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A GENERALIZATION OF A CONJECTURE
OF HARDY AND LITTLEWOOD TO
ALGEBRAIC NUMBER FIELDS

ROBERT GROSS AND JOHN H. SMITH

ABSTRACT. We generalize conjectures of Hardy and Lit-
tlewood concerning the density of twin primes and k-tuples of
primes to arbitrary algebraic number fields.

In one of their great Partitio Numerorum papers [7], Hardy and
Littlewood advance a number of conjectures involving the density of
pairs and k-tuples of primes separated by fixed gaps. For example, if d
is even, we define

Py(z) =|{0 < n <z :n,n+ d are both prime}|.

They conjecture both that

. Py(x) p—1
lim = H —_—
v—oo Py(2) odd p|d 2

and that Py(z) is asymptotic to

211 (1 = 1>2> / <1o§i/>2'

p>2

We will refer to the first equation as the “relative conjecture” and the
second as the “absolute conjecture.”

There has been much numerical verification of these conjectures and
many attempts at proofs. Balog [1] proves a result that implies that the
conjectures are true “on average,” where the average is taken over the
possible shapes of the k-tuples. Golubev [6] compares these conjectures
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with provable analogous limit results for patterns of numbers prime to
n. Turan [18] relates such theorems to zeros of the (-function, using
the large sieve rather than Hardy and Littlewood’s circle method.

There are also many generalizations to specific fields. Most of those
generalizations use “Conjecture H” of Sierpiriski and Schinzel [14,
15]. For example, Sierpiriski [17] shows that Conjecture H implies the
existence of infinitely many prime Gaussian integers differing by two.
Bateman and Horn [2, 3] quote a quantitative form of Conjecture H
which allows them to estimate the density of rational twin primes.
Shanks [16] numerically verifies that the density of prime pairs of the
form a + i, a + 2 + ¢ in the Gaussian integers matches that of the
quantitative form of Conjecture H. Rieger [13] proves an upper bound
for the density of twin primes of certain forms, using sieve methods.
Holben and Jordan [10] venture weaker analogs of these conjectures for
Gaussian integers. Hensley [9] considers the distribution of primes in
regions of quadratic number fields.

Jordan and Rabung [11] conjecture that certain patterns of Gaussian
primes exist and in fact occur infinitely often. Our conjectures would
imply this and give asymptotic estimates (difficult to compute in some
cases) for how often. We defer a detailed discussion of how our
conjectures would imply theirs and others until the end of this paper.

Our goal in this paper is to give a very strong analog of these
conjectures for all number fields. We will first present the numerical
verification for various types of number fields (imaginary quadratic class
number one, real quadratic class number one, Galois cubic, non-Galois
cubic, imaginary quadratic with larger class number) and then state a
conjecture which is numerically plausible in all of these cases.

The heuristic motivating the first conjecture is relatively simple to
understand. For those odd primes p which divide d, there are p — 1
possible equivalence classes for n (mod p) for which n and n + d are
both prime to p; in contrast, there are p — 2 congruence classes for
which n and n + 2 are both prime to p. On the other hand, those
primes which do not divide d should not play a different role in the two
densities. If we assume that the events involved are independent, then
the conjecture follows.

The heuristic naturally carries over to algebraic number fields. We
consider first the imaginary quadratic number fields of class number
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one and define
PP (z) = Ha+b\/—DeOQ[m]: a>0, b>0, N(a+bv/—D)<z,
(a+bv—D), (a+bvV—D + d) prime ideals}

for D # 3. For that exceptional case, we instead consider a+ bw, where
w = (1+1/=3)/2. Note that for D # 1,3, the conditions on a and b
mean that the region contains half of the prime ideals of norm < z,
while when D = 1 or 3, the region contains all such prime ideals.

By analogy with the case of Z, for those fields in which there is at
least one prime ideal of norm 2, we conjecture that

D
i P@) o N -1
xr—00 D -2’
PP () g N) -2
N(p)>2

where the product is 1 if N(d) is a power of 2. If there are no prime
ideals of norm 2, then we conjecture that

P (z) 7 N(p) -1
N(p) -2’

lim
r—0o0 D
PP (@)

where the product is 1 if d is a unit.

We compute the value of the lefthand side of the relative conjecture
for 2 = 10° for these number fields for various small values of d and
compare the result with the product on the right in Tables 1-3.

