H ⊆ G, we have

|H|k(H) =
∑

[K]∈H
f([K])B([K], [H]).

In fact, f([K]) = 0 unless K can be generated by two elements.

Theorem A yields a recursive algorithm for computing k(H), and
also f([H]), for every subgroup H ⊆ G. We can suppose that we
already know both k(K) and f([K]) for all subgroups K ⊆ G such
that |K| < |H|. In the equation of Theorem A, we need to consider
only those subgroup classes [K] ∈ H for which B([K], [H]) �= 0. But
B([K], [H]) �= 0 only when [K] = [H] or |K| < |H|. By the inductive
hypothesis, therefore, we know all of the relevant quantities that appear
in the equation except k(H) and f([H]). But we also know one of these,
since k(H) = |H| if H is abelian and, by Theorem A, f([H]) = 0 if
H is nonabelian. (Recall that we are assuming that we know whether
or not H is abelian.) Since |H| �= 0 and B([H], [H]) = 1 �= 0, we can
solve for the one remaining unknown quantity. This argument clearly
also establishes the uniqueness of the function f , as asserted in the
statement of the theorem.

To see how this works in a specific example, consider the case where G
is nonabelian of order 6, so that G has exactly four classes of subgroups,
of orders 1, 2, 3 and 6, and the subgroup structure of G is the following
matrix and column:




1 1 1 1
0 1 0 3
0 0 1 1
0 0 0 1


 and




1
2
3
6


 .

Since in this example the four subgroup orders happen to be distinct,
we can use these orders to name the subgroup classes. For example,
the entry 3 in the matrix tells us that B(2, 6) = 3, and this corresponds
to the fact that there are three conjugates of the subgroup of order 2
in the subgroup of order 6.

When [H] = 1, we know that H is abelian, and thus k(H) = |H| = 1.
Theorem A yields 1 = |H|k(H) = f(1), and so f(1) = 1. Also when
[H] = 2, we know that H is abelian. Thus k(H) = |H| = 2, and
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we have 4 = |H|k(H) = f(1) + f(2), and we deduce that f(2) = 3.
Similarly, when [H] = 3, we get 9 = |H|k(H) = f(1) + f(3), and
thus f(3) = 8. Finally, when [H] = 6, Theorem A yields 6k(6) =
f(1) + 3f(2) + f(3) + f(6). But we know that H is not abelian in this
case, and so f(6) = 0. We deduce that 6k(6) = 1 + 9 + 8 = 18, and
thus k(G) = 3. This, of course, is the correct answer.

A very similar algorithm can be used to compute the number of π-
classes of an arbitrary finite group G, where π is a set of prime numbers.
In fact, Theorem A goes through essentially unchanged.

Theorem B. Given a finite group G and a prime set π, there exists
a unique integer-valued function f defined on H such that f([K]) = 0
if K is nonabelian, and such that for every subgroup H ⊆ G, we have

|H|kπ(H) =
∑

[K]∈H
f([K])B([K], [H]).

In fact, f([K]) = 0 unless K can be generated by two elements.

Observe that, if H is abelian, then kπ(H) = |H|π, and so in
this situation, too, we see that for every member [H] ∈ H, one of
the quantities kπ(H) or f([H]) is known, depending on whether H
is abelian or nonabelian. Exactly as in the earlier situation, if we
know which members of H correspond to abelian subgroups, then the
numbers kπ(H) and f([H]) can be computed recursively. In particular,
this establishes the uniqueness of f .

Continuing with the example where G is nonabelian of order 6, and
taking π = {3}, we get 1 = f(1), 2 = f(1) + f(2) and 9 = f(1) + f(3),
so that f(2) = 1 and f(3) = 8. Since f(6) = 0, we obtain 6kπ(G) =
1 + 3 + 8 = 12, and thus kπ(G) = 2, which is correct.

As we shall see in Section 2, the proofs of Theorems A and B are
nearly trivial. This is not the case for the following result, however,
which, together with the AWC, underlies our algorithm for computing
zp(G). As with our algorithms for k(G) and kπ(G), we assume that we
know the subgroup structure of G and a bit more. The additional
information we need to compute zp(G) is the knowledge for each
member [H] ∈ H of whether or not the derived subgroup H ′ is a p-
group. (Recall that for the class-number computations, the required
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additional information was very similar: we needed to know whether
or not H ′ was trivial.) This result is essentially due to Thévenaz [7].

