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LOCALNESS OF THE CENTRALIZER NEARRING
DETERMINED BY End G

G. ALAN CANNON

ABSTRACT. For G a finite p-group, we investigate the
localness of the nearring ME(G) = {f : G → G | fσ = σf for
every σ ∈ End G}. Examples of groups which make ME(G)
local are provided.

1. Introduction. Let G be a group written additively but not
necessarily abelian, and let S be a subsemigroup of EndG. The set
MS(G) = {f : G → G | fσ = σf for every σ ∈ S} forms a nearring
under pointwise addition and function composition and is called the
centralizer nearring determined by S and G. These nearrings are very
general since every nearring with identity is isomorphic to an MS(G)
for some pair S and G [5, 14.3]. Therefore, it is difficult to investigate
these nearrings without some restriction on eitherG or S. In particular,
much attention has been focused on the case where S is a group of
automorphisms of G (e.g., see [6] or [9]).

If S consists of only the identity function on G, thenMS(G) =M(G),
the set of all functions from G to G. Similarly, if S consists of only
the zero function on G, then MS(G) = M0(G), the set of all zero-
preserving functions from G to G. The structure of these nearrings is
well known (see [5, 11] or [12] for information and for other general
results about nearrings). In this paper which contains results from the
author’s doctoral dissertation [2], we are interested in the structure of
the other extreme situation, in other words, when S = EndG = E. We
callME(G) the centralizer nearring determined by EndG. Since EndG
contains the zero function, ME(G) will be a zero-symmetric nearring.

We recall that a nearringN is local if the set of nonunits inN forms an
additive subgroup. If N is finite, this condition is equivalent to saying
that every element of N is either invertible or nilpotent [10]. This
provides further motivation for studying ME(G), for if G is finite and
ME(G) is not local, then MS(G) cannot be local for any subsemigroup
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S of EndG since ME(G) is a subnearring of MS(G). Studying these
“smallest” nearrings, therefore, provides information about general
local nearrings with identity.

In [3] it was shown that if G is a finite group and ME(G) is local,
then G is a p-group for some prime p. Hence, we will always assume in
this paper that G is a finite p-group.

In the next section we initiate the study of the localness of ME(G)
in terms of group properties. In particular we focus on the nilpotency
of elements in ME(G) and give conditions on G to ensure that certain
noninvertible elements are nilpotent. In the subsequent section we show
that if G is an extra special p-group, then ME(G) is a local nearring
and explicitly describe all functions in ME(G). In the last two sections
we provide two more classes of groups that give rise to local nearrings.

Throughout the paper, we define Y to be the set of all elements
of order p in G, denote the center of the group G by Z(G) and
the exponent of G by expG, and let the identity function on G be
represented by id. In constructing endomorphisms the commutator
subgroup of G,G′ = 〈{−x1 − x2 + x1 + x2 | x1, x2 ∈ G}〉 and the
Frattini subgroup of G, Φ(G) = {∩Hi | Hi is a maximal subgroup of
G} will be useful.

2. General results. The first lemma collects some well-known
results about p-groups [13].

Lemma 1. Let G be a finite p-group.

(i) G′ is a normal subgroup of G and G/G′ is abelian;

(ii) If H � G, then G/H is abelian if and only if G′ < H;

(iii) Φ(G) is a normal subgroup of G and G/Φ(G) is elementary
abelian;

(iv) Φ(G) = {0} if and only if G is elementary abelian;

(v) If H �G, then G/H is elementary abelian if and only if Φ(G) <
H;

(vi) px ∈ Φ(G) for every x ∈ G;
(vii) All maximal subgroups of G are normal in G and are of index

p;
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(viii) If {0} 
= H �G, then H ∩ Z(G) 
= {0}.

We will use the next result in the sequel without explicitly referencing
it. The proof relies on the inclusion of the inner automorphisms in E.

Lemma 2 [3]. ME(G) is an abelian nearring, i.e., (ME(G),+) is an
abelian group.

Lemma 3 [4]. Let ϕ ∈ EndG and f ∈ME(G). Then

(i) f(Kerϕ) ⊆ Kerϕ;

(ii) f(Imϕ) ⊆ Imϕ.

Proof. (i) Let x ∈ Kerϕ and f ∈ ME(G). Then ϕ(x) = 0 and
ϕf(x) = fϕ(x) imply that ϕf(x) = f(0) = 0. Hence, f(x) ∈ Kerϕ
and we have the result.

(ii) Let x ∈ Imϕ and f ∈ ME(G). Then there exists an element
w ∈ G such that ϕ(w) = x. Thus fϕ(w) = f(x) and ϕf(w) = f(x).
So f(x) ∈ Imϕ and the proof is complete.

In the next sequence of results, we determine the action of f ∈ME(G)
on the elements of order p in G.

Lemma 4. Let y ∈ Y and f ∈ ME(G). Then f(y) = ky for some
integer 0 ≤ k < p.

Proof. Let y ∈ Y , and let H be a maximal (normal) subgroup of G.
Then the map ϕ : G → G/H → 〈y〉 is an endomorphism of G with
Imϕ = 〈y〉. By the previous lemma, f(〈y〉) ⊆ 〈y〉. So f(y) = ky for
some integer 0 ≤ k < p.