To find the proper absolute conjecture, we must review the heuristic
that leads to the conjecture for rational primes. Perhaps the simplest
route is to follow the suggestion of Polya [12]. (See also Hardy
and Wright [8] and Cherwell and Wright [5] for other forms of this
heuristic.)

Fix some large integer x, and we consider the fraction of pairs of in-
tegers n and n + 2 which are less than z and not divisible by a prime
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TABLE 1. Relative conjecture for Q[i], Q[v/—2], Q[v/—T].

1 2 7
Obs. | Theor. | Obs. | Theor. | Obs. | Theor.
1.00 1.00 1.02 1.00 1.01 1.00
1.15 | 1.14 | 4.07 | 4.00 1.16 | 1.14
1.01 1.00 1.03 | 1.00 1.02 | 1.00
10| 1.78 | 1.78 1.07 | 1.04 1.06 | 1.04
121 1.14 | 1.14 | 4.08 | 4.00 1.15 | 1.14
141 1.02 1.02 1.04 1.02 1.22 1.20
16 | 1.00 | 1.00 1.03 | 1.00 1.01 1.00
18 | 1.14 1.14 4.07 4.00 1.16 1.14
20| 1.77 | 1.78 1.07 | 1.04 1.05 | 1.04
22 1.00 | 1.01 1.25 | 1.23 1.25 | 1.23
241 1.14 | 1.14 | 4.09 | 4.00 1.15 | 1.14
26 [ 1.19 | 1.19 1.01 1.01 1.01 1.01
28 1 1.02 1.02 1.04 1.02 1.21 1.20
30 2.02 | 203 |4.25| 4.17 1.20 | 1.19
40 | 1.77 1.78 1.07 1.04 1.05 1.04
50 | 1.77 | 1.78 1.03 | 1.04 1.05 | 1.04
60 [ 2.01 | 2.03 | 4.21 | 4.17 1.18 | 1.19
70 1.79 | 1.82 1.08 | 1.07 1.24 | 1.25

oo |||

p. If p =2, then the fraction of such pairs is approximately 1/2. If p is
an odd prime, then the fraction of such pairs is approximately (p—2)/p.
Thus, the density of pairs with no prime dividing n or n + 2 is

1 p—2
s 1=~

odd p

where we deliberately are not specifying the range of the product, other
than to take it over a set of odd primes all smaller than . We now
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simplify that product:

1 p=2 1 q720-2 p—1\°
> 1 P _QOEIP(I)—I)QH< P )

odd p odd p

TR

The prime number theorem can be interpreted as saying that the
density of primes less than x is approximately (1/logx). Thus, one
might hope to find a factor of 1/(logx)? as part of this computation,
and, indeed, the second product is asymptotic to (logz)~2? when
taken over an appropriate range of primes (Polya points out that
the appropriate range is neither p < x nor p < +/z, but rather
p < x¢ &~ z05615 where v = 0.577... is Euler’s constant; this
is a consequence of Merten’s theorem), while the first product is the

convergent one
1
1—-——|.
I1( 5= )

p>2

Thus, the number of prime pairs less than = can be approximated by

211 (l e . 1>2> / (102’1;)2-

p=>2

Let us attempt to generalize this to algebraic number fields, beginning
with Q[i]. The probability that both a+bi and a+bi+2 are divisible by
1+ i, the prime above the rational prime 2, is again 1/2. We consider
a similar product and simplify similarly:

1 Np) -2 _1 Np)(N(p) —2) N(p) —1)?
2 1 N(p) _2#1(11_) (N(p) — 1) p}(_l[m( N(p )
_ N(p)(N(p) —2) N(p) —1\?
= I "0 2 (M)

p#(1+14) p
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TABLE 2. Relative conjecture for Q[v/—3|.

Obs.

Theor. | 12

3.01

3.00

24| 2.97

3.00

13

1.18

1.19

25| 1.03

1.04

1.49

1.50

14

2.15

2.16

26 | 1.77

1.79

1.99

2.00

15

2.08

2.09

27 1 1.98

2.00

1.50

1.50

16

1.49

1.50

28 | 2.13

2.16

1.04

1.04

17

0.99

1.00

29 1 0.98

1.00

3.01

3.00

18

2.99

3.00

30 | 3.11

3.13

1.45

1.44

19

1.11

1.12

31

1.06

1.07

1.50

1.50

20

1.55

1.57

32

1.47

1.50

Q| ([N || = |W( (N |~

2.00

2.00

21

2.85

2.88

33 | 2.00

2.03

—
o

1.56

1.57

22

1.50

1.51

34

1.49

1.51

—_
—_

1.00

1.01

23

1.00

1.00

35

1.49

1.50

TABLE 3.

