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ABSTRACT. Let E be a real Banach space. A norm-one
element e in E is said to be an isometric reflection vector if
there exist a maximal subspace M of E and a linear isometry
F : E → E fixing the elements of M and satisfying F (e) = −e.
We prove that each of the conditions (i) and (ii) below implies
that E is a Hilbert space. (i) There exists a nonrare subset
of the unit sphere of E consisting only of isometric reflection
vectors, (ii) There is an isometric reflection vector in E, the
norm of E is convex transitive, and the identity component
of the group of all surjective linear isometries on E relative
to the strong operator topology is not reduced to the identity
operator on E.

1. Introduction. Throughout this paper E will be a real Banach
space with dual denoted by E∗, S = S(E) and B = B(E) will be the
unit sphere and the closed unit ball, respectively, of E, and G = G(E)
will stand for the group of all surjective linear isometries on E. A
reflection on E is an operator on E of the form se,e∗ : x→ x−2e∗(x)e,
where e and e∗ are elements in E and E∗, respectively, satisfying
e∗(e) = 1. For e in S there is at most one element e∗ in E∗ such
that se,e∗ is an isometric reflection, see [23, Remark 2.2.b] or the
beginning of Section 2 of this paper, and, when there exists such an e∗,
we have ‖e∗‖ = 1 and we say that e is a vector of isometric reflection
and that e∗ is the isometric reflection functional associated to e. The
standard examples of isometric reflections are the so-called orthogonal
reflections on a real Hilbert space H, namely the mappings of the form
x→ x− 2(x|e)e where e is any norm-one element in H.

In a recent paper [23], Skorik and Zaidenberg study in detail the
behavior of the group G whenever E has some vector of isometric
reflection. As a main result they prove that, if e is such a vector
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in E, if G0 denotes the identity component of G relative to the strong
operator topology, if G0(e) �= {e}, and if H denotes the closed linear
hull of G0(e), then H is a Hilbert space, S(H) coincides with G0(e) and
E splits as a topological direct sum E = H⊕N in such a way that every
surjective linear isometry on H can be extended to a surjective linear
isometry on E whose restriction to N is the identity, and the elements
of G leaving H invariant diagonalize relative to that splitting. Another
result in the Skorik-Zaidenberg paper, relevant in its own right and
also in order to motivate our approach, is that, if there exists a vector
of isometric reflection in E, and if the norm of E is almost transitive,
then E is a Hilbert space. (We recall that the norm of E is said to be
almost transitive if, for every x in S, the orbit G(x) := {F (x) : F ∈ G}
is dense in S.) Natural questions about the limits of the above assertion
are the following: does the result remain true whenever either the
almost transitivity of the norm is relaxed to the convex transitivity
or the almost transitivity of the norm and the existence of a vector of
isometric reflection are replaced by the existence of a nonrare subset in
S consisting of vectors of isometric reflection? (We recall that the norm
of E is called convex transitive if, for every x in S, we have coG(x) = B,
where co means closed convex hull, and that a subset R of a topological
space T is said to be rare in T if the interior of the closure of R in
T is empty.) In this paper we provide an affirmative answer to the
second question, Theorem 2.2, and an “almost” affirmative answer to
the former, Corollary 3.7, namely, if there exists an isometric reflection
vector in E, if the norm of E is convex transitive, and if G0 is not
reduced to the singleton consisting of the identity operator on E, then
E is a Hilbert space. The proofs of our results involve a great part
of the material, including the main result, in the paper of Skorik and
Zaidenberg quoted above.

In fact the proof of our convex transitive extension of the Skorik-
Zaidenberg theorem also involves an adaptation of the argument in
Theorem 6.4 of the Kalton-Wood paper [16]. The Kalton-Wood result,
as well as a related one due to Berkson [3], provides a characterization
of complex Hilbert spaces among complex Banach spaces in terms of
the abundance of Hermitian projections with one-dimensional range.
We observe that, for a norm-one element e in a complex Banach space
X, Ce is the range of a Hermitian projection on X if and only if e is
an isometric reflection vector in the real Banach space underlying X,
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Proposition 4.2. This observation allows us to rediscover and refine the
results of Kalton-Wood and Berkson quoted above.

