ROCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 30, Number 1, Spring 2000

LOCALNESS OF THE CENTRALIZER NEARRING DETERMINED BY End G

G. ALAN CANNON

ABSTRACT. For G a finite p-group, we investigate the localness of the nearring $M_E(G) = \{f : G \to G \mid f\sigma = \sigma f \text{ for every } \sigma \in \text{End } G\}$. Examples of groups which make $M_E(G)$ local are provided.

1. Introduction. Let G be a group written additively but not necessarily abelian, and let S be a subsemigroup of End G. The set $M_S(G) = \{f : G \to G \mid f\sigma = \sigma f \text{ for every } \sigma \in S\}$ forms a nearring under pointwise addition and function composition and is called the *centralizer nearring determined by* S and G. These nearrings are very general since every nearring with identity is isomorphic to an $M_S(G)$ for some pair S and G [5, 14.3]. Therefore, it is difficult to investigate these nearrings without some restriction on either G or S. In particular, much attention has been focused on the case where S is a group of automorphisms of G (e.g., see [6] or [9]).

If S consists of only the identity function on G, then $M_S(G) = M(G)$, the set of all functions from G to G. Similarly, if S consists of only the zero function on G, then $M_S(G) = M_0(G)$, the set of all zeropreserving functions from G to G. The structure of these nearrings is well known (see [5, 11] or [12] for information and for other general results about nearrings). In this paper which contains results from the author's doctoral dissertation [2], we are interested in the structure of the other extreme situation, in other words, when S = End G = E. We call $M_E(G)$ the centralizer nearring determined by End G. Since End G contains the zero function, $M_E(G)$ will be a zero-symmetric nearring.

We recall that a nearring N is local if the set of nonunits in N forms an additive subgroup. If N is finite, this condition is equivalent to saying that every element of N is either invertible or nilpotent [10]. This provides further motivation for studying $M_E(G)$, for if G is finite and $M_E(G)$ is not local, then $M_S(G)$ cannot be local for any subsemigroup

Received by the editors on March 20, 1998, and in revised form on September 30, 1998.

Copyright ©2000 Rocky Mountain Mathematics Consortium

S of End G since $M_E(G)$ is a subnearing of $M_S(G)$. Studying these "smallest" nearrings, therefore, provides information about general local nearrings with identity.

In [3] it was shown that if G is a finite group and $M_E(G)$ is local, then G is a p-group for some prime p. Hence, we will always assume in this paper that G is a finite p-group.

In the next section we initiate the study of the localness of $M_E(G)$ in terms of group properties. In particular we focus on the nilpotency of elements in $M_E(G)$ and give conditions on G to ensure that certain noninvertible elements are nilpotent. In the subsequent section we show that if G is an extra special p-group, then $M_E(G)$ is a local nearring and explicitly describe all functions in $M_E(G)$. In the last two sections we provide two more classes of groups that give rise to local nearrings.

Throughout the paper, we define Y to be the set of all elements of order p in G, denote the center of the group G by Z(G) and the exponent of G by $\exp G$, and let the identity function on G be represented by *id*. In constructing endomorphisms the *commutator* subgroup of $G, G' = \langle \{-x_1 - x_2 + x_1 + x_2 \mid x_1, x_2 \in G\} \rangle$ and the *Frattini subgroup* of G, $\Phi(G) = \{\cap H_i \mid H_i \text{ is a maximal subgroup of} G\}$ will be useful.

2. General results. The first lemma collects some well-known results about *p*-groups [13].

Lemma 1. Let G be a finite p-group.

(i) G' is a normal subgroup of G and G/G' is abelian;

(ii) If $H \triangleleft G$, then G/H is abelian if and only if G' < H;

(iii) $\Phi(G)$ is a normal subgroup of G and $G/\Phi(G)$ is elementary abelian;

(iv) $\Phi(G) = \{0\}$ if and only if G is elementary abelian;

(v) If $H \triangleleft G$, then G/H is elementary abelian if and only if $\Phi(G) < H$;

(vi) $px \in \Phi(G)$ for every $x \in G$;

(vii) All maximal subgroups of G are normal in G and are of index p;

(viii) If $\{0\} \neq H \triangleleft G$, then $H \cap Z(G) \neq \{0\}$.

We will use the next result in the sequel without explicitly referencing it. The proof relies on the inclusion of the inner automorphisms in E.

Lemma 2 [3]. $M_E(G)$ is an abelian nearring, i.e., $(M_E(G), +)$ is an abelian group.

Lemma 3 [4]. Let $\varphi \in \text{End } G$ and $f \in M_E(G)$. Then

- (i) $f(\operatorname{Ker} \varphi) \subseteq \operatorname{Ker} \varphi$;
- (ii) $f(\operatorname{Im} \varphi) \subseteq \operatorname{Im} \varphi$.

Proof. (i) Let $x \in \text{Ker } \varphi$ and $f \in M_E(G)$. Then $\varphi(x) = 0$ and $\varphi f(x) = f\varphi(x)$ imply that $\varphi f(x) = f(0) = 0$. Hence, $f(x) \in \text{Ker } \varphi$ and we have the result.

(ii) Let $x \in \operatorname{Im} \varphi$ and $f \in M_E(G)$. Then there exists an element $w \in G$ such that $\varphi(w) = x$. Thus $f\varphi(w) = f(x)$ and $\varphi f(w) = f(x)$. So $f(x) \in \operatorname{Im} \varphi$ and the proof is complete. \Box

In the next sequence of results, we determine the action of $f \in M_E(G)$ on the elements of order p in G.

Lemma 4. Let $y \in Y$ and $f \in M_E(G)$. Then f(y) = ky for some integer $0 \le k < p$.

Proof. Let $y \in Y$, and let H be a maximal (normal) subgroup of G. Then the map $\varphi : G \to G/H \to \langle y \rangle$ is an endomorphism of G with $\operatorname{Im} \varphi = \langle y \rangle$. By the previous lemma, $f(\langle y \rangle) \subseteq \langle y \rangle$. So f(y) = ky for some integer $0 \leq k < p$. \Box

Lemma 5. Let $f \in M_E(G)$, $x \in G$, and fix y in Y. Assume that f(y) = ky for some integer $0 \le k < p$. Then f(x) = a + kx for some $a \in \Phi(G)$.