Theorem C (Thévenaz). Assume that all groups involved in G
satisfy the Alperin weight conjecture for the prime p. Then there exists
a unique integer-valued function f on H such that f([K]) = 0 unless the
commutator subgroup K ′ is a p-group, and such that for every subgroup
H ⊆ G we have

|H|zp(H) =
∑

[K]∈H
f([K])B([K], [H]).

In fact, f([K]) = 0 unless K has an elementary abelian normal Sylow
p-subgroup E and K/E can be generated by two commuting elements.

We mention that if a group G has a nontrivial normal p-subgroup
P , then zp(G) = 0. Perhaps the easiest way to see this is to recall
that if χ ∈ Irr (G) has p-defect zero, then χ vanishes on all elements
of order divisible by p in G. It follows that the character inner
product [χP , 1P ] = χ(1)/|P | �= 0, and hence χP must have a principal
constituent. As P � G, we deduce that P ⊆ ker(χ). But this is
impossible if P > 1 since χ vanishes on the nonidentity elements of
P .

If K ⊆ G and K ′ is not a p-group, we know in the situation of
Theorem C that we have f([K]) = 0. But when K ′ is a p-group, we
can easily determine zp(K). In this case, K has a normal Sylow p-
subgroup P , and so zp(K) = 0 if P is nontrivial. If P = 1, on the other
hand, then p does not divide |K|, and in this case K is abelian and
zp(K) = k(K) = |K|. It follows from this, and assuming the AWC,
that if we know the subgroup structure of G and we also know for every
member [K] ∈ H whether or not K ′ is a p-group, we can determine the
numbers z(H) and f([H]) for every subgroup H ⊆ G. In particular,
we can compute zp(G), and we know that f is unique, as asserted.

To see how this works in practice, let us return to the nonabelian
group of order 6, taking p = 2. If [H] = 1, then |H| = 1 is not divisible
by p and H ′ is a p-group. We thus have 1 = |H|zp(H) = f(1). If
[H] = 2, then |H| = 2 is divisible by p and H ′ is a p-group, and thus
0 = |H|zp(H) = f(1) + f(2), and thus f(2) = −1. When [H] = 3,
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we see that |H| is not divisible by p and H ′ is a p-group, and thus
9 = |H|zp(H) = f(1) + f(3), and so f(3) = 8. For [H] = 6, we
know that H ′ is not a p-group, and thus f(6) = 0. We thus have
6zp(H) = f(1) + 3f(2) + f(3) = 1 − 3 + 8 = 6, and we deduce that
z2(G) = 1, which is correct.

Before proceeding with the proofs of our theorems, we pause to
acknowledge with thanks the help of Geoff Robinson and Jacques
Thévenaz who read a preliminary version of this paper and made a
number of useful comments.

2. Counting classes. Since Theorem A is a special case of
Theorem B, it suffices to prove the latter result.

Proof of Theorem B. Let X denote the set of π-elements of G, and
note that if H ⊆ G, then kπ(H) is the number of orbits in the action of
H on X ∩H. By the standard orbit-counting formula, often wrongly
attributed to Burnside, this number is equal to (1/|H|)

∑
h∈H c(h),

where we have written c(h) to denote the number of elements of X ∩H
that are centralized by h ∈ H. It follows that |H|kπ(H) is equal to the
cardinality of the set S(H) = {(h, x) | h ∈ H,x ∈ X∩H and xh = hx}.

For subgroups K ⊆ G, write f(K) to denote the number of pairs
(k, x) ∈ S(K) such that K = 〈k, x〉, and note that if f(K) �= 0, then K
is generated by a pair of commuting elements, and hence it is abelian. If
H ⊆ G and (h, x) is any member of S(H), then the subgroup K = 〈h, x〉
is clearly contained in H. Also, if K is any subgroup of H, then there
are exactly f(K) pairs (h, x) in S(H) such that 〈h, x〉 = K, and as K
runs over all subgroups of H, we see that these account for all of S(H).
It follows that

|H|kπ(H) = |S(H)| =
∑

K⊆H

f(K).