Finally, let us point out the following multiplicative characterization
of real Hilbert spaces, that we obtain in Theorem 2.5 as an application
of Theorem 2.2. Let us say that an element e in S acts as a unit
on E if there exists a real Banach algebra containing E isometrically
and having e as a unit. Then E is a Hilbert space whenever the set
of all elements in S which act as a unit on E is nonrare in S. As a
consequence, R, C and H (the absolute-valued algebra of Hamilton
quaternions) are the unique norm-unital real Banach algebras with
almost transitive norm, compare [14].

2. Nonrarity of the set of vectors of isometric reflection.
Let e be in S, and let e∗1, e

∗
2 be in E∗ such that se,e∗

1
and se,e∗

2

are isometric reflections on E. Then the operator T on E given by
T (x) = 2(e∗2 − e∗1)(x)e satisfies T 2 = 0 and 1 + T = se,e∗

1
◦ se,e∗

2
.

Therefore, for all n in N, 1 + nT = (1 + T )n is an isometry, so T = 0
and so e∗1 = e∗2. In this way we have shown that an isometric reflection
vector in E has a unique associated isometric reflection functional.

Lemma 2.1. The set R of all isometric reflection vectors in E is
norm-closed in E and if, for e in R, e∗ denotes the isometric reflection
functional associated to e, then the mapping e → e∗ from R to E∗ is
norm-to-weak∗ continuous.

Proof. Let {en} be a sequence in R norm-converging to some e in E.
We show that e lies in R and e∗ = w∗ − lim{e∗n}. If x, y are in S and
f, g are in B(E∗), then we have

|f(x) − g(y)| ≤ ‖x− y‖ + |(f − g)(y)|,

hence, if n denotes the norm topology on E, then the mapping (x, f) →
f(x) from (S,n)×(B(E∗), w∗) to R is (jointly) continuous. By the w∗-
compactness of B(E∗), there exists a w∗-limit point f for the sequence
{e∗n} in B(E∗). It follows that f(e) is a limit point of the sequence
{e∗n(en)} in R and, since e∗n(en) = 1 for all n in N, we have f(e) = 1.
On the other hand, for x in E, 2f(x)e − x is an n-limit point of
the sequence {2e∗n(x)en − x} in E, and therefore the reflection se,f
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is isometric. Now e lies in R and the isometric reflection functional e∗

associated to e coincides with f . Since f is an arbitrary w∗-limit point
of {e∗n} in B(E∗), again the w∗-compactness of B(E∗) gives us that
actually e∗ = f = w∗ − lim{e∗n}.

Recall that a subspace M of E is said to be an L2-summand of E if
there is a linear projection π from E onto M satisfying

‖x‖2 = ‖π(x)‖2 + ‖x− π(x)‖2

for all x in E. If M is an L2-summand of E, then the projection π above
is uniquely determined by M and is called the L2-projection from E
onto M . If e is in S and if Re is an L2-summand of E, then e is an
isometric reflection vector in E and the isometric reflection functional
e∗ associated to e is determined by the condition π(x) = e∗(x)e for all
x in E, where π is the L2-projection from E onto Re.

Theorem 2.2. The following assertions are equivalent:

(i) The set of all elements e in S such that Re is an L2-summand
of E is not rare in S.

(ii) The set of all isometric reflection vectors in E is not rare in S.

(iii) E is a Hilbert space.

Proof. The implications (i) ⇒ (ii) and (iii) ⇒ (i) are clear. Assume
that (ii) holds, and let R denote the set of all isometric reflection vectors
in E. By Lemma 2.1 the nonrarity of R in S provides us with an element
e in S and a positive number ε ≤ (1/2) such that x lies in R whenever
x is in S and ‖e − x‖ < ε. Let Π be an arbitrary two-dimensional
subspace of E, Π∧ the linear hull of Π ∪ {e}, A the set