Proof. Let $x \in G$, and let H be an arbitrary maximal subgroup

of G. If $x \notin H$, then as above we construct the endomorphism $\varphi: G \to G/H \to \langle y \rangle$ such that $\varphi(x) = y$. Since φ is an endomorphism, $\varphi(f(x)-kx) = \varphi f(x)-\varphi(kx) = f\varphi(x)-k\varphi(x) = f(y)-ky = ky-ky = 0$ and $f(x)-kx \in \operatorname{Ker} \varphi = H$. If $x \in H$, then using the endomorphism $\psi: G \to G/H \to \langle y \rangle$ yields $\psi(f(x)-kx) = \psi f(x) - \psi(kx) = f\psi(x) - k\psi(x) = f(0) - k0 = 0$ and $f(x) - kx \in \operatorname{Ker} \psi = H$. In either case we have that $f(x) - kx \in H$. Since H is chosen arbitrarily as a maximal subgroup of G, then $f(x) - kx \in \Phi(G)$. Therefore, f(x) = a + kx for some element $a \in \Phi(G)$.

Theorem 6. Let $f \in M_E(G)$. Then $f|_Y = k \cdot id$ for some integer $0 \le k < p$.

Proof. Let $f \in M_E(G)$ and $x \in G \setminus \Phi(G)$. Fix $y \in Y$ and assume that f(y) = ky for some integer $0 \leq k < p$. Then, by Lemma 5, f(x) = a + kx for some $a \in \Phi(G)$. Now let $y_1 \in Y$ and assume by Lemma 4 that $f(y_1) = k_1y_1$. Since $x \notin \Phi(G)$, then there exists a maximal normal subgroup H of G with $x \notin H$. Let $\varphi \in \text{End } G$ be given by $\varphi: G \to G/H \to \langle y_1 \rangle$ with $\varphi(x) = y_1$. Then $\varphi f(x) = \varphi(a + kx) = \varphi(a) + k\varphi(x) = 0 + ky_1$. Also, $f\varphi(x) = f(y_1) = k_1y_1$ so that $ky_1 = k_1y_1$ and $k = k_1$. Since $y_1 \in Y$ is chosen arbitrarily, $f|_Y = k \cdot id$.

Corollary 7. Let G be a p-group of exponent p. Then $M_E(G) \cong Z_p$.

Proof. Let $f \in M_E(G)$. Since G is of exponent p, we have that Y = G. So $f = f|_Y = k \cdot id$ for some $0 \leq k < p$; thus, $f \in \langle id \rangle$. Since f is arbitrary, $M_E(G) = \langle id \rangle$ and $M_E(G) \cong Z_p$. \Box

Define the annihilator of Y to be Ann $Y = \{f \in M_E(G) \mid f(Y) = 0\}$. We now focus on functions in Ann Y and their relationship to other functions in $M_E(G)$.

Corollary 8. Let $f \in M_E(G)$. Then $f = k \cdot id + h$ where $f|_Y = k \cdot id$ and $h \in \text{Ann } Y$.

Proof. If $f \in M_E(G)$, then $f|_Y = k \cdot id$ for some $0 \le k < p$. Hence $-k \cdot id + f \in \operatorname{Ann} Y$. It follows that $f = k \cdot id + h$ for some $h \in \operatorname{Ann} Y$.

Lemma 9. Let $h \in \operatorname{Ann} Y$. If $k \cdot id + h \in M_E(G) \setminus \operatorname{Ann} Y$ is idempotent for $1 \leq k < p$, then k = 1.

Proof. Suppose $(k \cdot id + h)^2 = k \cdot id + h$. Then $(k \cdot id + h)(k \cdot id + h) = k(k \cdot id + h) + h(k \cdot id + h) = k^2 \cdot id + kh + h(k \cdot id + h) = k \cdot id + h$. Therefore $(k^2 - k) \cdot id = h - kh - h(k \cdot id + h) \in \text{Ann } Y$. So $k^2 - k = 0$ and $k^2 = k$. Since $k \in \mathbb{Z}_p$, k = 1 and we reach the desired conclusion. □

In view of the previous lemma, henceforth all idempotents considered in $M_E(G)\setminus \operatorname{Ann} Y$ will be of the form id + h where $h \in \operatorname{Ann} Y$.

Lemma 10. Let $h \in \text{Ann } Y$. Then id + h is idempotent if and only if h(id + h) = 0.

Proof. If id + h is idempotent, then (id + h)(id + h) = id(id + h) + h(id + h) = id + h + h(id + h) = id + h and h(id + h) = 0. The converse is now clear.

Theorem 11. Ann Y is a maximal ideal of $M_E(G)$ and $M_E(G)/Ann Y \cong Z_p$.

Proof. Define $\Psi : M_E(G) \to Z_p$ by $\Psi(f) = k$ where $f|_Y = k \cdot id$ and $0 \leq k < p$. It is straightforward to show that Ψ is a nearring epimorphism. Clearly Ann Y is the kernel of Ψ so that Ann Y is an ideal of $M_E(G)$. Since the image of Ψ is Z_p , by the first isomorphism theorem, $M_E(G)/\text{Ann } Y \cong Z_p$. Since Z_p is simple, it follows that Ann Y is a maximal ideal [12, 1.40]. \Box

Since Ann Y being nil is a necessary condition for $M_E(G)$ to be local, we make this assumption in our next results.

Theorem 12. If Ann Y is nil, then Ann Y is the unique maximal right $M_E(G)$ -subgroup.

Proof. It is clear that Ann Y is a right $M_E(G)$ -subgroup. Let $f \in M_E(G) \setminus \text{Ann } Y$. By Corollary 8, $f = k \cdot id + h$ where 0 < k < p and $h \in \text{Ann } Y$. By hypothesis, $h^n = 0$ for some integer $n \ge 1$. Let I be the right $M_E(G)$ -subgroup generated by f. Then $f \circ h^m = (k \cdot id + h) \circ h^m = kh^m + h^{m+1} \in I$ for all $m \ge 0$. We use this fact to prove by induction that $k^{2i}h - h^{2i+1} \in I$ for all $i \ge 1$.

Using m = 1 and m = 2 in the fact above, we see that $kh + h^2$, $kh^2 + h^3 \in I$. Since $M_E(G)$ is abelian, then $k(kh + h^2) - (kh^2 + h^3) = k^2h + kh^2 - kh^2 - h^3 = k^2h - h^3 \in I$. This shows our induction result is true for i = 1.