Observe that the number f(K) is determined by the isomorphism
type of K and the prime set π and, in particular, f is constant on the
subgroup class [K] in G. We can thus view f as being defined on the
set H of subgroup classes, where we write f([K]) = f(K). With this
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notation, we see that

∑
K⊆H

f(K) =
∑

[K]∈H
f([K])B([K], [H]),

and the result follows.

3. Alperin’s weight conjecture. Let G be a finite group and
fix a prime p. Following Alperin, we define a weight of G to be an
ordered pair (P, α) where P is a p-subgroup of G and α is an ordinary
irreducible character of NG(P )/P that has p-defect zero. (Of course, we
can also view α as an irreducible character of NG(P ) with P contained
in its kernel, and such that the p-part of α(1) is equal to the p-part
of the index |NG(P ) : P |.) The number of weights of G with first
component P is just the number of p-defect zero irreducible characters
of NG(P )/P , and we can write this as z(NG(P )/P ). (Since the prime
p is being held fixed in what follows, we will write z( ) in place of zp( )
for the function that counts p-defect zero irreducible characters of a
group.)

The group G acts by conjugation on the set of weights of G in a
natural way. To see this, consider a weight (P, α), and view α ∈ Irr (N),
where N = NG(P ). If g ∈ G, then P g is a p-subgroup of G
having normalizer Ng, and we can define αg ∈ Irr (Ng) by setting
αg(xg) = α(x) for all x ∈ N . It is then clear that P g ⊆ ker(αg) and
that the pair (P g, αg) is a weight. It is easy to check that the formula
(P, α)g = (P g, αg) defines an action of G on the set of weights of G,
and we observe that the stabilizer of (P, α) in G is exactly N = NG(P ).
(This is because αn = α if n ∈ N .)

In the simplest and most accessible of its several variations, the
Alperin weight conjecture (AWC) asserts that the number of G-orbits
of weights of G is equal to the number l(G) of conjugacy classes of
p-regular elements of G. (Note that l(G) is just kp′(G), in our earlier
notation.) Since the size of the orbit containing the weight (P, α) of
G is exactly |G : NG(P )|, we see that we can count the number of
orbits of weights of G by summing the quantity 1/|G : NG(P )| over all
weights (P, α). Since the number of weights having first component P
is z(NG(P )/P ), it follows that the number of orbits of weights of G is
exactly

∑
P (z(NG(P )/P )/|G : NG(P )|), where the sum is taken over
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all p-subgroups P ⊆ G. We can thus restate the AWC for the group G
in the form

(∗) |G|l(G) =
∑
P

z(NG(P )/P )|NG(P )|.

The term in the sum on the right side of equation (∗) corresponding to
P = 1 is |G|z(G), and thus the AWC implies that l(G) ≥ z(G). (This
inequality is easy to prove directly using standard elementary facts
from representation theory.) From the AWC, we see that the difference
l(G)−z(G) is equal to a quantity that can be computed in terms of the
p-local subgroups of G, which are the subgroups NG(P ), where P is a
nontrivial p-subgroup of G. The fact that the AWC implies that the
quantity l(G) − z(G) is “determined p-locally” is explored more fully
and more precisely in [7].

Suppose that p does not divide |G|. The only p-subgroup of G is
1, and so we see that assertion of the AWC in this case is simply
that z(G) = l(G). But every irreducible character of G has p-defect
zero and every element is p-regular, and thus z(G) = |Irr (G)| and
l(G) = k(G). Since it is always true that |Irr (G)| = k(G), we see that
the AWC holds, for trivial reasons, in the case where p does not divide
|G|. At the opposite extreme, suppose now that G is a p-group, so that
l(G) = 1, and the left side of equation (∗) is equal to |G|. If P < G, then
NG(P )/P is a nontrivial p-group, and so it has no irreducible characters
with p-defect zero. The only nonzero term on the right of (∗), therefore,
is z(G/G)|G| = |G|, which occurs for P = G. Thus equation (∗) is valid
and the AWC holds in this case too. More generally, it is known that
the AWC holds for all p-solvable groups, and it has been verified for
many other groups, including all symmetric groups, for all primes.