Lemma 5. Let f ∈ ME(G), x ∈ G, and fix y in Y . Assume that
f(y) = ky for some integer 0 ≤ k < p. Then f(x) = a + kx for some
a ∈ Φ(G).

Proof. Let x ∈ G, and let H be an arbitrary maximal subgroup
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of G. If x /∈ H, then as above we construct the endomorphism
ϕ : G→ G/H → 〈y〉 such that ϕ(x) = y. Since ϕ is an endomorphism,
ϕ(f(x)−kx) = ϕf(x)−ϕ(kx) = fϕ(x)−kϕ(x) = f(y)−ky = ky−ky =
0 and f(x)− kx ∈ Kerϕ = H. If x ∈ H, then using the endomorphism
ψ : G → G/H → 〈y〉 yields ψ(f(x) − kx) = ψf(x) − ψ(kx) =
fψ(x) − kψ(x) = f(0) − k0 = 0 and f(x) − kx ∈ Kerψ = H. In
either case we have that f(x)− kx ∈ H. Since H is chosen arbitrarily
as a maximal subgroup of G, then f(x) − kx is in the intersection of
all such maximal subgroups H, i.e., f(x) − kx ∈ Φ(G). Therefore,
f(x) = a+ kx for some element a ∈ Φ(G).

Theorem 6. Let f ∈ ME(G). Then f |Y = k · id for some integer
0 ≤ k < p.

Proof. Let f ∈ ME(G) and x ∈ G\Φ(G). Fix y ∈ Y and assume
that f(y) = ky for some integer 0 ≤ k < p. Then, by Lemma 5,
f(x) = a + kx for some a ∈ Φ(G). Now let y1 ∈ Y and assume
by Lemma 4 that f(y1) = k1y1. Since x /∈ Φ(G), then there exists a
maximal normal subgroup H of G with x /∈ H. Let ϕ ∈ EndG be given
by ϕ : G → G/H → 〈y1〉 with ϕ(x) = y1. Then ϕf(x) = ϕ(a+ kx) =
ϕ(a)+kϕ(x) = 0+ky1. Also, fϕ(x) = f(y1) = k1y1 so that ky1 = k1y1
and k = k1. Since y1 ∈ Y is chosen arbitrarily, f |Y = k · id.

Corollary 7. Let G be a p-group of exponent p. Then ME(G) ∼= Zp.

Proof. Let f ∈ ME(G). Since G is of exponent p, we have that
Y = G. So f = f |Y = k · id for some 0 ≤ k < p; thus, f ∈ 〈id〉. Since
f is arbitrary, ME(G) = 〈id〉 and ME(G) ∼= Zp.

Define the annihilator of Y to be AnnY = {f ∈ME(G) | f(Y ) = 0}.
We now focus on functions in AnnY and their relationship to other
functions in ME(G).

Corollary 8. Let f ∈ME(G). Then f = k · id+h where f |Y = k · id
and h ∈ AnnY .
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Proof. If f ∈ ME(G), then f |Y = k · id for some 0 ≤ k < p. Hence
−k · id+ f ∈ AnnY . It follows that f = k · id+ h for some h ∈ AnnY .

Lemma 9. Let h ∈ AnnY . If k · id + h ∈ ME(G)\AnnY is
idempotent for 1 ≤ k < p, then k = 1.

Proof. Suppose (k · id+h)2 = k · id+h. Then (k · id+h)(k · id+h) =
k(k · id + h) + h(k · id + h) = k2 · id + kh + h(k · id + h) = k · id + h.
Therefore (k2 − k) · id = h− kh− h(k · id+ h) ∈ AnnY . So k2 − k = 0
and k2 = k. Since k ∈ Zp, k = 1 and we reach the desired conclusion.

In view of the previous lemma, henceforth all idempotents considered
in ME(G)\AnnY will be of the form id+ h where h ∈ AnnY .

Lemma 10. Let h ∈ AnnY . Then id+ h is idempotent if and only
if h(id+ h) = 0.

Proof. If id + h is idempotent, then (id + h)(id+ h) = id(id + h) +
h(id+h) = id+h+h(id+h) = id+h and h(id+h) = 0. The converse
is now clear.

Theorem 11. AnnY is a maximal ideal of ME(G) and ME(G)/
AnnY ∼= Zp.

Proof. Define Ψ : ME(G) → Zp by Ψ(f) = k where f |Y = k · id
and 0 ≤ k < p. It is straightforward to show that Ψ is a nearring
epimorphism. Clearly AnnY is the kernel of Ψ so that AnnY is an
ideal of ME(G). Since the image of Ψ is Zp, by the first isomorphism
theorem, ME(G)/AnnY ∼= Zp. Since Zp is simple, it follows that
AnnY is a maximal ideal [12, 1.40].

Since AnnY being nil is a necessary condition forME(G) to be local,
we make this assumption in our next results.
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Theorem 12. If AnnY is nil, then AnnY is the unique maximal
right ME(G)-subgroup.