Assume $k^{2i}h - h^{2i+1} \in I$. Using m = 2i + 1 in the fact yields $k(k^{2i}h - h^{2i+1}) + (kh^{2i+1} + h^{2i+2}) = k^{2i+1}h + h^{2i+2} \in I$ while using m = 2i + 2 yields $k(k^{2i+1}h + h^{2i+2}) - (kh^{2i+2} + h^{2i+3}) = k^{2i+2}h - h^{2i+3} = k^{2(i+1)}h - h^{2(i+1)+1} \in I$. Hence the result holds for i + 1 and the induction proof is complete.

Let r be any integer greater than (1/2)(n-3). Then 2r+3 > nand $h^{2r+3} = 0$. Letting i = r+1 in the induction result implies that $k^{2(r+1)}h - h^{2(r+1)+1} = k^{2r+2}h - h^{2r+3} = k^{2r+2}h \in I$. Since $k \neq 0, k$ is invertible in \mathbb{Z}_p . Hence $h \in I$ and $f - h = (k \cdot id + h) - h = k \cdot id \in I$. It follows that $id \in I$ and $I = M_E(G)$.

Thus, since any function not in Ann Y generates $M_E(G)$ as a right $M_E(G)$ -subgroup, then Ann Y is the unique maximal right $M_E(G)$ -subgroup. \Box

Corollary 13. If Ann Y is nil, then Ann Y is the unique maximal ideal of $M_E(G)$.

Proof. The result follows immediately from the theorem since every ideal of $M_E(G)$ is a right $M_E(G)$ -subgroup. \Box

Recall from [8] that a nearring N is completely primary if $N/J_2(N)$ is a nearfield. An element n of a nearring N is called *quasi-regular* if m(1-n) = 1 for some element $m \in N$. A (left) N-subgroup A is *quasi-*

regular if each element of A is quasi-regular. We use these definitions to characterize when $M_E(G)$ is local in terms of Ann Y.

Lemma 14. If Ann Y is nil, then Ann $Y = J_2(M_E(G))$, and $M_E(G)$ is a completely primary nearring.

Proof. If Ann Y is nil, then by Corollary 13, Ann Y is the unique maximal ideal of $M_E(G)$. Since $J_2(M_E(G))$ is the intersection of all maximal ideals of $M_E(G)$ [12, 5.42], we have that Ann $Y = J_2(M_E(G))$. So, by Theorem 11, $M_E(G)$ is completely primary.

Theorem 15. The following are equivalent:

(i) $M_E(G)$ is local;

(ii) Ann Y is nil and quasi-regular;

(iii) Ann Y is nil and for every $h \in Ann Y$, h(id+h) = 0 implies that h = 0.

Proof. If $M_E(G)$ is local, then Ann Y is nil and $M_E(G)$ is completely primary by Lemma 14. By Theorem 3.3 of [8], Ann $Y = J_2(M_E(G))$ is quasi-regular. Conversely, if Ann Y is nil, then Ann $Y = J_2(M_E(G))$ and $M_E(G)$ is completely primary. Again, from Theorem 3.3 of [8], we conclude that $M_E(G)$ is local. This shows the equivalence of (i) and (ii).

To show (iii) implies (i), assume that $f \in M_E(G)$ is idempotent. If $f \in \operatorname{Ann} Y$, then f is nilpotent by hypothesis; hence, f = 0. If $f \in M_E(G) \setminus \operatorname{Ann} Y$, then f = id + h for some $h \in \operatorname{Ann} Y$. By Lemma 10, h(id + h) = 0, and so by hypothesis, h = 0. It follows that f = id. Therefore, $M_E(G)$ has no nontrivial idempotents and is local. Reversing the above steps yields that (i) implies (iii), and the proof is complete. \Box

We now focus on the action of functions in $M_E(G)$ on various subgroups of G.

Lemma 16. Let H be a subgroup of G with $G' \leq H$. If $f \in M_E(G)$,

then $f(H) \subseteq H$.

Proof. Let $\psi : G \to G/H \to Z_{p^{n_1}} \times Z_{p^{n_2}} \times \cdots \times Z_{p^{n_t}}$ be an epimorphism. Let $\pi_i : Z_{p^{n_1}} \times Z_{p^{n_2}} \times \cdots \times Z_{p^{n_t}} \to Z_{p^{n_i}}$ denote the projection homomorphism onto the *i*th component. We wish to show that $\cap_{i=1}^t \operatorname{Ker} \pi_i \psi = H$. Clearly $H \subseteq \cap_{i=1}^t \operatorname{Ker} \pi_i \psi$ since $H \subseteq \operatorname{Ker} \psi$. Let $x \in \cap_{i=1}^t \operatorname{Ker} \pi_i \psi$ and suppose that $x \notin H$. Then $\psi(x) \neq 0$ and $\pi_i(\psi(x)) \neq 0$ for some *i*. Hence $x \notin \operatorname{Ker} \pi_i \psi$ which is a contradiction. Thus $\cap_{i=1}^t \operatorname{Ker} \pi_i \psi = H$.

Let $w \in G$ be an element of maximum order. Then, for every *i* there is an integer m_i such that $\langle m_i w \rangle \cong Z_{p^{n_i}}$. So we can create an endomorphism of G via $\varphi_i \pi_i \psi \in \text{End } G$ where φ_i denotes the isomorphism between $Z_{p^{n_i}}$ and $\langle m_i w \rangle$. By Lemma 3, $f(\text{Ker } \varphi_i \pi_i \psi) \subseteq \text{Ker } \varphi_i \pi_i \psi$. Hence $f(\cap_{i=1}^t \text{Ker } \varphi_i \pi_i \psi) \subseteq \cap_{i=1}^t \text{Ker } \varphi_i \pi_i \psi$. But $\text{Ker } \varphi_i \pi_i \psi = \text{Ker } \pi_i \psi$, so that $f(H) \subseteq H$. \Box

Lemma 17. Let $\varphi \in \text{End } G$, and let $a \in G$ with $\varphi(a) \in Y \cup \{0\}$. If $h \in \text{Ann } Y$, then $h(a) \in \text{Ker } \varphi$.

Proof. Since $\varphi(a) \in Y \cup \{0\}$ and $h \in \operatorname{Ann} Y$, then $\varphi h(a) = h\varphi(a) = 0$. Hence $h(a) \in \operatorname{Ker} \varphi$. \Box

Corollary 18. If $h \in \operatorname{Ann} Y$, then $h(G) \subseteq \Phi(G)$.