4. Chains of p-subgroups. The AWC is intimately associated
with the theory of chains of p-subgroups of a finite group. (By a
chain of subgroups, we simply mean a collection that is linearly ordered
by inclusion.) The connection between the AWC and p-group chains
was first observed by Knörr and Robinson, who presented in [5] a
reformulation of the AWC in terms of such chains. In fact, it is not
very difficult to construct such a reformulation, and it appears to be
quite useful to do so. (Our proof of Theorem C, for example, relies on
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a chain version of the AWC.) In this section, we introduce some of the
relevant ideas and we prove a form of the Knörr-Robinson result.

Fix a prime number p, and let G be a finite group. We write
N = N (G) to denote the collection of all chains σ of nontrivial p-
subgroups of G such that each member of σ is normal in the largest.
(We shall refer to such chains as normal chains, and we observe that
the empty chain is normal by default.) Note that G permutes N by
conjugation, and if σ ∈ N , we write Gσ to denote the stabilizer in G
of the chain σ. Observe that if σ is nonempty, then Gσ is just the
intersection of the normalizers in G of all the members of the chain σ,
and if σ is empty, then, of course, Gσ = G.

Suppose P is a nontrivial p-subgroup of G, and let N = NG(P ).
There is a natural injective map τ �→ τ∗ from N (N/P ) into N (G),
defined as follows. If τ ∈ N (N/P ), we take τ∗ to be the chain of p-
subgroups of G consisting of P and all of the preimages of the members
of τ . In particular, all of the members of τ∗ are contained in N , and
so each contains P as a normal subgroup, and, in fact, it is easy to
see that τ∗ is a normal chain. Observe that |τ∗| = 1 + |τ |, and, in
particular, τ∗ is nonempty. Conversely, if σ is any normal chain in G
having P as its smallest member, then clearly σ = τ∗ for some unique
(possibly empty) chain τ ∈ N (N/P ).

Before we state our result relating N (G) to the AWC, we recall that
a section of a group G is a group of the form H/K, where K �H ⊆ G,
and this section is proper if |H/K| < |G|.

Theorem 4.1 (Knörr-Robinson). Assume that the AWC holds for
all proper sections of G. Then the AWC holds for G if and only if

(∗∗) |G|z(G) =
∑

σ∈N (G)

(−1)|σ||Gσ|l(Gσ).

For future reference, we will write R(G) to denote the quantity on
the right side of equation (∗∗).

Proof of Theorem 4.1. In the sum R(G), the term corresponding
to the empty chain is |G|l(G), and we collect the remaining terms
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according to the minimum member of the corresponding chain. For
each nontrivial p-subgroup P of G, we write r(P ) to denote the sum
of the terms in R(G) corresponding to those normal chains σ having
minimal member P . We can thus write R(G) = |G|l(G) +

∑
P r(P ),

where P runs over the nontrivial p-subgroups of G.

To evaluate r(P ), we use the fact that the chains σ ∈ N (G) with
minimum member P are exactly the chains τ∗ for τ ∈ N (N/P ),
where N = NG(P ). Since P ∈ τ∗, we see that Gτ∗ ⊆ N , and,
in fact, Gτ∗/P = (N/P )τ . Next, we observe that the canonical
homomorphism from Gτ∗ onto (N/P )τ maps the p-regular classes of
Gτ∗ to p-regular classes of (N/P )τ . This map on classes is easily seen
to be surjective, and because P is a p-group, it is also injective. (The
injectivity follows from the fact that all complements to a normal Sylow
subgroup in a finite group are necessarily conjugate.) It follows that
l(Gτ∗) = l((N/P )τ ). We thus have

r(P ) =
∑

τ∈N (N/P )

(−1)|τ
∗||Gτ∗ |l(Gτ∗)

=
∑

τ∈N (N/P )

(−1)|τ |+1|P ||(N/P )τ |l((N/P )τ )

= −|P |R(N/P ),

where R(N/P ) represents the right side of equation (∗∗) as applied to
the group N/P .