{sx,x∗ : x ∈ S ∩ Π∧, ‖e− x‖ < ε}

regarded as a set of isometric reflections on Π∧ and W the group of
isometries on Π∧ generated by A. We recall that the Coxeter graph
of W relative to A, ΓW,A, has the set A as the set of vertices, and
two vertices are connected by an edge whenever the corresponding
reflections do not commute. But, for x, y in S∩Π∧ with ‖e−x‖ < ε and
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‖e−y‖ < ε, we have ‖x−y‖ < 1 so that if x �= y, then clearly sx,x∗ and
sy,y∗ do not commute, and therefore ΓW,A is connected. Also we claim
that, if z is in Π∧ and remains fixed under W , then z = 0. Indeed, this
is clear if the system {z, e} is linearly dependent and, otherwise, the
set

{x ∈ S ∩ Lin {z, e}, ‖e− x‖ < ε}
must contain two linearly independent vectors u and v so that, with the
aid of an “invariant” inner product 〈·|·〉 on Lin {z, e}, i.e., 〈·|·〉 makes
isometric all the linear isometries on (Lin {z, e}, ‖ · ‖), [22, Theorem
9.5.1], we easily see that the conditions su,u∗(z) = z and sv,v∗(z) = z
imply 〈u|z〉 = 〈v|z〉 = 0, and hence z = 0. The claim just proved,
together with the connectedness of ΓW,A and the existence of invariant
inner products on Π∧, allows us to apply [6, Chapter 5], see also [23,
Lemma 1.1] to obtain that W acts irreducibly on Π∧. Since clearly
W is infinite, it follows from [23, Corollary 1.4] that Π∧, and hence Π
is Euclidean. Now every two-dimensional subspace of E is Euclidean,
and therefore (iii) is true.

If the norm of E is almost transitive, and if there exists an isometric
reflection vector e in E, then G(e) is a dense, hence nonrare, set in S
consisting of isometric reflection vectors, and hence, by the theorem,
E is a Hilbert space [23, Theorem 2a]. By the way, the eventual
assumption on E that, for some e in S, G(e) is not rare in S is nothing
but the almost transitivity of the norm [2]. Note also that Theorem 2.2
contains the result of Carlson and Hicks [7] that E is a Hilbert space
whenever every one-dimensional subspace of E is an L2-summand of
E.

In what follows we will apply Theorem 2.2 to obtain a new multiplica-
tive characterization of real Hilbert spaces, see [21] for related results.
The geometry of norm-unital Banach algebras at their units is very
peculiar, and every real Hilbert space enjoys this peculiarity (at any
norm-one element): every real Hilbert space H can be converted into a
(nonassociative) norm-unital Banach algebra with arbitrarily prefixed
unit in the unit sphere of H, [21, Observation 1.3]. Moreover, by
putting together [21, Claim 5.8], [10, Proposition 4.1] and [19, Theo-
rem 27], see also [20, Section 2], one can see that the above property
characterizes real Hilbert spaces among real Banach spaces. Although
not all, see Remark 2.7 below, most properties of the geometry of a
norm-unital Banach algebra at its unit are inherited by subspaces con-
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taining the unit. Then one can suspect that, if for every e in S, E can
be regarded as a subspace of a norm-unital Banach algebra with unit
e, then E is a Hilbert space. Actually the answer to this conjecture
is affirmative as a consequence of Theorem 2.5 below. Let us say that
an element e in E acts as a unit on E if there exist a norm-unital
real Banach algebra A and a (possibly nonsurjective) linear isometry φ
from E to A satisfying φ(e) = 1, where 1 denotes he unit of A. We do
not assume the algebra A above to be associative but, actually, it can
be chosen with that additional property (replace A by the norm-unital
associative real Banach algebra L(A) of all bounded linear operators
on A, and φ by the linear isometry x→ Lφ(x) from E to L(A) where,
for a in A, La denotes the operator of left multiplication by a on A).

Lemma 2.3. The set U of all elements in E which act as units on
E is norm-closed in E.