Q[v—143], Q[v-67], Q[v—163].

Relative conjecture for Q[v/—11], Q[v/—19],

11

19

43

67

163

Ob.

Th.

Ob.

Th.

Ob.

Th.

Ob.

Th.

Ob. | Th.

1.49

1.50

1.52

1.50

1.50

1.50

1.48

1.50

1.50 | 1.50

3.96

4.00

1.16

1.14

1.14

1.14

1.13

1.14

1.14 | 1.14

1.49

1.50

1.53

1.50

1.50

1.50

1.49

1.50

1.51 | 1.50

1.80

1.78

1.83

1.78

1.05

1.04

1.04

1.04

1.06 | 1.04

5.98

6.00

1.75

1.71

1.69

1.71

1.69

1.71

1.71 | 1.71

1.03

1.02

1.43

1.44

1.04

1.02

1.00

1.02

1.02 | 1.02

1.46

1.50

1.51

1.50

1.51

1.50

1.47

1.50

1.50 | 1.50

olo|w|lo|la|ls|w|lv|a|DT

3.97

4.00

1.16

1.14

1.14

1.14

1.12

1.14

1.15| 1.14

—
o

2.66

2.67

2.68

2.67

1.56

1.57

1.55

1.57

1.56 | 1.57
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If we set X(p) = —1 if p is inert in Q[i], and X(p) = 1 if p factors in
Q[i], and X(2) = 0, then we can factor this last product:

(%) T w) IO T0-5)

p p

The final product, over an appropriate range of primes p as above,
again can be approximated by (log N(a+bi))~2, while the first product
converges to L(1,X) 2. If we now set

R={a+bi:a>0,b>0, a,beZ, 2< N(a+bi) <z},

then we expect that

(1) ) ~ _ -2
riese 11 (1 gy =20
1

Z (log(N(a + bi)))?

a+bieR

Though the above approximation is numerically verifiable, we can
speed computation by simplifying the final term. Since the same
simplification will work for all of the imaginary quadratic fields we
considered above, we do the computation in general.

We begin by approximating

> 1 N / dA
v T er log N(a+by=D))? " Js (log N(a+ by—D))?

7/ da db
~ Js (log(a2 + Db2))2
where

S={a+b/=D:a>0,b>0, 2<a’+ Db <z}

Now an appropriate change of variables transforms the last integral
into

T /’3 dy
4VD Jo (logy)*’
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Miraculously, the residue formula for the (-function of a number field
means that the constant in front of the integral exactly cancels one
factor of L(1,X), sometimes with an extra factor of 1/2 when the
region R contains only half of the primes of the region {a + b/—D |
N(a+b/—D < z}.

Therefore, our final approximation is

(D)) L N e [T
AP@~op T (1-55r=) 1007 [

p#(1+1)

where Cp is either 1 or 2 depending on whether R contains all of the
primes p with N(p) < z or only half.

If we define

R®)(x) = P{”)(x) / I1 (PW)QW’X“[ ao?y)z

pA£(1+0)

where d =2 if D =1,2 or 7 and d = 1 otherwise, then Tables 4 and 5
show values of R(P) for various values of x. In these computations, we
have used the approximation

/Idyzx<1+2+6+24)

o (logy)? ~ (logz)? logz ~ (logz)?  (logz)? )’
which is accurate to within one part in a hundred. The expected value
of R(P) can vary from 2 to 0.5 depending on the behavior of the rational
prime 2 in the field and on the fraction of prime ideals considered in
the definition of the function PlgD).

TABLE 4. Absolute conjecture for Q[i], Q[v/—2], Q[v—3], Q[v—7].

x RM(z) | R (2) | R®(z) | R (x)

200000 1.99 0.94 0.99 1.98
400000 2.01 0.97 1.00 1.99
600000 2.00 0.97 1.00 2.00
800000 1.99 0.98 1.00 1.99

1000000 1.99 0.98 1.00 1.98
1200000 2.00 0.98 1.00 1.98
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TABLE 5. Absolute conjecture for Q[v/—11], Q[v/—19],
Q[V _43}y Q[V _67]7 Q[\/ _163]