Since we are considering nontrivial p-subgroups P , we see that N/P
and all of its proper sections are proper sections of G, and hence
these groups all satisfy the AWC by hypothesis. Working by induction
on |G|, we can thus assume that equation (∗∗) holds for N/P , and
thus |N/P |z(N/P ) = R(N/P ). Substitution of this into the previous
equation yields r(P ) = −|N |z(N/P ), and it follows that

|G|l(G) −R(G) = −
∑
P

r(P ) =
∑
P

|NG(P )|z(NG(P )/P ),

where the sum is taken over all nontrivial p-subgroups P of G. Adding
|G|z(G) to both sides, we obtain

|G|l(G) −R(G) + |G|z(G) =
∑
P

|NG(P )|z(NG(P )/P ),
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where now the sum is taken over all p-subgroups of G, including the
identity. The sum on the right side of this equation is exactly the right
side of equation (∗), while |G|l(G) is the left side of (∗). We conclude
that equation (∗) holds if and only if |G|z(G) = R(G), and we recall
that this is precisely equation (∗∗). Since we know that (∗) is equivalent
to the AWC, the proof is complete.

A surprising variation on Theorem 4.1, which was first observed by
Knörr and Robinson in [5], is that if the quantity l(Gσ) in the sum
on the right side of equation (∗∗) is replaced by k(Gσ), then the value
of the sum remains unchanged. We get the same final total, in other
words, if we count all the classes in the chain stabilizers instead of
only the p-regular classes. (This result can be derived as a consequence
of our argument establishing Theorem C, and we present a proof in
Section 7.)

5. Simplification of the right hand side. Our goal in this
section is to obtain a simpler formula for the quantity R(G) =∑

σ(−1)|σ||Gσ|l(Gσ) occurring on the right side of equation (∗∗) in
Theorem 4.1. (Recall that, in this sum, σ runs over N = N (G), the
set of all normal chains of nontrivial p-subgroups of G.)

Let X be the set of all p-regular elements of G. We observe that l(Gσ)
is just the number of orbits in the conjugation action of Gσ on the set
X ∩ Gσ, and so we can use the “Burnside” orbit counting formula to
determine that |Gσ|l(Gσ) =

∑
g∈Gσ

c(g), where we have written c(g)
to denote the number of elements of X ∩ Gσ that are centralized by
g. In other words, |Gσ|l(Gσ) is precisely the number of ordered pairs
(g, x), where g ∈ Gσ, x ∈ X ∩Gσ and gx = xg. If we write T to denote
the set of all ordered triples (g, x, σ) such that g ∈ G, x ∈ X, gx = xg
and x and g both stabilize σ ∈ N , it follows that

R(G) =
∑

(g,x,σ)∈T
(−1)|σ|.

If σ is any nonempty chain of nonidentity p-subgroups of G, then,
of course, σ has a unique maximum member, and we write max(σ) to
denote this nontrivial p-group. It is convenient to extend the definition
to the empty chain, and to define max(σ) = 1, the trivial subgroup, if
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σ is empty. For each triple (g, x, σ) ∈ T , we write 〈g, x, σ〉 to denote
the subgroup 〈g, x,max(σ)〉.

If K ⊆ G is any subgroup, we write f(K) to denote the (often zero)
integer given by

∑
(−1)|σ|, where the sum is taken over all triples

(g, x, σ) ∈ T such that 〈g, x, σ〉 = K. We thus have R(G) =
∑

f(K),
where the sum runs over all subgroups K ⊆ G. Since the function f is
clearly constant on the G-orbit [K] ∈ H of a subgroup K, we can write
f([K[) in place of f(K), and we see that

R(G) =
∑

[K]∈H
f([K])B([K], [G]),

and more generally, if H ⊆ G, we have

R(H) =
∑

[K]∈H
f([K])B([K], [H]),

where R(H) is, of course the right side of the equation of Theorem 4.1 as
applied to the subgroupH. If all sections ofG satisfy the AWC, then for
each subgroup H ⊆ G, Theorem 4.1 guarantees that |H|z(H) = R(H),
and thus

|H|z(H) =
∑

[K]∈H
f([K])B([K], [H]).

To complete the proof of Theorem C, therefore, it suffices to prove the
following.

Theorem 5.1. If K ⊆ G, then f(K) = 0 unless K has an elemen-
tary abelian normal Sylow p-subgroup E and K/E can be generated by
two commuting elements.