Proof. Let {en} be a sequence in U norm-converging to some e in
E. For n in N, there exist a norm-unital Banach real algebra An

and a linear isometry φn from E to An satisfying φn(en) = 1n, where
1n denotes the unit of An. Take an ultrafilter U on N refining the
Fréchet ultrafilter, and consider the unital Banach algebra (An)U , i.e.,
the Banach ultraproduct of the family of Banach spaces {An : n ∈ N}
relative to U , cf. [12], regarded as a unital Banach algebra under
the (well-defined) product (an)(bn) := (anbn). Then the mapping
φ : x → (φn(x)) from E to (An)U is a linear isometry from E to
(An)U satisfying φ(e) = 1, where 1 denotes the unit of (An)U .

Lemma 2.4. Let e act as a unit on E, and assume that E is smooth
at e. Then Re is an L2-summand of E.

Proof. Taking a real Banach algebra A and a linear isometry φ from
E to A satisfying φ(e) = 1 and denoting by f the unique element in
E∗ satisfying ‖f‖ = f(e) = 1, for every g in A∗ with ‖g‖ = g(1) = 1
we have

‖g ◦ φ‖ = g ◦ φ(e) = 1

and hence g◦φ = f . It follows that, for every x in Ker (f), the numerical
range of φ(x) relative to A, see [5, p. 42] for definition, is reduced to
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zero. But, for λ in R and a in A with zero numerical range, the equality

‖λ1 + a‖2 = λ2 + ‖a‖2

holds. (This is a well-known consequence of Sinclair’s theorem [5,
Corollary 26.6], cf. [20, Lemma 2.2] and [19, Lemma 3(b)] for details.)
Finally, for λ in R and x in Ker (f) we have

‖λe+x‖2 = ‖φ(λe+x)‖2 = ‖λ1+φ(x)‖2 = λ2+‖φ(x)‖2 = λ2+‖x‖2.

For e in S and x in E, the function α → ‖e + αx‖ from R to R is
convex, hence the limit

τ (e, x) := lim
α→0+

‖e+ αx‖ − 1
α

makes sense, and we have

τ (e, x) := inf
{‖e+ αx‖ − 1

α
: α ∈ R+

}
.

Theorem 2.5. Assume that the set U of all elements in E which
act as units on E is not rare in S. Then E is a Hilbert space.

Proof. For e in U , take a real Banach algebra A and a linear isometry
φ from E to A satisfying φ(e) = 1. As noticed in the proof of [21, Claim
5.8], the proofs of [17, Proposition 4.5] and [1, Theorem 5.1] give us
that, for every positive number ε, we have

‖1 + λa‖ − 1
λ

− τ (1, a) < ε

whenever a is in B(A) and 0 < λ < Min {(ε/4), (1/2)}, hence also

‖e+ λx‖ − 1
λ

− τ (e, x) < ε

whenever x is in B and 0 < λ < Min {(ε/4), (1/2)}. Now we will apply
the lines of the argument in the proof of [10, Proposition 4.1] to show
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that E is smooth at every interior point of U . By the observation at
the beginning of the proof, the convergence

‖e+ λx‖ − 1
λ

λ→0+−→ τ (e, x)

is uniform when the couple (e, x) runs in U × B, hence the function
(e, x) → τ (e, x) from U × B to R is continuous, and consequently,
for arbitrarily fixed x in E, the function e → τ (e, x) from U to R
is continuous. On the other hand, to show that E is smooth at a

point v ∈
◦
U , the interior of U relative to S, it is enough to prove that

every two-dimensional subspace of E containing v is smooth at v. Let

v be in
◦
U , and Y be a two-dimensional subspace of E containing v.

Then Y ∩
◦
U is an open subset of S(Y ) containing v, hence, by Mazur’s

theorem, see for example [13, p. 171], there exists a sequence {vn} in

Y ∩
◦
U converging to v and such that Y is smooth at vn for all n in N.

Then, for every y in Y , the sequence {τ (vn, y)} converges to τ (v, y).
Since the smoothness of Y at vn reads as τ (vn,−y) = −τ (vn, y) for
all y in Y , it follows that τ (v,−y) = −τ (v, y) for all y in Y , i.e., Y is
smooth at v. Now that we know that E is smooth at every point of
◦
U , we note that

◦
U is not rare in S because U is closed, by Lemma 2.3,

and nonrare in S. It follows from Lemma 2.4 and Theorem 2.2 that E
is a Hilbert space.