Proof. It is clear that AnnY is a right ME(G)-subgroup. Let
f ∈ME(G)\AnnY . By Corollary 8, f = k · id+h where 0 < k < p and
h ∈ AnnY . By hypothesis, hn = 0 for some integer n ≥ 1. Let I be the
rightME(G)-subgroup generated by f . Then f ◦hm = (k ·id+h)◦hm =
khm + hm+1 ∈ I for all m ≥ 0. We use this fact to prove by induction
that k2ih− h2i+1 ∈ I for all i ≥ 1.

Using m = 1 and m = 2 in the fact above, we see that kh + h2,
kh2 + h3 ∈ I. Since ME(G) is abelian, then k(kh+ h2)− (kh2 + h3) =
k2h+ kh2 − kh2 − h3 = k2h− h3 ∈ I. This shows our induction result
is true for i = 1.

Assume k2ih − h2i+1 ∈ I. Using m = 2i + 1 in the fact yields
k(k2ih − h2i+1) + (kh2i+1 + h2i+2) = k2i+1h + h2i+2 ∈ I while using
m = 2i+2 yields k(k2i+1h+h2i+2)−(kh2i+2+h2i+3) = k2i+2h−h2i+3 =
k2(i+1)h − h2(i+1)+1 ∈ I. Hence the result holds for i + 1 and the
induction proof is complete.

Let r be any integer greater than (1/2)(n − 3). Then 2r + 3 > n
and h2r+3 = 0. Letting i = r + 1 in the induction result implies that
k2(r+1)h− h2(r+1)+1 = k2r+2h− h2r+3 = k2r+2h ∈ I. Since k 
= 0, k is
invertible in Zp. Hence h ∈ I and f − h = (k · id+ h)− h = k · id ∈ I.
It follows that id ∈ I and I =ME(G).

Thus, since any function not in AnnY generates ME(G) as a right
ME(G)-subgroup, then AnnY is the unique maximal right ME(G)-
subgroup.

Corollary 13. If AnnY is nil, then AnnY is the unique maximal
ideal of ME(G).

Proof. The result follows immediately from the theorem since every
ideal of ME(G) is a right ME(G)-subgroup.

Recall from [8] that a nearring N is completely primary if N/J2(N)
is a nearfield. An element n of a nearring N is called quasi-regular if
m(1−n) = 1 for some element m ∈ N . A (left) N -subgroup A is quasi-
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regular if each element of A is quasi-regular. We use these definitions
to characterize when ME(G) is local in terms of AnnY .

Lemma 14. If AnnY is nil, then AnnY = J2(ME(G)), and ME(G)
is a completely primary nearring.

Proof. If AnnY is nil, then by Corollary 13, AnnY is the unique
maximal ideal of ME(G). Since J2(ME(G)) is the intersection of all
maximal ideals ofME(G) [12, 5.42], we have that AnnY = J2(ME(G)).
So, by Theorem 11, ME(G) is completely primary.

Theorem 15. The following are equivalent:

(i) ME(G) is local;

(ii) AnnY is nil and quasi-regular;

(iii) AnnY is nil and for every h ∈ AnnY , h(id+h) = 0 implies that
h = 0.

Proof. If ME(G) is local, then AnnY is nil and ME(G) is completely
primary by Lemma 14. By Theorem 3.3 of [8], AnnY = J2(ME(G))
is quasi-regular. Conversely, if AnnY is nil, then AnnY = J2(ME(G))
and ME(G) is completely primary. Again, from Theorem 3.3 of [8], we
conclude that ME(G) is local. This shows the equivalence of (i) and
(ii).

To show (iii) implies (i), assume that f ∈ ME(G) is idempotent.
If f ∈ AnnY , then f is nilpotent by hypothesis; hence, f = 0. If
f ∈ ME(G)\AnnY , then f = id + h for some h ∈ AnnY . By
Lemma 10, h(id + h) = 0, and so by hypothesis, h = 0. It follows
that f = id. Therefore, ME(G) has no nontrivial idempotents and is
local. Reversing the above steps yields that (i) implies (iii), and the
proof is complete.

We now focus on the action of functions in ME(G) on various
subgroups of G.

Lemma 16. Let H be a subgroup of G with G′ ≤ H. If f ∈ME(G),
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then f(H) ⊆ H.

Proof. Let ψ : G → G/H → Zpn1 × Zpn2 × · · · × Zpnt be an
epimorphism. Let πi : Zpn1 × Zpn2 × · · · × Zpnt → Zpni denote the
projection homomorphism onto the ith component. We wish to show
that ∩t

i=1Kerπiψ = H. Clearly H ⊆ ∩t
i=1Kerπiψ since H ⊆ Kerψ.

Let x ∈ ∩t
i=1Kerπiψ and suppose that x /∈ H. Then ψ(x) 
= 0 and

πi(ψ(x)) 
= 0 for some i. Hence x /∈ Kerπiψ which is a contradiction.
Thus ∩t

i=1Kerπiψ = H.

Let w ∈ G be an element of maximum order. Then, for every i there
is an integer mi such that 〈miw〉 ∼= Zpni . So we can create an endo-
morphism of G via ϕiπiψ ∈ EndG where ϕi denotes the isomorphism
between Zpni and 〈miw〉. By Lemma 3, f(Kerϕiπiψ) ⊆ Kerϕiπiψ.
Hence f(∩t

i=1Kerϕiπiψ) ⊆ ∩t
i=1Kerϕiπiψ. But Kerϕiπiψ = Kerπiψ,

so that f(H) ⊆ H.