We shall give the complete proof of this result in the next section, but
for now, we observe that, if f(K) �= 0, then there must be at least one
triple (g, x, σ) ∈ T such that K = 〈g, x, σ〉, and thus K is generated by
the two commuting elements g and x and some p-subgroup P �K, where
P = max(σ). It follows that f(K) = 0 unless the derived subgroup
K ′ is a p-group, in which case we see that K has a normal Sylow p-
subgroup E. In other words, all of Theorem 5.1 and Theorem C have
been proved except for the assertion that E is elementary abelian when
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f(K) �= 0. (Note that the missing part of Theorem C is not relevant to
the algorithm for counting characters of defect zero that we discussed
in Section 1.)

6. Möbius functions. To establish that the normal Sylow p-
subgroup E of K must be elementary abelian if f(K) �= 0, we shall need
some of the elementary theory of Möbius functions, and we proceed to
review this now. (See [2], for example, for more detail on this material.)

Recall that if P is a finite poset, then the Möbius function µ = µP
is the unique function of two variables on P satisfying the conditions
that µ(x, x) = 1 for all x ∈ P, that µ(x, y) = 0 if x �≤ y and that if
x < y, then

∑
z µ(x, z) = 0, where z runs over all elements in P such

that x ≤ z ≤ y.

The connection between Möbius functions and chains is given by the
following:

Lemma 6.1. Let x < y in a finite poset P. Then

µ(x, y) =
∑

σ

(−1)|σ|,

where σ runs over chains of elements z > x in P such that the largest
member of σ is y.

Proof. Use induction on the length of the longest chain above x with
maximum element y. See Lemma 2.2 of [2] for the details.

We shall be especially concerned with posets formed by collections of
subgroups of a group, where the partial order is given by containment.

Lemma 6.2. Let P be an intersection-closed collection of subgroups
of a finite group P. Assume that 1 ∈ P, but that the intersection of all
of the maximal members of P is nontrivial. Then

∑
Q∈P µ(1, Q) = 0.

Proof. For each maximal member M of P, write P(M) = {Q ∈ P |
Q ⊆ M}. Then P = ∪MP(M), and the sum S of the lemma can be
computed using the inclusion-exclusion principle. Specifically, we have
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S =
∑

±SD, where D runs over all possible intersections of maximal
members of P and SD =

∑
µ(1, Q), where Q runs over all members of

P contained in D. By the defining property of the Möbius function,
each of the sums SD = 0 because, for each of the intersections D, we
have D ∈ P and D > 1 by hypothesis. See Lemma 2.4 of [2] for further
detail.

Now fix a subgroup A ⊆ G where G is any finite group. For each
A-invariant p-subgroup P of G, we define integers a(P ) and n(P ) as
follows. We set a(P ) =

∑
(−1)|σ|, where σ runs over all chains of

A-invariant nonidentity subgroups of P such that P = max(σ). The
definition of n(P ) is similar, except that we sum only over normal
chains σ. (Recall that the unique chain σ for which max(σ) = 1 is the
empty chain, and thus a(1) = 1 = n(1).)

Corollary 6.3. For every A-invariant p-subgroup P ⊆ G, we have
a(P ) = n(P ). Also, this quantity vanishes unless P is elementary
abelian.

Proof. If P is abelian, we clearly have a(P ) = n(P ), and so it suffices
to show that each of these quantities vanishes unless P is elementary
abelian. We can compute a(P ) and n(P ) simultaneously by letting P be
either the collection of all A-invariant subgroups of P or the collection
of all A-invariant normal subgroups of P . If we apply Corollary 6.1 with
x = 1 and y = P , we see that either a(P ) = µ(1, P ) or n(P ) = µ(1, P ),
depending on our choice of the poset P.

By the defining properties of Möbius functions, and since we can
assume that 1 < P , we see that µ(1, P ) = −

∑
µ(1, Q), where Q

runs over P − {P}. We can now apply Corollary 6.2 to the subgroup
collection P − {P} to deduce that µ(1, P ) = 0 unless the intersection
of the maximal members of P − {P} is trivial.

Suppose now that M is any maximal member of P − {P}. Then
M is either maximal among all A-invariant proper subgroups of P , or
else it is maximal among all normal A-invariant proper subgroups of
P . In the former case, we see that since NP (M) > M is A-invariant,
we have NP (M) = P . In either case, therefore, M is normal, and it is
maximal among proper A-invariant normal subgroups of P . It follows
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that P/M is elementary abelian. We know that µ(1, P ) = 0 unless the
intersection of all possible choices for M is trivial, and thus with either
definition of P, we see that µ(1, P ) = 0 unless P is elementary abelian.
The result now follows.