T R(ll)(x) R(lg)(a?) R(43)(a3) R(67) (as) R(163)(m)
200000 0.49 0.50 0.50 0.50 0.51
400000 0.48 0.50 0.50 0.50 0.51
600000 0.50 0.50 0.50 0.50 0.51
800000 0.50 0.50 0.50 0.50 0.51
1000000 0.50 0.49 0.50 0.50 0.50
1200000 0.50 0.50 0.50 0.50 0.50

Hardy and Littlewood advance similar conjectures for triples and
more generally, k-tuples, of primes. For example, if we let

P,op(z)={0<n<z:n, n+a, n+a+ball prime}|,

then they conjecture
P,
lim a’b(x) =1
Tr—00 vaa(ﬁ,‘)

They also advance a conjecture for the relative density of P, ; compared
to P2’4Z

lim Pas(@) =¢e(a,b) H p-2 H p-1

z—oo Py 4(x) pllab(a+b) p—3 pla,plb p=3

The first two products are over primes larger than 3, the notation pl||z
means that p|z but p? { x, and the factor (a,b) is one unless both
a and b are multiples of 3, in which case it is 2. We also must have
3lab(a + b) and a and b both even, or else P, ; will be trivial.

We can easily try to generalize these conjectures to Q[i], where 3 no
longer needs special treatment (because the rational prime 3 is inert in
this field):

_ PU@) N(p)—2 N(p)—1
i o= I Fe=s I w=3

T—00 (
Py3(®)  gljab(atd) N pla,plb




204 R. GROSS AND J.H. SMITH

where both products are over primes p with odd norms.

We can compute these ratios for various small values of a and b with
x = 10% and compare the results with what the conjecture predicts. In
each pair of columns of Table 6, the first number is the observed ratio
and the second number is the conjectured one.

Similarly, we can generalize the conjecture with no difficulty to
Q[v—19], say, because neither 2 nor 3 splits in that field; we can
conjecture that

P (@ N(p) -2 1 Np) -1
o P00y [ A2y M)
e Py () pllab(ass) Y P) T3 ity
where the products are over all prime ideals p with odd norm and &(a, b)

is 1 unless both a and b are multiples of 2, in which case it is 3/2.

TABLE 6. Relative prime triple conjecture for Q[z].

a\b 2 4 6 8 10 12

2100|100 (114|117 | 1.17|1.17]223|225]259|263]1.16 | 1.19

1.14 | 1.17 1 0.99 | 1.00 | 2.60 | 2.63 | 1.16 | 1.17 | 2.29 | 2.30 | 1.17 | 1.17

1.14 | 1.17 1 2.60 | 2.63 | 1.30 | 1.36 | 1.18 | 1.19 | 2.60 | 2.63 | 1.32 | 1.33

81226(225(1.12|1.17]1.19|1.19]0.99 | 1.00 | 2.59 | 2.63 | 2.58 | 2.63

10 | 2.56 | 2.63 | 2.25 | 2.30 | 2.58 | 2.63 | 2.61 | 2.63 | 3.90 | 4.00 | 2.59 | 2.65

12| 117|119 1.14 | 1.17 | 1.31 | 1.33 | 2.59 | 2.63 | 2.61 | 2.65 | 1.29 | 1.33

The results of the computations for small values of a and b when
x = 10% are in Table 7.

TABLE 7. Relative prime triple conjecture for Q[v/—19].

1.00 | 1.00 | 1.22 | 1.17 | 1.26 | 1.17 | 2.47 | 2.25 | 2.63 | 2.63 | 1.76 | 1.82

1.22 | 1.17 1 1.50 | 1.50 | 2.72 | 2.63 | 1.88 | 1.75 | 3.54 | 3.52 | 1.68 | 1.75

1.25|1.17 1275|263 133|136 1.70 | 1.82 | 2.80 | 2.63 | 1.35 | 1.33

227 (225|179 |1.75]1.84 | 1.82 ] 1.54 | 1.50 | 2.77 | 2.63 | 4.07 | 3.94

2.65 | 2.63 | 3.50 | 3.52 | 2.74 | 2.63 | 2.67 | 2.63 | 4.17 | 4.00 | 3.44 | 3.32

(=20 G0 I VI I Ol

1.82 1182 1.75|1.75| 1.35| 1.33 | 4.00 | 3.94 | 3.36 | 3.32 | 2.08 | 2.00
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Hardy and Littlewood also offer a conjecture about the size of P 4(z):