Lemma 17. Let ϕ ∈ EndG, and let a ∈ G with ϕ(a) ∈ Y ∪ {0}. If
h ∈ AnnY , then h(a) ∈ Kerϕ.

Proof. Since ϕ(a) ∈ Y ∪{0} and h ∈ AnnY , then ϕh(a) = hϕ(a) = 0.
Hence h(a) ∈ Kerϕ.

Corollary 18. If h ∈ AnnY , then h(G) ⊆ Φ(G).

Proof. Let h ∈ AnnY , and let H be a maximal subgroup of G. Then
we can construct the endomorphism ϕ : G→ G/H → 〈y〉 where y ∈ Y .
Since Imϕ ⊆ Y ∪ {0} and Kerϕ = H, by the previous lemma we
conclude that h(G) ⊆ H. Since H is chosen arbitrarily as a maximal
subgroup of G, then h(G) is contained in the intersection of all such
maximal subgroups, i.e., h(G) ⊆ Φ(G).

Theorem 19. Let ϕ ∈ EndG\AutG such that G′ ⊆ Kerϕ, and let
h ∈ AnnY . Then hn(G) ⊆ Kerϕ for some integer n.

Proof. Since G is finite and G′ ⊆ Kerϕ, by Lemma 1, Imϕ is abelian,
say Imϕ = 〈x1〉×〈x2〉×· · ·×〈xr〉 for some nonzero x1, x2, . . . , xr ∈ G.
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Assume |x1| = pm. Since 〈x1〉 is abelian, 〈px1〉�〈x1〉 and |〈x1〉/〈px1〉| =
p. The endomorphism ϕ1 : G→ G/Kerϕ→ 〈x1〉 × 〈x2〉× · · · × 〈xr〉 →
〈x1〉/〈px1〉 × 〈x2〉 × · · · × 〈xr〉 → 〈pm−1x1〉 × 〈x2〉 × · · · × 〈xr〉 has the
property that |Kerϕ1/Kerϕ| = p. Continuing in this manner, we get a
chain of normal subgroups, Kerϕ = H0 �H1 � · · · �Ht �Ht+1 = G with
|Hi/Hi−1| = p andHi = Kerϕi for some ϕi ∈ EndG, i = 1, 2, . . . , t+1.

For some y ∈ Y , ϕt : G → G/Ht → 〈y〉 and Imϕt ⊆ Y ∪ {0}.
Thus h(G) ⊆ Ht by the previous lemma. Since |Ht/Ht−1| = p,
then pHt ⊆ Ht−1 and ϕt−1(Ht) ⊆ Y ∪ {0}. By the previous lemma,
h(Ht) ⊆ Ht−1. Thus h2(G) = h(h(G)) ⊆ h(Ht) ⊆ Ht−1. Continuing
in this manner yields the result.

Theorem 20. Let h ∈ AnnY . Then hn(G) ⊆ G′ for some integer
n.

Proof. We use the notation introduced in Lemma 16 with H = G′.
By the previous theorem, for each i there exists an integer ni such that
hni(G) ⊆ Kerϕiπiψ. Let n be the maximum of all such ni. Then
hn(G) ⊆ Kerϕiπiψ for every i, i.e., hn(G) ⊆ ∩t

i=1Kerϕiπiψ = G′.

Corollary 21. If expG′ = p, then AnnY is nil.

Proof. Let h ∈ AnnY . By Theorem 20, hn(G) ⊆ G′ for some integer
n. But since G′ ⊆ Y , then h(G′) = 0. Thus h(n+1)(G) = h(hn(G)) ⊆
h(G′) = 0. Hence h is nilpotent and AnnY is nil.

Lemma 22. Let ϕ ∈ EndG. If h ∈ AnnY , then there exists an
integer n such that hn(Imϕ) ⊆ (Imϕ)′.

Proof. Let h ∈ AnnY and w ∈ Imϕ. Then there exists an element
x ∈ G such that ϕ(x) = w and an integer n such that hn(G) ⊆ G′ by
Theorem 20. So hn(w) = hnϕ(x) = ϕhn(x). Since hn(x) ∈ G′ and
ϕ(G′) ⊆ (Imϕ)′, then hn(w) = ϕ(hn(x)) ∈ ϕ(G′) ⊆ (Imϕ)′. Since
w ∈ Imϕ is arbitrary, hn(Imϕ) ⊆ (Imϕ)′.
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Lemma 23. Let W = {w ∈ G | |w| ≤ expG/G′}. If h ∈ AnnY ,
then there exists an integer n such that hn(W ) = 0.

Proof. Let w ∈ W . We can get an endomorphism ϕ : G → G/G′ →
Zpt1 × · · · × Zptk → 〈w〉. Since Imϕ = 〈w〉 is abelian, then (Imϕ)′ =
{0}, and the above lemma implies that for h ∈ AnnY , there exists an
integer nw such that hnw(〈w〉) = 0. Let n = Max {nw | w ∈W}. Then
hn(W ) = 0 and the proof is complete.

Corollary 24. If expG′ ≤ expG/G′, then AnnY is nil.