The following fairly standard result is essentially Lemma 2.7 of [2].

Lemma 6.4. Let P be a poset of subgroups of a group E, and assume
that both E and the trivial subgroup 1 are members of P. Suppose that
U ⊆ E is a subgroup such that 〈U,P 〉 ∈ P for every member P ∈ P.
If U > 1, then

∑
P µ(1, P ) = 0, where P runs over all members of P

such that 〈U,P 〉 = E.

Proof. More generally, we show that if U ⊆ H ∈ P, then∑
P µ(1, P ) = 0, where this sum runs over all members P ∈ P such

that 〈U,P 〉 = H. Suppose this is false, and let H be minimal among
counterexample members of P. (Note that since the sum is nonzero
and U > 1, we must have H > 1.)

By the defining properties of the Möbius function, we know that

0 =
∑
P∈P

1⊆P⊆H

µ(1, P ) =
∑
P∈P

〈U,P 〉=H

µ(1, P ) +
∑
P∈P

〈U,P 〉<H

µ(1, P ).

We can decompose the second sum on the right as a sum of sums,
one for each possibility for the group 〈U,P 〉 < H. Since each of these
subsums vanishes by the minimality of H, the result follows.

In order to complete the proof of Theorem 5.1, we introduce some
additional notation. Recall that for subgroups K ⊆ G, we defined
f(K) to be the sum of (−1)|σ| over all triples (g, x, σ) ∈ T for which
K = 〈g, x, σ〉. For each subgroup A ⊆ G, we now define fA(K) to
be the subsum corresponding to those triples (g, x, σ) ∈ T for which
〈g, x〉 = A. (Note that fA(K) = 0 unless A is an abelian two-generator
subgroup of K and K = PA for some p-subgroup P � K.) We can
thus write f(K) =

∑
A fA(K), where this sum runs over all subgroups

A ⊆ K. By the defining properties of the collection T of triples, we
see that we can factor fA(K) = u(A)vA(K), as follows. We set u(A)
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to be the number of pairs (g, x) of elements of G such that gx = xg, x
is p-regular and 〈g, x〉 = A, and we define vA(K) =

∑
σ(−1)|σ|, where

σ runs over normal chains of nonidentity A-invariant p-subgroups of K
such that max(σ) ·A = K.

If f(K) �= 0, then certainly, fA(K) �= 0 for some subgroup A, and
thus u(A) �= 0 and vA(K) �= 0. Since u(A) �= 0, we see that A is an
abelian two-generator group, and because vA(K) �= 0, we know that
K = PA for some p-subgroup P � K. The following result therefore
includes Theorem 5.1.

Theorem 6.5. Assume that vA(K) �= 0 where A is abelian. Then A
is a p′-group, and K = EA, where E is a normal elementary abelian
Sylow p-subgroup of K.

Proof. As we have seen, we must have K = PA for some p-subgroup
P � K. In particular, K has a normal Sylow p-subgroup E, and our
task is to show that E must be elementary abelian and that p does not
divide |A|.

We have 0 �= vA(K) =
∑

σ(−1)|σ|, where σ runs over normal chains
of nonidentity A-invariant p-subgroups of K such that max(σ) ·A = K.
If P is any A-invariant p-subgroup of K, then, as before, we write
n(P ) to denote the subsum of vA(K) corresponding to those normal
chains σ for which max(σ) = P , and we write a(P ) to denote the
corresponding sum, but without the normality requirement on the
chains. By Corollary 6.3 and Lemma 6.1, we have

0 �= vA(K) =
∑
P

n(P ) =
∑
P

a(P ) =
∑
P

µ(1, P ),

where p runs over the A-invariant p-subgroups of K such that PA = K,
and where the Möbius function µ is computed with respect to the poset
P of all A-invariant p-subgroups of K. Since E is a normal Sylow p-
subgroup of K, we see that P can also be described as the poset of all
A-invariant subgroups of E.

Write U = A ∩ E, and note that the condition that PA = K is
equivalent to PU = E. Since we know that the sum of µ(1, P ) over all
members P ∈ P for which PU = E is nonzero, it follows by Lemma 6.4
that we must have U = 1, and thus A is a p′-group. We conclude that
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the only possibility for P is that P = E, and hence 0 �= vA(K) = a(E).
It follows by Corollary 6.3 that E is elementary abelian, as required.