Proof. Let $h \in \operatorname{Ann} Y$, and let H be a maximal subgroup of G. Then we can construct the endomorphism $\varphi : G \to G/H \to \langle y \rangle$ where $y \in Y$. Since $\operatorname{Im} \varphi \subseteq Y \cup \{0\}$ and $\operatorname{Ker} \varphi = H$, by the previous lemma we conclude that $h(G) \subseteq H$. Since H is chosen arbitrarily as a maximal subgroup of G, then h(G) is contained in the intersection of all such maximal subgroups, i.e., $h(G) \subseteq \Phi(G)$. \Box

Theorem 19. Let $\varphi \in \text{End } G \setminus \text{Aut } G$ such that $G' \subseteq \text{Ker } \varphi$, and let $h \in \text{Ann } Y$. Then $h^n(G) \subseteq \text{Ker } \varphi$ for some integer n.

Proof. Since G is finite and $G' \subseteq \operatorname{Ker} \varphi$, by Lemma 1, $\operatorname{Im} \varphi$ is abelian, say $\operatorname{Im} \varphi = \langle x_1 \rangle \times \langle x_2 \rangle \times \cdots \times \langle x_r \rangle$ for some nonzero $x_1, x_2, \ldots, x_r \in G$.

Assume $|x_1| = p^m$. Since $\langle x_1 \rangle$ is abelian, $\langle px_1 \rangle \triangleleft \langle x_1 \rangle$ and $|\langle x_1 \rangle / \langle px_1 \rangle| = p$. The endomorphism $\varphi_1 : G \to G/\operatorname{Ker} \varphi \to \langle x_1 \rangle \times \langle x_2 \rangle \times \cdots \times \langle x_r \rangle \to \langle x_1 \rangle / \langle px_1 \rangle \times \langle x_2 \rangle \times \cdots \times \langle x_r \rangle \to \langle p^{m-1}x_1 \rangle \times \langle x_2 \rangle \times \cdots \times \langle x_r \rangle$ has the property that $|\operatorname{Ker} \varphi_1/\operatorname{Ker} \varphi| = p$. Continuing in this manner, we get a chain of normal subgroups, $\operatorname{Ker} \varphi = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_t \triangleleft H_{t+1} = G$ with $|H_i/H_{i-1}| = p$ and $H_i = \operatorname{Ker} \varphi_i$ for some $\varphi_i \in \operatorname{End} G$, $i = 1, 2, \ldots, t+1$. For some $y \in Y$, $\varphi_t : G \to G/H_t \to \langle y \rangle$ and $\operatorname{Im} \varphi_t \subseteq Y \cup \{0\}$. Thus $h(G) \subseteq H_t$ by the previous lemma. Since $|H_t/H_{t-1}| = p$, then $pH_t \subseteq H_{t-1}$ and $\varphi_{t-1}(H_t) \subseteq Y \cup \{0\}$. By the previous lemma, $h(H_t) \subseteq H_{t-1}$. Thus $h^2(G) = h(h(G)) \subseteq h(H_t) \subseteq H_{t-1}$. Continuing in this manner yields the result. \Box

Theorem 20. Let $h \in \operatorname{Ann} Y$. Then $h^n(G) \subseteq G'$ for some integer n.

Proof. We use the notation introduced in Lemma 16 with H = G'. By the previous theorem, for each *i* there exists an integer n_i such that $h^{n_i}(G) \subseteq \operatorname{Ker} \varphi_i \pi_i \psi$. Let *n* be the maximum of all such n_i . Then $h^n(G) \subseteq \operatorname{Ker} \varphi_i \pi_i \psi$ for every *i*, i.e., $h^n(G) \subseteq \cap_{i=1}^t \operatorname{Ker} \varphi_i \pi_i \psi = G'$.

Corollary 21. If $\exp G' = p$, then $\operatorname{Ann} Y$ is nil.

Proof. Let $h \in \operatorname{Ann} Y$. By Theorem 20, $h^n(G) \subseteq G'$ for some integer n. But since $G' \subseteq Y$, then h(G') = 0. Thus $h^{(n+1)}(G) = h(h^n(G)) \subseteq h(G') = 0$. Hence h is nilpotent and Ann Y is nil. \Box

Lemma 22. Let $\varphi \in \operatorname{End} G$. If $h \in \operatorname{Ann} Y$, then there exists an integer n such that $h^n(\operatorname{Im} \varphi) \subseteq (\operatorname{Im} \varphi)'$.

Proof. Let $h \in \operatorname{Ann} Y$ and $w \in \operatorname{Im} \varphi$. Then there exists an element $x \in G$ such that $\varphi(x) = w$ and an integer n such that $h^n(G) \subseteq G'$ by Theorem 20. So $h^n(w) = h^n \varphi(x) = \varphi h^n(x)$. Since $h^n(x) \in G'$ and $\varphi(G') \subseteq (\operatorname{Im} \varphi)'$, then $h^n(w) = \varphi(h^n(x)) \in \varphi(G') \subseteq (\operatorname{Im} \varphi)'$. Since $w \in \operatorname{Im} \varphi$ is arbitrary, $h^n(\operatorname{Im} \varphi) \subseteq (\operatorname{Im} \varphi)'$. \Box

Lemma 23. Let $W = \{w \in G \mid |w| \le \exp G/G'\}$. If $h \in \operatorname{Ann} Y$, then there exists an integer n such that $h^n(W) = 0$.

Proof. Let $w \in W$. We can get an endomorphism $\varphi : G \to G/G' \to Z_{p^{t_1}} \times \cdots \times Z_{p^{t_k}} \to \langle w \rangle$. Since $\operatorname{Im} \varphi = \langle w \rangle$ is abelian, then $(\operatorname{Im} \varphi)' = \{0\}$, and the above lemma implies that for $h \in \operatorname{Ann} Y$, there exists an integer n_w such that $h^{n_w}(\langle w \rangle) = 0$. Let $n = \operatorname{Max} \{n_w \mid w \in W\}$. Then $h^n(W) = 0$ and the proof is complete. \Box

Corollary 24. If $\exp G' \leq \exp G/G'$, then Ann Y is nil.

Proof. Let $h \in \operatorname{Ann} Y$. By Theorem 20, there is an integer n_1 such that $h^{n_1}(G) \subseteq G'$. By Lemma 23 there is an integer n_2 such that $h^{n_2}(W) = 0$. Since, by hypothesis, $G' \subseteq W$, then $h^{n_2+n_1}(G) = h^{n_2}(h^{n_1}(G)) \subseteq h^{n_2}(G') = 0$. Therefore h is nilpotent and Ann Y is nil.