Proof. Let h ∈ AnnY . By Theorem 20, there is an integer n1

such that hn1(G) ⊆ G′. By Lemma 23 there is an integer n2 such
that hn2(W ) = 0. Since, by hypothesis, G′ ⊆ W , then hn2+n1(G) =
hn2(hn1(G)) ⊆ hn2(G′) = 0. Therefore h is nilpotent and AnnY is nil.

We can get a more definitive result if expG = expG/G′.

Theorem 25. If expG = expG/G′ = pn, then ME(G) ∼= Zpn and,
hence, is local.

Proof. Assume that G/G′ ∼= Zpn1 × · · · × Zpnm where expG = pn1 .
Since expG = expG/G′, then there exists an element x ∈ G\G′

such that |x| = pn1 . Let f ∈ ME(G). Creating the endomorphism
ϕ : G → G/G′ → Zpn1 × · · · × Zpnm → Zpn1 → 〈x〉 yields f(x) = kx
for some integer k by Lemma 3 since Imϕ = 〈x〉.
Let x1 ∈ G. Then |x| ≥ |x1| = pnt and we can create an endomor-

phism ψ : G→ G/G′ → Zpn1 ×· · ·×Zpnm → Zpn1 → Zpnt → 〈x1〉 with
ψ(x) = x1. Hence, f(x1) = fψ(x) = ψf(x) = ψ(kx) = kψ(x) = kx1.
Since x1 ∈ G is arbitrary, f = k · id, ME(G) = 〈id〉, and the result
follows.

The converse to the theorem is false. If we letQ denote the quaternion
group of order 8, we know from Lemma 6.1 of [3] thatME(Q) ∼= Z4 and
is, thus, local. But Q′ = Z(Q) and |Q′| = |Z(Q)| = 2. So |Q/Q′| = 4
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and Q/Q′ ∼= Z2 ×Z2 since, otherwise, we would have that Q is abelian
[13]. Hence expQ/Q′ = 2 and expQ = 4.

Using the previous theorem we can construct numerous examples of
groups that give rise to local nearrings. Let H be a finite p-group
with expH = pm. Consider G = H × Zpn where n ≥ m. Then
G′ = H ′ × {0} and G/G′ ∼= H/H ′ × Zpn . So expG/G′ = pn = expG.
Hence ME(G) ∼= Zpn by the previous theorem.

Furthermore, given the group Zpn we can find a nonabelian p-
group G such that ME(G) ∼= Zpn . This is accomplished by letting
G = H × Zpn where H is a nonabelian p-group of exponent p. As
above, expG/G′ = pn = expG, and ME(G) ∼= Zpn . In particular, let

H =





 1 a b
0 1 c
0 0 1




∣∣∣∣∣ 1, a, b, c ∈ Zp, p an odd prime


 .

Under matrix multiplication, H is a nonabelian group of order p3 and
of exponent p and can be used in the above construction.

3. Extra special p-groups. Throughout this section we let G be
a finite extra special p-group, i.e., a nonabelian p-group whose center,
commutator subgroup, and Frattini subgroup all coincide and are of
order p. If G is an extra special p-group, we know that AnnY is nil by
Corollary 21. We will, however, explicitly determine the functions in
AnnY . The next lemma appears in [7].

Lemma 26. If G is finite, extra special p-group, then expG = p or
expG = p2.

Since we know that ME(G) ∼= Zp when expG = p by Corollary 7,
we only consider when expG = p2. For notation, let O1, . . . , Or be
the orbits of the elements of order p2 under the action of AutG on G.
Furthermore, let oi ∈ Oi, i = 1, . . . , r, be fixed orbit representatives.

Let A be a group of automorphisms of G and let x ∈ G. We define
the stabilizer of x in A as Stab (x) = {σ ∈ A | σ(x) = x}. Stabilizers
play an important role in the study of centralizer nearrings determined
by automorphisms via the well-known result of Betsch [12].
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(Betsch’s) Lemma 27. Let x1, x2 ∈ G, and let A be a group of
automorphisms of G. Then there is an f ∈ MA(G) with f(x1) = x2 if
and only if Stab (x1) ⊆ Stab (x2).

Lemma 28. Let G be a finite, extra special p-group of exponent p2.
Let x ∈ G with |x| = p2, and let z ∈ Φ(G). Then Stab (x) ⊆ Stab (z).

Proof. Let ϕ ∈ Stab (x). Then ϕ(x) = x and ϕ(px) = pϕ(x) = px.
But 0 
= px ∈ Φ(G) by Lemma 1, so z = m(px) for some 0 < m < p
and ϕ(z) = ϕ(m(px)) = (mp)ϕ(x) = mpx = z. Hence ϕ ∈ Stab (z).

Let a = (a1, a2, . . . , ar) ∈ Φ(G)r, and let ha : G → G be defined by
extending (via automorphisms)

ha(x) =
{
ai if x = oi

0 if x ∈ Y ∪ {0} ,

i.e., if x ∈ Oi and ϕ ∈ AutG with ϕ(oi) = x, then ha(x) = ha(ϕ(oi)) =
ϕha(oi) = ϕ(ai). This function is well-defined by Betsch’s lemma and
Lemma 28.

Lemma 29. If G is a finite, extra special p-group, then AnnY =
{ha | a ∈ Φ(G)r}.