7. A variation on Theorem 4.1. Let us reexamine the quantity
R(G) that appeared on the right side of equation (∗∗) in Theorem 4.1.
Recall that R(G) was the sum of the quantity (−1)|σ||Gσ|l(Gσ) over
all normal chains σ ∈ N (G). What happens if we replace the quantity
l(Gσ) by k(Gσ) in this sum? In other words, suppose that, instead of
computing the “alternating sum” of the number of p-regular classes in
the chain stabilizers, we were to compute the corresponding alternating
sum of the total number of classes in the chain stabilizers. Perhaps
surprisingly, the effect of this change is nil; the corresponding sum has
exactly its original value. To see why this is so, let us write S(G) to
denote the analog of R(G) obtained by replacing l(Gσ) by k(Gσ).

In Section 5, we obtained the simpler formula R(G) =
∑

f(K), where
K runs over all subgroups of G, and f(K) is the sum of (−1)|σ| over
all triples (g, x, σ) ∈ T such that 〈g, x, σ〉 = K. (Recall that T was
defined to be the set of triples (g, x, σ), where g and x are commuting
elements that stabilize the normal chain σ, and where x is required
to be p-regular. Exactly the same reasoning leads us to consider the
set of S of triples (g, h, σ), defined analogously to T , but without the
requirement that the second component must be p-regular. We get
S(G) =

∑
e(K), where again we sum over all subgroups K, and we

define e(K) to be the sum of (−1)|σ| over all triples (g, h, σ) ∈ S such
that K = 〈g, h, σ〉.

Recall that we proved Theorem 5.1 by decomposing the sum defining
f(K) and writing f(K) =

∑
A fA(K), where A runs over all subgroups

of K and fA(K) is the sum of (−1)|σ| over all of those triples (g, x, σ) ∈
T such that 〈g, x〉 = A. Analogously, we can write e(K) =

∑
A eA(K),

where eA(K) is the sum of (−1)|σ| over all triples (g, h, σ) ∈ S for which
〈g, h〉 = A.

We factored fA(K) = u(A)vA(K), where u(A) counts the number
of pairs (g, x) of commuting elements of G such that x is p-regular
and 〈g, x〉 = A, and where vA(K) is the sum of (−1)|σ| over all
normal A-invariant chains σ of nonidentity p-subgroups of K such that
K = max(σ) · A. We see that the second factor of the analogous
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factorization of eA(K) is exactly the same number vA(K). We can
thus write eA(K) = w(A)vA(K), where we define w(A) to be the total
number of commuting pairs (g, h) of elements of G such that 〈g, h〉 = A.
Since there is no requirement that h should be p-regular in the definition
of w(A), we see that, in general, we have w(A) ≥ u(A), but if |A| is
not divisible by p, then clearly w(A) = u(A).

We proved in Theorem 6.5 that if vA(K) is nonzero, then p cannot
divide |A|. We know in this case that w(A) = u(A), and it follows that
for all subgroups A ⊆ G and K ⊆ G we have

fA(K) = u(A)vA(K) = w(A)vA(K) = eA(K),

and thus f(K) = e(K) for all subgroups K. We conclude from this
that R(G) = S(G) for all groups G. Since R(G) was exactly the right
side of equation (∗∗) in Theorem 4.1, we can now restate that result in
terms of the full class numbers of the appropriate subgroups instead of
the numbers of p-regular classes.

Theorem 7.1 (Knörr-Robinson). Assume that the AWC holds for
all proper sections of G. Then the AWC holds for G if and only if

|G|z(G) =
∑

σ∈N (G)

(−1)|σ||Gσ|k(Gσ).

We stress that our proof of the equality R(G) = S(G) is independent
of the AWC; it is the fact that this quantity is equal to |G|z(G) that
depends on Alperin’s conjecture.
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5. R. Knörr and G.R. Robinson, Some remarks on a conjecture of Alperin, J.
London Math. Soc. 38 (1989), 48 60.



ALPERIN’S CONJECTURE 255

6. G.R. Robinson, The number of blocks with a given defect group, J. Algebra 84
(1983), 493 502.
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