=311 () (=) [

>3

We can compute an analogous estimate for Q[i| for example. Because

3 is inert in this field, we estimate P2(712) (z). The probability that a -+ bi,
a+ bi + 2 and a + bi + 4 are all not divisible by 1 + i is 1/2; for
the remaining primes, we simply have (N(p) — 3)/N(p). We therefore
consider

%Nlp_[ %:% ( 1)( E )

N(p)#2

(p)
.N(p)ﬁ( 1> ,
=+ I (o) (3-1)

N(p)#2
N(p) -1}’
11 < N(p) ) '
As before, we can break the last product up into a product of L(1,x)~!
and a product which is asymptotic to 1/log N(a+ bi), so we conjecture

that
=4 11 () (=) a0 [

N(p)#2

after we perform the same change of variables in the integral as before.
If we define

st TL () (o)

N(p)#2

then we can compute SU)(z) for various values of z, making the
approximation

/xdny1+3+12+60+360
> (logy)* = (loga)? logz ~ (logz)? ~ (logz)® = (logx)* )’
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which is accurate to one part in 50. The results are in Table 8.

We can repeat the computation for any of the fields. The expected
answer differs depending on the properties of the rational primes 2 and
3 in the fields. For simplicity, we present only the case in which 2
and 3 are both inert; we can then approximate Pl(f)(x). The prime 2
contributes a factor of 1/2, while every other prime contributes a factor
of (N(p) — 3)/N(p). We have

1 () G ()

N(p)>4

Therefore, for D = 19, 43, 67 and 163, we expect
N(p) \>/N(p)-3 _
S(D)z_P(D)x/II( > L(1,x) 2

| =
2 (logy)? ’

to include only half of the primes in the

because we have defined Pl(’llj)
field.

The computed data are in Table 8.

TABLE 8. Absolute conjecture for prime triples.

x SW(z) | SO (z) | SW)(z) | SO (z) | ST ()
200000 3.89 1.09 0.99 0.99 1.06
400000 3.92 1.06 1.00 0.98 1.04
600000 4.05 0.98 0.97 0.97 1.03
800000 4.05 0.95 0.98 1.01 1.03
1000000 | 4.00 0.98 0.97 1.01 1.02
1200000 | 4.03 0.98 0.97 1.01 1.02

We turn next to other fields. If K is a real quadratic field with class
number 1 and R is a set of algebraic integers in K, we can define

Py(K,R)={reR:(r),(r+d) both prime ideals}.
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If R is “large” in some appropriate sense and there is a prime ideal
p C K with N(p) = 2, then we can conjecture that

Pd(KaR)% N(p)_l
Py(K,R)

If there is no prime ideal in K with norm 2, then
KR) 11 N(p) —
R) " LN -
The numerical evidence supporting this relative conjecture is very

strong in the fields Q[v/2], Q[v3], Q[v/5] and Q[/6].

In addition, when the rational prime 2 ramifies or splits, we conjecture
that

_92 1
(KR ~2 ] < )= 1)2)”1”‘) 2 GegIN@E

N(p)#2 a€R
( [N()]#0,1

If 2 is inert, we conjecture that

B 1 -2 v
p1<K,R>~1;[(1 o) Y 2. Tl
N (a)]#0,1

The numerical evidence for this absolute conjecture is also strong. For
example, if we define

R(x):{a—i—b\/az()gagx, 0<b<uz}

for d = 2,3,6 and

:P2 /
N

(1~ vy p00

1
2 (log [N (a)])*’

a€R(x)
[N (a)]#0,1

(p)#2
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we summarize the supporting data in Table 9.

TABLE 9. Absolute conjecture for Q[v/2], Q[v/3], Q[v6].

r | RQV2),2) | RQIV3Lz) | QLG 2)
100 1.72 1.66 1.69
200 1.84 1.86 1.89
300 1.91 1.90 1.96
400 1.94 1.90 1.92
500 1.94 1.95 1.93
600 1.95 1.95 1.97

Next we consider a cubic Galois field. If p is a root of 2% — 7z +7 = 0,
the field Q[p] is a Galois of degree 3. There is a congruence condition
for which rational primes remain prime and which split, simplifying
computations. Again, we conjecture

PiQILR) _ pp Nip) 1
CTRORE S OE)
We let

R ={ap* +bp+c:0<a,b,c<30}

and present numerical evidence for this relative conjecture in Table 10.
These results are not as strong as the ones shown earlier, presumably
because the region R is quite small, because of computational complex-
ity, compared to some of the regions considered earlier.