We can get a more definitive result if $\exp G = \exp G/G'$.

Theorem 25. If $\exp G = \exp G/G' = p^n$, then $M_E(G) \cong Z_{p^n}$ and, hence, is local.

Proof. Assume that $G/G' \cong Z_{p^{n_1}} \times \cdots \times Z_{p^{n_m}}$ where $\exp G = p^{n_1}$. Since $\exp G = \exp G/G'$, then there exists an element $x \in G \setminus G'$ such that $|x| = p^{n_1}$. Let $f \in M_E(G)$. Creating the endomorphism $\varphi: G \to G/G' \to Z_{p^{n_1}} \times \cdots \times Z_{p^{n_m}} \to Z_{p^{n_1}} \to \langle x \rangle$ yields f(x) = kxfor some integer k by Lemma 3 since Im $\varphi = \langle x \rangle$.

Let $x_1 \in G$. Then $|x| \geq |x_1| = p^{n_t}$ and we can create an endomorphism $\psi: G \to G/G' \to Z_{p^{n_1}} \times \cdots \times Z_{p^{n_m}} \to Z_{p^{n_1}} \to Z_{p^{n_t}} \to \langle x_1 \rangle$ with $\psi(x) = x_1$. Hence, $f(x_1) = f\psi(x) = \psi f(x) = \psi(kx) = k\psi(x) = kx_1$. Since $x_1 \in G$ is arbitrary, $f = k \cdot id$, $M_E(G) = \langle id \rangle$, and the result follows. \Box

The converse to the theorem is false. If we let Q denote the quaternion group of order 8, we know from Lemma 6.1 of [3] that $M_E(Q) \cong Z_4$ and is, thus, local. But Q' = Z(Q) and |Q'| = |Z(Q)| = 2. So |Q/Q'| = 4

and $Q/Q' \cong Z_2 \times Z_2$ since, otherwise, we would have that Q is abelian [13]. Hence $\exp Q/Q' = 2$ and $\exp Q = 4$.

Using the previous theorem we can construct numerous examples of groups that give rise to local nearrings. Let H be a finite p-group with $\exp H = p^m$. Consider $G = H \times Z_{p^n}$ where $n \ge m$. Then $G' = H' \times \{0\}$ and $G/G' \cong H/H' \times Z_{p^n}$. So $\exp G/G' = p^n = \exp G$. Hence $M_E(G) \cong Z_{p^n}$ by the previous theorem.

Furthermore, given the group Z_{p^n} we can find a nonabelian pgroup G such that $M_E(G) \cong Z_{p^n}$. This is accomplished by letting $G = H \times Z_{p^n}$ where H is a nonabelian p-group of exponent p. As above, $\exp G/G' = p^n = \exp G$, and $M_E(G) \cong Z_{p^n}$. In particular, let

$$H = \left\{ \begin{bmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{bmatrix} \mid 1, a, b, c \in Z_p, p \text{ an odd prime} \right\}.$$

Under matrix multiplication, H is a nonabelian group of order p^3 and of exponent p and can be used in the above construction.

3. Extra special *p*-groups. Throughout this section we let *G* be a finite *extra special p-group*, i.e., a nonabelian *p*-group whose center, commutator subgroup, and Frattini subgroup all coincide and are of order *p*. If *G* is an extra special *p*-group, we know that Ann *Y* is nil by Corollary 21. We will, however, explicitly determine the functions in Ann *Y*. The next lemma appears in [7].

Lemma 26. If G is finite, extra special p-group, then $\exp G = p$ or $\exp G = p^2$.

Since we know that $M_E(G) \cong Z_p$ when $\exp G = p$ by Corollary 7, we only consider when $\exp G = p^2$. For notation, let O_1, \ldots, O_r be the orbits of the elements of order p^2 under the action of Aut G on G. Furthermore, let $o_i \in O_i$, $i = 1, \ldots, r$, be fixed orbit representatives.

Let A be a group of automorphisms of G and let $x \in G$. We define the *stabilizer* of x in A as Stab $(x) = \{\sigma \in A \mid \sigma(x) = x\}$. Stabilizers play an important role in the study of centralizer nearrings determined by automorphisms via the well-known result of Betsch [12].

(Betsch's) Lemma 27. Let $x_1, x_2 \in G$, and let A be a group of automorphisms of G. Then there is an $f \in M_A(G)$ with $f(x_1) = x_2$ if and only if Stab $(x_1) \subseteq$ Stab (x_2) .

Lemma 28. Let G be a finite, extra special p-group of exponent p^2 . Let $x \in G$ with $|x| = p^2$, and let $z \in \Phi(G)$. Then $\operatorname{Stab}(x) \subseteq \operatorname{Stab}(z)$.

Proof. Let $\varphi \in \text{Stab}(x)$. Then $\varphi(x) = x$ and $\varphi(px) = p\varphi(x) = px$. But $0 \neq px \in \Phi(G)$ by Lemma 1, so z = m(px) for some 0 < m < pand $\varphi(z) = \varphi(m(px)) = (mp)\varphi(x) = mpx = z$. Hence $\varphi \in \text{Stab}(z)$.

Let $a = (a_1, a_2, \ldots, a_r) \in \Phi(G)^r$, and let $h_a : G \to G$ be defined by extending (via automorphisms)

$$h_a(x) = \begin{cases} a_i & \text{if } x = o_i \\ 0 & \text{if } x \in Y \cup \{0\} \end{cases}$$

i.e., if $x \in O_i$ and $\varphi \in \operatorname{Aut} G$ with $\varphi(o_i) = x$, then $h_a(x) = h_a(\varphi(o_i)) = \varphi h_a(o_i) = \varphi(a_i)$. This function is well-defined by Betsch's lemma and Lemma 28.

Lemma 29. If G is a finite, extra special p-group, then $\operatorname{Ann} Y = \{h_a \mid a \in \Phi(G)^r\}.$

Proof. Let $h_a \in \{h_a \mid a \in \Phi(G)^r\}$, and let $\varphi \in \text{End } G$. If $\varphi \in \text{Aut } G$, then $\varphi h_a = h_a \varphi$ by definition of h_a . If $\varphi \in \text{End } G \setminus \text{Aut } G$, then $\varphi(\Phi(G)) = 0$ because $\text{Ker } \varphi \cap Z(G) \neq \emptyset$ by Lemma 1 and |Z(G)| = $|\Phi(G)| = p$. Since $h_a(G) \subseteq \Phi(G)$ by definition, then $\varphi h_a(G) = 0$. Also, $\varphi(G) \subseteq Y \cup \{0\}$ since $\Phi(G) \subseteq \text{Ker } \varphi$ and $G/\text{Ker } \varphi$ is elementary abelian by Lemma 1 so that $h_a \varphi(G) = 0$. Hence $\varphi h_a = h_a \varphi$ and $h_a \in M_E(G)$. That $h_a \in \text{Ann } Y$ is clear and, therefore, $\{h_a \mid a \in \Phi(G)^r\} \subseteq \text{Ann } Y$.