Proof. Let ha ∈ {ha | a ∈ Φ(G)r}, and let ϕ ∈ EndG. If ϕ ∈ AutG,
then ϕha = haϕ by definition of ha. If ϕ ∈ EndG\AutG, then
ϕ(Φ(G)) = 0 because Kerϕ ∩ Z(G) 
= ∅ by Lemma 1 and |Z(G)| =
|Φ(G)| = p. Since ha(G) ⊆ Φ(G) by definition, then ϕha(G) = 0. Also,
ϕ(G) ⊆ Y ∪{0} since Φ(G) ⊆ Kerϕ and G/Kerϕ is elementary abelian
by Lemma 1 so that haϕ(G) = 0. Hence ϕha = haϕ and ha ∈ME(G).
That ha ∈ AnnY is clear and, therefore, {ha | a ∈ Φ(G)r} ⊆ AnnY .

Let h ∈ AnnY . Then by Corollary 18, h(G) ⊆ Φ(G). In particular,
h(oi) = ai for every i = 1, 2, . . . , r and some ai ∈ Φ(G). So h = ha

where a = (a1, a2, . . . , ar). Thus AnnY ⊆ {ha | a ∈ Φ(G)r} and the
result follows.
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Corollary 30. If G is a finite, extra special p-group and ha, hb ∈
AnnY , then hahb = 0.

Proof. Since Imhb ⊆ Y ∪ {0} and ha(Y ∪ {0}) = 0, the result is
immediate.

Corollary 31. If G is a finite, extra special p-group of exponent p2,
then |ME(G)| = pr+1. In particular, if r = 1, ME(G) ∼= Zp2 .

Proof. Let h ∈ AnnY . Since |Φ(G)| = p, there are p choices for
h(oi) for each i = 1, 2, . . . , r. So |AnnY | = pr. Since ME(G) =
{k · id + h | k ∈ Zp, h ∈ AnnY }, the first statement follows. If r = 1,
then |ME(G)| = p2. Since expG = p2, then ME(G) = 〈id〉 ∼= Zp2 .

Lemma 32. Let G be a finite extra special p-group. Let x ∈ G\Z(G)
and mz ∈ Z(G) where 0 ≤ m < p and 〈z〉 = Z(G). Then there exists
a map ϕ ∈ AutG such that ϕ(x) = x+mz.

Proof. In [14], Winter states that if G is an extra special p-group,
then |G| = p(2n+1) for some positive integer n and has generators
x1, x2, . . . , x2n satisfying the following relations once a suitable gen-
erator for the center, say z ∈ Z(G), is chosen:

(i) [x2i−1, x2i] = z for i = 1, 2, . . . , n;

(ii) [xj , xk] = 0 unless {j, k} is one of the pairs {2i − 1, 2i} or
{2i, 2i− 1} for some 1 ≤ i ≤ n;
(iii) pxi ∈ 〈z〉 = Z(G) for i = 1, 2, . . . , 2n;

(iv) pz = 0.

Let x ∈ G\Z(G). By Lemma (3D) of [14], x = a1x1 + a2x2 +
· · · + a2nx2n + cz where 0 ≤ ai, c < p for i = 1, 2, . . . , 2n, and the
coefficients are uniquely determined. Since x /∈ Z(G), at least one of
the elements of {a1, . . . , a2n} is nonzero, say aj 
= 0. Consider the
map ϕ : G → G determined by linearly extending ϕ(xi) = xi if i 
= j,
ϕ(xj) = xj + (a−1

j m)z and ϕ(z) = z. By Lemma (3C) of [14], ϕ is an
automorphism of G.
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Then ϕ(x) = ϕ(a1x1 + · · · + a2nx2n + cz) = a1ϕ(x1) + · · · +
aj−1ϕ(xj−1) + ajϕ(xj) + aj+1ϕ(xj+1) + · · · + a2nϕ(x2n) + cϕ(z) =
a1x1+· · ·+aj−1xj−1+aj(xj+(a−1

j m)z)+aj+1xj+1+· · ·+a2nx2n+cz =
a1x1 + · · ·+ a2nx2n + cz + (aja

−1
j m)z = x+mz. Hence ϕ is the auto-

morphism we desire.

Theorem 33. If G is a finite extra special p-group, then ME(G) is
local.

Proof. If expG = p, then ME(G) ∼= Zp by Corollary 7. So we
assume that expG = p2. Let ha ∈ AnnY and suppose ha(id+ha) = 0.
Then ha(id + ha)(oi) = ha(oi + ai) = 0 for every i = 1, 2, . . . , r. By
Lemma 32, there exists ϕi ∈ AutG such that ϕi(oi) = oi + ai for each
i. Thus ϕi(ai) = ϕiha(oi) = haϕi(oi) = ha(oi + ai) = 0. Hence ai = 0
since each ϕi is an automorphism, and we conclude that ha = 0. From
Corollary 21, AnnY is nil. Applying Theorem 15 yields that ME(G)
is local.

4. Another example of a local centralizer nearring. In this
section we investigate a nonextra special p-group such that ME(G) is
local, but ME(G) is not isomorphic to any Zm. Let p be an odd prime,
and let G be the group with presentation 〈a, b, c | p2a = pb = pc =
0,−c + b + c = b + pa, a + b = b + a, a + c = c + a〉. Then G is
nonabelian, expG = p2 and |G| = p4 [1, p. 145]. Throughout this
section, G will denote this group.