If X1 and X5 are the two nontrivial cubic characters, then the approx-
imation

P@Uel R~ TT (1= Gy = ) B0 22002

1
PO e
[N (c)]£0,1
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TABLE 10. Relative conjecture for Q[p].

d | Obs. | Theor. | 11 | 1.00 | 1.00 | 21 | 1.13 | 1.25
2 | 1.18 1.17 12| 1.17|1.21 22| 1.10 | 1.17
3| 1.05 1.04 | 13]1.21|1.30] 23] 0.96 | 1.00
41 1.19 1.17 (1413414024 | 1.16 | 1.21
5 [ 097 | 1.01 151 1.03 | 1.05] 25 |0.95]| 1.01
6 | 1.16 1.21 16 | 1.13 | 1.17 ] 26 | 1.37 | 1.51
7| 1.15 1.20 | 17]0.96 | 1.00 | 27 | 0.93 | 1.04
8 | 1.16 1.17 |18 | 1.18 | 1.21 | 28 | 1.28 | 1.40
9 | 1.02 1.04 [19]0.91|1.00]29|1.02]|1.12
10 | 1.16 1.18 120|109 |1.18]30|1.14 | 1.22

can also be checked. Using the region R as above, the ratio

P1(Q[P]aR)/H (1 - m)L(LXl)QL(LXQQ
P

1
2 TogIN@P

[N ()] #0,1

is approximately 0.91. Again, this evidence is not as strong as for the
quadratic fields, presumably because the region R is relatively small.

The field Q[V/2] is not Galois, but we still can use the heuristic given
above, factoring the product as before. We can always factor the Euler
product for (x(s) as a product over rational primes [[(1 — (1/p*))~},
which of course is the ordinary {-function, and another product, which
is not an L-series, but which nevertheless converges at s = 1. Letting
s tend to 1 and computing residues, we have that the residue of (x(s)
at s = 1 precisely equals the remaining term (because the residue of
the ordinary {-function is 1). In our case we are actually manipulating
the reciprocal of (k(s), so we end up with the reciprocal of the residue
in our estimate.

The numerical evidence for both the relative and the absolute con-



210 R. GROSS AND J.H. SMITH

jectures is very convincing. Set
R = {a+b€/§+c€/71:0§a,b,cg 75},

and we can compute P;(Q[v/2], R)/P2(Q[V/2], R) for various values of
d. The results are in Table 11.

TABLE 11. Relative conjecture for Q[V/2].

Obs. | Theor. | 6 | 2.00 | 2.00 | 14 | 1.00 | 1.00
1.01 1.00 8 1099 | 1.00]16 |0.99 | 1.00
1.00 1.00 | 10| 1.38 |1.39 | 18 | 1.96 | 2.00
1.00 1.00 | 12| 197 |2.00]20|1.37|1.39

w w
SR

The absolute conjecture can also be checked for this region R. The
ratio

P@VER) [ Il (1= o) (Rescarvm®)

1
> T IN{aTE
2 {logIN(@))
[N (a)|70,1
is 1.97, while conjecturally it should be 2.

Finally we consider fields with class number larger than 1. The fields
Q[v—d], when d = 5, 6, 14, 15, 21, 23 and 30, have class numbers 2,
2, 4, 3, 4, 3 and 4, respectively. In each of these fields, 2 ramifies or
splits. We can consider the regions

R(z,d) = {a € Q[V—d] : a is an algebraic integer
in the first quadrant, 1 < N(a) < x},
and compute

R(x,d):Pz(Q[\/——d],R(x,d))/ 11 (1—m)L(1,X)2

N(p)#2

1
2 (log [N (a)])*’

aER(x)
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for the above values of d and a range of x. The results are in Table 12.

TABLE 12. Absolute conjecture for Q[v/5], Q[v6], Q[v/14],
QIWVTH, QIVZT], QIVZ3), QI3

x R(5,z) | R(6,z) | R(14,z) | R(15,z) | R(21,z) | R(23,z) | R(30,x)
200000 1.87 1.81 2.08 3.90 1.99 4.06 2.01
400000 1.93 1.82 2.08 3.92 2.07 4.06 2.03
600000 1.95 1.89 2.01 3.93 2.08 4.04 2.00
800000 1.96 1.91 2.02 3.93 2.10 4.03 2.01
1000000 1.99 1.93 2.04 3.92 2.09 3.99 1.97
1200000 1.99 1.96 2.06 3.93 2.07 4.02 1.97

The evidence is as convincing as it was for class number 1. We do
not present any data supporting the relative conjecture, but they are
equally strong.