Let $h \in \operatorname{Ann} Y$. Then by Corollary 18, $h(G) \subseteq \Phi(G)$. In particular, $h(o_i) = a_i$ for every $i = 1, 2, \ldots, r$ and some $a_i \in \Phi(G)$. So $h = h_a$ where $a = (a_1, a_2, \ldots, a_r)$. Thus $\operatorname{Ann} Y \subseteq \{h_a \mid a \in \Phi(G)^r\}$ and the result follows. \Box

Corollary 30. If G is a finite, extra special p-group and $h_a, h_b \in$ Ann Y, then $h_a h_b = 0$.

Proof. Since Im $h_b \subseteq Y \cup \{0\}$ and $h_a(Y \cup \{0\}) = 0$, the result is immediate. \Box

Corollary 31. If G is a finite, extra special p-group of exponent p^2 , then $|M_E(G)| = p^{r+1}$. In particular, if r = 1, $M_E(G) \cong Z_{p^2}$.

Proof. Let $h \in \operatorname{Ann} Y$. Since $|\Phi(G)| = p$, there are p choices for $h(o_i)$ for each $i = 1, 2, \ldots, r$. So $|\operatorname{Ann} Y| = p^r$. Since $M_E(G) = \{k \cdot id + h \mid k \in Z_p, h \in \operatorname{Ann} Y\}$, the first statement follows. If r = 1, then $|M_E(G)| = p^2$. Since $\exp G = p^2$, then $M_E(G) = \langle id \rangle \cong Z_{p^2}$.

Lemma 32. Let G be a finite extra special p-group. Let $x \in G \setminus Z(G)$ and $mz \in Z(G)$ where $0 \le m < p$ and $\langle z \rangle = Z(G)$. Then there exists a map $\varphi \in \text{Aut } G$ such that $\varphi(x) = x + mz$.

Proof. In [14], Winter states that if G is an extra special p-group, then $|G| = p^{(2n+1)}$ for some positive integer n and has generators x_1, x_2, \ldots, x_{2n} satisfying the following relations once a suitable generator for the center, say $z \in Z(G)$, is chosen:

(i) $[x_{2i-1}, x_{2i}] = z$ for i = 1, 2, ..., n;

(ii) $[x_j, x_k] = 0$ unless $\{j, k\}$ is one of the pairs $\{2i - 1, 2i\}$ or $\{2i, 2i - 1\}$ for some $1 \le i \le n$;

- (iii) $px_i \in \langle z \rangle = Z(G)$ for $i = 1, 2, \dots, 2n$;
- (iv) pz = 0.

Let $x \in G \setminus Z(G)$. By Lemma (3D) of [14], $x = a_1x_1 + a_2x_2 + \cdots + a_{2n}x_{2n} + cz$ where $0 \leq a_i, c < p$ for $i = 1, 2, \ldots, 2n$, and the coefficients are uniquely determined. Since $x \notin Z(G)$, at least one of the elements of $\{a_1, \ldots, a_{2n}\}$ is nonzero, say $a_j \neq 0$. Consider the map $\varphi : G \to G$ determined by linearly extending $\varphi(x_i) = x_i$ if $i \neq j$, $\varphi(x_j) = x_j + (a_j^{-1}m)z$ and $\varphi(z) = z$. By Lemma (3C) of [14], φ is an automorphism of G.

Then $\varphi(x) = \varphi(a_1x_1 + \dots + a_{2n}x_{2n} + cz) = a_1\varphi(x_1) + \dots + a_{j-1}\varphi(x_{j-1}) + a_j\varphi(x_j) + a_{j+1}\varphi(x_{j+1}) + \dots + a_{2n}\varphi(x_{2n}) + c\varphi(z) = a_1x_1 + \dots + a_{j-1}x_{j-1} + a_j(x_j + (a_j^{-1}m)z) + a_{j+1}x_{j+1} + \dots + a_{2n}x_{2n} + cz = a_1x_1 + \dots + a_{2n}x_{2n} + cz + (a_ja_j^{-1}m)z = x + mz$. Hence φ is the automorphism we desire. \Box

Theorem 33. If G is a finite extra special p-group, then $M_E(G)$ is local.

Proof. If $\exp G = p$, then $M_E(G) \cong Z_p$ by Corollary 7. So we assume that $\exp G = p^2$. Let $h_a \in \operatorname{Ann} Y$ and suppose $h_a(id+h_a) = 0$. Then $h_a(id+h_a)(o_i) = h_a(o_i+a_i) = 0$ for every $i = 1, 2, \ldots, r$. By Lemma 32, there exists $\varphi_i \in \operatorname{Aut} G$ such that $\varphi_i(o_i) = o_i + a_i$ for each i. Thus $\varphi_i(a_i) = \varphi_i h_a(o_i) = h_a \varphi_i(o_i) = h_a(o_i+a_i) = 0$. Hence $a_i = 0$ since each φ_i is an automorphism, and we conclude that $h_a = 0$. From Corollary 21, Ann Y is nil. Applying Theorem 15 yields that $M_E(G)$ is local. □

4. Another example of a local centralizer nearring. In this section we investigate a nonextra special *p*-group such that $M_E(G)$ is local, but $M_E(G)$ is not isomorphic to any Z_m . Let *p* be an odd prime, and let *G* be the group with presentation $\langle a, b, c | p^2a = pb = pc = 0, -c + b + c = b + pa, a + b = b + a, a + c = c + a \rangle$. Then *G* is nonabelian, $\exp G = p^2$ and $|G| = p^4$ [1, p. 145]. Throughout this section, *G* will denote this group.

Lemma 34. $Z(G) = \langle a \rangle$ and $G' = \Phi(G) = \langle pa \rangle$.