Lemma 34. Z(G) = 〈a〉 and G′ = Φ(G) = 〈pa〉.

Proof. Since b + a = a + b and a + c = c + a, we have that
〈a〉 ⊆ Z(G). But, because G is nonabelian, then G/Z(G) is not cyclic
[13, 3.2.8]. Therefore, |Z(G)| ≤ p2. Since |a| = p2, we conclude
that Z(G) = 〈a〉. It follows that 〈a, b〉 = 〈a〉 × 〈b〉 ∼= Zp2 × Zp and
〈a, c〉 = 〈a〉 × 〈c〉 ∼= Zp2 × Zp are maximal subgroups of G. Also
〈b, c〉 is a maximal subgroup of G, for b + c = c + b + pa implies
that pa ∈ 〈b, c〉 and 〈b, c〉 is a subgroup of order p3. Therefore
Φ(G) ⊆ 〈a, b〉∩〈a, c〉∩〈b, c〉 = 〈pa〉. SinceG is nonabelian, Lemma 1 (iv)
guarantees that {0} 
= Φ(G). Thus, |pa| = p implies that Φ(G) = 〈pa〉.
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Since {0} 
= G′ ≤ Φ(G), the result follows.

We note that G is not an extra special p-group since |Z(G)| = p2.
Furthermore, expG = p2 
= p = expG/G′, so Theorem 25 does not
apply in this case.

Lemma 35. For 0 ≤ n < p, define ϕn : G→ G by ϕn(ia+jb+kc) =
(np+ 1)ia+ jb+ kc. Then ϕn is an automorphism of G.

Sketch of proof. We first show c + ib = (−ip)a + ib + c for i ≥ 0
by induction on i. The equation holds for i = 0; assume the equation
holds for some nonnegative integer i and consider c + (i + 1)b. Then
c+(i+1)b = (c+ib)+b = ((−ip)a+ib+c)+b = (−ip)a+ib+b+c−pa =
(−ip)a− pa+ (i+ 1)b+ c = (−(i+ 1)p)a+ (i+ 1)b+ c and the result
holds for i+ 1, and hence for all i ≥ 0.

Let k be a negative integer. Then, for i = −k, c+ ib = (−ip)a+ ib+c
implies that c− kb = (kp)a− kb+ c. Taking inverses of both sides and
using that Z(G) = 〈a〉 yields kb − c = (−kp)a − c + kb. Rearranging
terms gives c + kb = (−kp)a + kb + c. Hence the result holds for all
integers i.

One can now show by induction that jc + ib = (−jip)a + ib + jc
for all integers i and j. Using this fact it can be shown with tedious
calculations that the function ϕn is an endomorphism of G. Since
ϕn(a) = (np + 1)a and a ∈ 〈(np + 1)a〉, then a ∈ Imϕn. Also,
ϕn(b) = b and ϕn(c) = c so that 〈a, b, c〉 = G ⊆ Imϕn. Hence ϕn

is an automorphism of G.

We use the same notation as in the previous section, namely, letting
Oi, i = 1, 2, . . . , r, denote the orbits of the elements of order p2 under
the action of AutG on G and oi ∈ Oi, i = 1, 2, . . . , r, be fixed orbit
representatives. We also continue to let ha : G→ G denote the function
described just before Lemma 29.

Lemma 36. AnnY = {ha | a ∈ Φ(G)r}.

Proof. Since |Φ(G)| = p, the proof is similar to those of Lemma 28
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and Lemma 29.

Lemma 37. Let ia + jb + kc ∈ G. Then |ia + jb + kc| = p2 if and
only if i (mod p) 
= 0.

Proof. We note that, since b and c commute modulo pa, then
p(jb + kc) = 0. Thus a ∈ Z(G) implies that p(ia + jb + kc) =
p(ia) + p(jb+ kc) = i(pa) + 0 = i(pa). So if ia+ jb+ kc is of order p2,
then i (mod p) 
= 0 and conversely.

Lemma 38. Let x ∈ G be such that |x| = p2, and let m(pa) ∈ Φ(G)
with 0 ≤ m < p. Then there exists a map ϕ ∈ AutG such that
ϕ(x) = x+m(pa).

Proof. By the previous lemma, x = ia+jb+kc where i (mod p) 
= 0.
Hence i (mod p) is invertible in Zp. Then for n = i−1m in Lemma 35
we have that ϕn(x) = ϕn(ia + jb + kc) = (np + 1)ia + jb + kc =
(i−1mp)ia+ ia+ jb+ kc = m(pa) + ia+ jb+ kc = x +m(pa). So ϕn

is the automorphism we desire.

Theorem 39. Let G be the group given before Lemma 34. Then
ME(G) is local and ME(G) 
∼= Zm for every positive integer m.

Proof. The proof of the first statement is similar to that of Theo-
rem 33. To prove the second statement, first note that a and a+b are in
different orbits since a ∈ Z(G) and b /∈ Z(G), say a ∈ O1 and a+b ∈ O2.
Let d = (pa, 0, 0, . . . , 0) ∈ Φ(G)r. Then hd ∈ AnnY by Lemma 36.
ThereforeME(G) 
= 〈id〉 since hd(a) = pa and hd(a+b) = 0 
= p(a+b).
The result now follows.