In order to make the broadest possible conjecture, we need to define
the type of sets of algebraic integers over which we would like to take
limits. One possibility is the following;:

Definition. Let Ok be represented as Z" with respect to some basis.
Suppose that S C R™ is bounded, with nonempty interior and is a finite
union or difference of convex sets (these properties are independent of
the choice of basis). Let ¢; be a set of real numbers tending to co. We
then call the sequence of sets R; = ¢;S N Ok reasonable.

The above examples then suggest the following generalizations of
Hardy and Littlewood’s conjectures. We first state a conjecture for
pairs of primes.

Conjecture. Let K be a number field. Let p1,... ,p, be the complete
list of prime ideals of K with norm 2, and let o be an element of Ok
divisible by each p; and only by those ideals. (If there are no prime
ideals of K with norm 2, let « = 1.) Let R be a reasonable large subset
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of Ok . Then
Pu(K,R) N(p) —1
rrr ~ 1 5=
pld
N(p)#2
and
T 1 —2
P(E,R)~2" ] <1—W> (E{ZGISCK(S))
p
N(p)#2
Z 1
2 TogIN(D)IP
IN(B3)]#0,1

where the interpretation of the symbol ~ is that for a “reasonable”
sequence of increasing regions R;, the ratio of the two sides tends to 1.

We can similarly extend the conjectures to arbitrary k-tuples. The
following statement includes the previous conjecture as a special case
and also combines both elements of the Hardy-Littlewood conjectures
into one statement.

Conjecture. Let K be a number field. Let dy,ds,...,d, € Ok.
For each prime ideal p C Ok, let ky, be the number of distinct residue
classes of dy, ... ,dr (mod p). (Note that for all but finitely many ideals
p, ky = k.) Let R be reasonable, as above. Let m(R,dy,ds,... ,dy) be
the number of elements x € R so that (x + d1), (x + da),...,(x + dy)
are all prime ideals. Then

T(Rody,dy, ... dy) ~ ] (%)“K%)

N(p)>k

T Gak) ()
JL (6 ()
by £k

1
2. log [N (e)[*

aER
|N(a)|#0,1
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Note that the first conjecture is an easy consequence of the second.
For example, the factor of 2" in the first conjecture results from

simplification of
I (v) (=)

N(p)<k

after setting k =2 and k, = 1.

Remarks. There are many quantitative and qualitative conjectures
regarding the distribution of primes in the literature. Many of these
follow from our conjectures above.

In [11], Jordan and Rabung consider certain patterns of primes in
Z[i]. Any two positions differ by multiples of 1 + i, otherwise the
positions would fill up a class (mod 1) + ¢ forcing one of the positions
to contain 1 + ¢ or an associate. Of the five connected patterns of
four positions, where each pattern is taken to include its image under
horizontal and/or vertical reflections, they observe from their data,
“prime formations of types b, ¢, e seem significantly more numerous
than those of forms a and d.” If we break a type x up into reflection
classes, e.g., a = {a1,az2}, then our relative conjecture would imply
that there are 5/3 as many of type b; or ¢; as a; and 5/6 as many of
types d; or e;, where d = {d; }, as a;. Hence, b would be 10/3 as dense
as a, c and e 5/3 as dense and d 5/12 as dense.

In [4] Bergum makes similar conjectures concerning the field of cube
roots of 1, in particular, that there are infinitely many n-tuples of
“consecutive” primes for 2 < n < 5 (consecutive meaning “can be
ordered so that each differs from its successor by a unit”) and only
finitely many such n-tuples for n > 6. Of the possible connected
configurations of six positions, only the hexagon fails to cover some
set of classes (mod 2) or (mod 2 + w), where w = ¢2™/3, hence any
other 6-tuple and any larger tuple occur only finitely often (must in
fact contain one of these integers or an associate). On the other hand,
the absolute conjecture would imply that there are infinitely many
hexagons of primes and infinitely many k-tuples for k¥ < 6, though
the conjectured density makes hexagons fairly sparse.

The computations in this paper were done using the programming
language C, with 32-bit integers. The computations presented no major
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computational problems and used facts about algebraic number theory
which can be found in any standard text.
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