Proof. Since b + a = a + b and a + c = c + a, we have that $\langle a \rangle \subseteq Z(G)$. But, because G is nonabelian, then G/Z(G) is not cyclic [13, 3.2.8]. Therefore, $|Z(G)| \leq p^2$. Since $|a| = p^2$, we conclude that $Z(G) = \langle a \rangle$. It follows that $\langle a, b \rangle = \langle a \rangle \times \langle b \rangle \cong Z_{p^2} \times Z_p$ and $\langle a, c \rangle = \langle a \rangle \times \langle c \rangle \cong Z_{p^2} \times Z_p$ are maximal subgroups of G. Also $\langle b, c \rangle$ is a maximal subgroup of G, for b + c = c + b + pa implies that $pa \in \langle b, c \rangle$ and $\langle b, c \rangle$ is a subgroup of order p^3 . Therefore $\Phi(G) \subseteq \langle a, b \rangle \cap \langle a, c \rangle \cap \langle b, c \rangle = \langle pa \rangle$. Since G is nonabelian, Lemma 1 (iv) guarantees that $\{0\} \neq \Phi(G)$. Thus, |pa| = p implies that $\Phi(G) = \langle pa \rangle$.

Since $\{0\} \neq G' \leq \Phi(G)$, the result follows.

We note that G is not an extra special p-group since $|Z(G)| = p^2$. Furthermore, $\exp G = p^2 \neq p = \exp G/G'$, so Theorem 25 does not apply in this case.

Lemma 35. For $0 \le n < p$, define $\varphi_n : G \to G$ by $\varphi_n(ia+jb+kc) = (np+1)ia+jb+kc$. Then φ_n is an automorphism of G.

Sketch of proof. We first show c + ib = (-ip)a + ib + c for $i \ge 0$ by induction on i. The equation holds for i = 0; assume the equation holds for some nonnegative integer i and consider c + (i + 1)b. Then c+(i+1)b = (c+ib)+b = ((-ip)a+ib+c)+b = (-ip)a+ib+b+c-pa =(-ip)a - pa + (i + 1)b + c = (-(i + 1)p)a + (i + 1)b + c and the result holds for i + 1, and hence for all $i \ge 0$.

Let k be a negative integer. Then, for i = -k, c+ib = (-ip)a+ib+cimplies that c-kb = (kp)a-kb+c. Taking inverses of both sides and using that $Z(G) = \langle a \rangle$ yields kb-c = (-kp)a-c+kb. Rearranging terms gives c+kb = (-kp)a+kb+c. Hence the result holds for all integers *i*.

One can now show by induction that jc + ib = (-jip)a + ib + jcfor all integers i and j. Using this fact it can be shown with tedious calculations that the function φ_n is an endomorphism of G. Since $\varphi_n(a) = (np + 1)a$ and $a \in \langle (np + 1)a \rangle$, then $a \in \text{Im} \varphi_n$. Also, $\varphi_n(b) = b$ and $\varphi_n(c) = c$ so that $\langle a, b, c \rangle = G \subseteq \text{Im} \varphi_n$. Hence φ_n is an automorphism of G. \Box

We use the same notation as in the previous section, namely, letting O_i , i = 1, 2, ..., r, denote the orbits of the elements of order p^2 under the action of Aut G on G and $o_i \in O_i$, i = 1, 2, ..., r, be fixed orbit representatives. We also continue to let $h_a : G \to G$ denote the function described just before Lemma 29.

Lemma 36. Ann $Y = \{h_a \mid a \in \Phi(G)^r\}.$

Proof. Since $|\Phi(G)| = p$, the proof is similar to those of Lemma 28

and Lemma 29. \Box

Lemma 37. Let $ia + jb + kc \in G$. Then $|ia + jb + kc| = p^2$ if and only if $i \pmod{p} \neq 0$.

Proof. We note that, since b and c commute modulo pa, then p(jb + kc) = 0. Thus $a \in Z(G)$ implies that p(ia + jb + kc) = p(ia) + p(jb + kc) = i(pa) + 0 = i(pa). So if ia + jb + kc is of order p^2 , then $i \pmod{p} \neq 0$ and conversely. \Box

Lemma 38. Let $x \in G$ be such that $|x| = p^2$, and let $m(pa) \in \Phi(G)$ with $0 \leq m < p$. Then there exists a map $\varphi \in \text{Aut } G$ such that $\varphi(x) = x + m(pa)$.

Proof. By the previous lemma, x = ia + jb + kc where $i \pmod{p} \neq 0$. Hence $i \pmod{p}$ is invertible in Z_p . Then for $n = i^{-1}m$ in Lemma 35 we have that $\varphi_n(x) = \varphi_n(ia + jb + kc) = (np + 1)ia + jb + kc = (i^{-1}mp)ia + ia + jb + kc = m(pa) + ia + jb + kc = x + m(pa)$. So φ_n is the automorphism we desire. \Box

Theorem 39. Let G be the group given before Lemma 34. Then $M_E(G)$ is local and $M_E(G) \not\cong Z_m$ for every positive integer m.

Proof. The proof of the first statement is similar to that of Theorem 33. To prove the second statement, first note that a and a+b are in different orbits since $a \in Z(G)$ and $b \notin Z(G)$, say $a \in O_1$ and $a+b \in O_2$. Let $d = (pa, 0, 0, \ldots, 0) \in \Phi(G)^r$. Then $h_d \in \operatorname{Ann} Y$ by Lemma 36. Therefore $M_E(G) \neq \langle id \rangle$ since $h_d(a) = pa$ and $h_d(a+b) = 0 \neq p(a+b)$. The result now follows. \Box

Recall from Corollary 31 that, if G is a finite extra special p-group of exponent p^2 and the number of orbits of elements of order p^2 under the action of Aut G on G, r, is one, then $M_E(G) \cong Z_{p^2}$. We remark, however, that if r > 1, then a proof similar to the one above shows that $M_E(G) \cong Z_m$ for every positive integer m.

5. A final example of a local centralizer nearring. In this section we present another example of a finite group G such that $M_E(G)$ is local. This example, in general, is not extra special and $\exp G/G' \neq \exp G$.

Let G be the group with presentation $\langle a, b | p^{m-1}a = pb = 0, a + b = b + (1 + p^{m-2})a \rangle$ where $m \geq 3$ and p is an odd prime. Throughout this section G will denote this nonabelian group.

Lemma 40. The following statements are true for the group G and integers i, j and n.