Recall from Corollary 31 that, if G is a finite extra special p-group
of exponent p2 and the number of orbits of elements of order p2 under
the action of AutG on G, r, is one, then ME(G) ∼= Zp2 . We remark,
however, that if r > 1, then a proof similar to the one above shows that
ME(G) 
∼= Zm for every positive integer m.
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5. A final example of a local centralizer nearring. In this
section we present another example of a finite group G such that
ME(G) is local. This example, in general, is not extra special and
expG/G′ 
= expG.

Let G be the group with presentation 〈a, b | pm−1a = pb = 0, a+ b =
b+(1+ pm−2)a〉 where m ≥ 3 and p is an odd prime. Throughout this
section G will denote this nonabelian group.

Lemma 40. The following statements are true for the group G and
integers i, j and n.

(i) |G| = pm and expG = pm−1;

(ii) ia+ jb = jb+ (i+ ijpm−2)a;

(iii) jb+ ia = (i− ijpm−2)a+ jb;

(iv) n(jb+ ia) = (nj)b+ (ni+ (1/2)ijn2pm−2 − (1/2)ijnpm−2)a;

(v) p(jb+ ia) = (ip)a;

(vi) Z(G) = 〈pa〉 = Φ(G);

(vii) G′ = 〈pm−2a〉;
(viii) For any two fixed integers r1, r2, the map ϕ(jb + ia) = jb +

i(r2b+ r1a) is an endomorphism of G.

Proof. Parts (i), (ii), (iv) and (v) are given by Burnside [1, p. 135].
Using (ii) we get −(jb+ia) = −ia−jb = −jb+(−i+(−i)(−j)pm−2)a =
−jb+ (−i+ ijpm−2)a. Taking inverses of both sides yields (iii).

To show (vi) we first note that ia+jb+pa = ia+(p−pjpm−2)a+jb =
ia+ pa− jpm−1a+ jb = ia+ pa+ jb = pa+ ia+ jb so that pa ∈ Z(G).
Because G is nonabelian, then G/Z(G) is not cyclic [13, 3.2.8]; thus,
|Z(G)| ≤ pm−2. But |pa| = pm−2 implies that Z(G) = 〈pa〉.
Let jb+ia+Z(G) ∈ G/Z(G). By (v), p(jb+ia+Z(G)) = ipa+Z(G) =

Z(G). Therefore, exp(G/Z(G)) = p and Φ(G) ⊆ Z(G) by Lemma 1
(v). By Lemma 1 (vi), pa ∈ Φ(G) so that Φ(G) = 〈pa〉 and the proof
of (vi) is complete.

By (iii), −a − b + a + b = −a + ((1 + pm−2)a − b) + b = −a + a +
pm−2a− b+ b = pm−2a ∈ G′. So 〈pm−2a〉 ⊆ G′. But a+ b+ 〈pm−2a〉 =
b+(1+pm−2)a+〈pm−2a〉 = b+a+pm−2a+〈pm−2a〉 = b+a+〈pm−2a〉.
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Since the generators a and b of G commute modulo 〈pm−2a〉, then
G/〈pm−2a〉 is abelian. So G′ ⊆ 〈pm−2a〉 by Lemma 1 (ii) and part (vii)
now follows.

Part (viii) involves tedious calculations which we leave to the reader.

If m > 3, then G is not extra special by parts (vi) and (vii) of
the lemma. Furthermore, pm−2(jb + ia + G′) = pm−2jb + (pm−2i +
(1/2)ij(pm−2)2pm−2 − (1/2)ijpm−2pm−2)a+G′ = G′. So expG/G′ ≤
pm−2 < expG. Therefore, Theorem 25 does not apply in this case.

Theorem 41. Let G be the group given before Lemma 40. Then
ME(G) ∼= Zpm−1 .

Proof. Let f ∈ ME(G), and let r2b + r1a ∈ G. By part (viii) of
the previous lemma, the map ϕ(jb + ia) = jb + i(r2b + r1a) is an
endomorphism of G with ϕ(a) = r2b+ r1a.

Since |a| = pm−1, then 〈a〉 is a maximal subgroup of G, and we
can construct the endomorphism ψ : G → G/〈a〉 → 〈b〉. By Lemma 3
f(〈a〉) ⊆ 〈a〉 and so f(a) = ka for some integer k. Hence f(r2b+r1a) =
fϕ(a) = ϕf(a) = ϕ(ka) = kϕ(a) = k(r2b + r1a). Since r2b + r1a ∈ G
is arbitrary, we have that f = k · id and ME(G) = 〈id〉 ∼= Zpm−1 .

Although the group in Section 5 gives rise to a local centralizer
nearring, this nearring does not have a very complicated structure. If G
is any of the groups in this paper for which ME(G) is local, one might
ask if there are other subsemigroups S of EndG for whichMS(G) is also
local or local and nonabelian. Certainly in the former case a minimal
such subsemigroup S′ must exist. Perhaps MS′(G) will have a more
interesting structure than ME(G).
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