(i) $|G| = p^m \text{ and } \exp G = p^{m-1};$ (ii) $ia + jb = jb + (i + ijp^{m-2})a;$ (iii) $jb + ia = (i - ijp^{m-2})a + jb;$ (iv) $n(jb + ia) = (nj)b + (ni + (1/2)ijn^2p^{m-2} - (1/2)ijnp^{m-2})a;$ (v) p(jb + ia) = (ip)a;(vi) $Z(G) = \langle pa \rangle = \Phi(G);$ (vii) $G' = \langle p^{m-2}a \rangle;$

(viii) For any two fixed integers r_1, r_2 , the map $\varphi(jb + ia) = jb + i(r_2b + r_1a)$ is an endomorphism of G.

Proof. Parts (i), (ii), (iv) and (v) are given by Burnside [1, p. 135]. Using (ii) we get $-(jb+ia) = -ia-jb = -jb+(-i+(-i)(-j)p^{m-2})a = -jb+(-i+ijp^{m-2})a$. Taking inverses of both sides yields (iii).

To show (vi) we first note that $ia+jb+pa = ia+(p-pjp^{m-2})a+jb = ia+pa-jp^{m-1}a+jb = ia+pa+jb = pa+ia+jb$ so that $pa \in Z(G)$. Because G is nonabelian, then G/Z(G) is not cyclic [13, 3.2.8]; thus, $|Z(G)| \leq p^{m-2}$. But $|pa| = p^{m-2}$ implies that $Z(G) = \langle pa \rangle$.

Let $jb+ia+Z(G) \in G/Z(G)$. By (v), p(jb+ia+Z(G)) = ipa+Z(G) = Z(G). Therefore, $\exp(G/Z(G)) = p$ and $\Phi(G) \subseteq Z(G)$ by Lemma 1 (v). By Lemma 1 (vi), $pa \in \Phi(G)$ so that $\Phi(G) = \langle pa \rangle$ and the proof of (vi) is complete.

By (iii), $-a - b + a + b = -a + ((1 + p^{m-2})a - b) + b = -a + a + p^{m-2}a - b + b = p^{m-2}a \in G'$. So $\langle p^{m-2}a \rangle \subseteq G'$. But $a + b + \langle p^{m-2}a \rangle = b + (1 + p^{m-2})a + \langle p^{m-2}a \rangle = b + a + p^{m-2}a + \langle p^{m-2}a \rangle = b + a + \langle p^{m-2}a \rangle$.

Since the generators a and b of G commute modulo $\langle p^{m-2}a \rangle$, then $G/\langle p^{m-2}a \rangle$ is abelian. So $G' \subseteq \langle p^{m-2}a \rangle$ by Lemma 1 (ii) and part (vii) now follows.

Part (viii) involves tedious calculations which we leave to the reader. □

If m > 3, then G is not extra special by parts (vi) and (vii) of the lemma. Furthermore, $p^{m-2}(jb + ia + G') = p^{m-2}jb + (p^{m-2}i + (1/2)ij(p^{m-2})^2p^{m-2} - (1/2)ijp^{m-2}p^{m-2})a + G' = G'$. So $\exp G/G' \le p^{m-2} < \exp G$. Therefore, Theorem 25 does not apply in this case.

Theorem 41. Let G be the group given before Lemma 40. Then $M_E(G) \cong Z_{p^{m-1}}$.

Proof. Let $f \in M_E(G)$, and let $r_2b + r_1a \in G$. By part (viii) of the previous lemma, the map $\varphi(jb + ia) = jb + i(r_2b + r_1a)$ is an endomorphism of G with $\varphi(a) = r_2b + r_1a$.

Since $|a| = p^{m-1}$, then $\langle a \rangle$ is a maximal subgroup of G, and we can construct the endomorphism $\psi : G \to G/\langle a \rangle \to \langle b \rangle$. By Lemma 3 $f(\langle a \rangle) \subseteq \langle a \rangle$ and so f(a) = ka for some integer k. Hence $f(r_2b+r_1a) = f\varphi(a) = \varphi f(a) = \varphi(ka) = k\varphi(a) = k(r_2b+r_1a)$. Since $r_2b+r_1a \in G$ is arbitrary, we have that $f = k \cdot id$ and $M_E(G) = \langle id \rangle \cong Z_{p^{m-1}}$.

Although the group in Section 5 gives rise to a local centralizer nearring, this nearring does not have a very complicated structure. If Gis any of the groups in this paper for which $M_E(G)$ is local, one might ask if there are other subsemigroups S of End G for which $M_S(G)$ is also local or local and nonabelian. Certainly in the former case a minimal such subsemigroup S' must exist. Perhaps $M_{S'}(G)$ will have a more interesting structure than $M_E(G)$.

REFERENCES

 W. Burnside, Theory of groups of finite order, 2nd ed., Dover, New York, 1955.
G.A. Cannon, Centralizer near-rings determined by End G, Ph.D. Dissertation, Texas A&M University, 1995.

-, Centralizer near-rings determined by End G, in Near-rings and near-3. fields (Y. Fong et al., eds.), Kluwer Academic Publishing, Dordrecht, The Netherlands, 1995, 89-111.

4. G.A. Cannon and L. Kabza, Simplicity of the centralizer near-ring determined by End G, Algebra Colloq. 5 (1998), 383–390.

5. J.R. Clay, Nearrings: Geneses and applications, Oxford Science Publ., Oxford, 1992.

6. P. Fuchs, C.J. Maxson, M.R. Pettet and K.C. Smith, Centralizer near-rings determined by fixed point free automorphism groups, Proc. Royal Soc. Edinburgh Sect. A 107 (1987), 327-337.

7. D. Gorenstein, Finite groups, Harper & Row, New York, 1968.

8. C.J. Maxson, On local near-rings, Math. Z. 106 (1968), 197-205.

9. C.J. Maxson and K.C. Smith, The centralizer of a set of group automorphisms, Comm. Alg. 8 (1980), 211-230.

10. – -, Centralizer near-rings determined by local rings, Houston J. Math. 11 (1985), 355-366.

11. J.D.P. Meldrum, Near-rings and their links with groups, Pitman, London, 1985.

12. G. Pilz, Near-rings, 2nd ed., North Holland/American Elsevier, Amsterdam, 1983.

13. W.R. Scott, Group theory, Dover, New York, 1987.

14. D.L. Winter, The automorphism group of an extraspecial p-group, Rocky Mountain J. Math. 2 (1972), 159-168.

DEPARTMENT OF MATHEMATICS, SOUTHEASTERN LOUISIANA UNIVERSITY, HAMmond, LA 70402

E-mail address: acannon@selu.edu