Corollary 2.6. Assume that E is a subspace of a norm-unital real
Banach algebra A containing the unit of A, and that the norm of E is
almost transitive. Then E is a Hilbert space.

In the above corollary the almost transitivity of the norm cannot
be relaxed to the convex transitivity of the norm. Indeed, if E is
the norm-unital (associative and commutative) Banach algebra of all
real valued continuous functions on the Cantor set, then the norm of
E is convex transitive [18]. Now let A be a norm-unital, possibly
nonassociative, real Banach algebra with almost transitive norm. It
follows from Corollary 2.6 that the norm of A derives from an inner
product (·|·), so that the structure of A is given by [19, Theorem 27].
As a consequence, for x, y in A, we have

(xy + yx)/2 = (x | 1)y + (y | 1)x− (x | y)1,
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where 1 denotes the unit of A, hence A is a quadratic algebra and every
nonzero element x of A has an inverse in the (associative) subalgebra
of A generated by x. Therefore, by applying the Frobenius-Zorn
theorem [9, pp. 229, 262], we obtain that, if A is alternative, then
A is isometrically isomorphic to R, C, H or O (the absolute-valued
algebra of real octonions). This extends a result of Ingelstam in [15].

Remark 2.7. For e in S, consider the following conditions:

(a) There exists a norm-one continuous bilinear mapping f : E×E →
E satisfying f(e, x) = f(x, e) = x for all x in E.

(b) m(E, e) = 1, where m(E, e) means the infimum of the set of
numbers of the form ‖f‖ when f runs over the set of all continuous
bilinear mappings f : E × E → E satisfying f(e, x) = f(x, e) = x for
all x in E.

(c) sm (E, e) = 1, where sm (E, e) stands for the infimum of the set
of numbers of the form Max {‖f‖, 1 + ‖Lf

e − IE‖, 1 + ‖Rf
e − IE‖} when

f runs over the set of all continuous bilinear mappings f : E×E → E.
(Here IE means the identity operator on E and, for f as above, Lf

e and
Rf

e denote the operators on E given by x → f(e, x) and x → f(x, e),
respectively.)

(d) e acts as a unit on E.

Then (a) ⇒ (b) ⇒ (c) ⇒ (d); for the last implication see the proof
of [21, Proposition 2.4]. It follows from Theorem 2.5 that if, for e in
S, Pe denotes any one of the conditions (a), (b) or (c), and if the set
{e ∈ S : e satisfies Pe} is not rare in S, then E is a Hilbert space.
However, the information contained in Theorem 2.5 is strictly stronger
than the above consequence because, in general, condition (d) does not
imply (c). This is shown in the following example. For every nonzero
real Hilbert space H, put Y := {T ∈ L(H) : T ∗ = −T}, and let E be
the closed subspace of L(H) given by E := Re ⊕ Y , where e denotes
the identity operator on H. Then, for λ in R and T in Y , we have

‖λe+ T‖2 = ‖(λe+ T )∗(λe+ T )‖ = ‖(λe− T )(λe+ T )‖
= ‖λ2 + T 2‖ = λ2 + ‖T‖2,

hence E contains Re as an L2-summand and therefore E is smooth at
e. Clearly e acts as a unit on E. However, for dimension of H ≥ 4, we
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can choose pairwise orthogonal nonzero elements x, y, z, t in H so that
the linear hull of {x ⊗ y − y ⊗ x, z ⊗ t − t ⊗ z} in L(H) is a copy of
l2∞ contained in E, and therefore we cannot have sm (E, e) = 1 since,
otherwise, by the smoothness of E at e and [21, Theorem 2.5], E would
be a Hilbert space.

3. Convex transitivity of the norm. Recall that G0 = G0(E)
denotes the connected component of G containing the identity operator
on E when G is endowed with the strong operator topology.

Lemma 3.1. Let e be in S such that the closed linear hull of G(e) is
E. Then G0 is trivial, i.e., it reduces to the singleton consisting of the
identity operator on E, if and only if G0(e) = {e}.

Proof. Assume F (e) = e for every F in G0. Since G0 is a normal
subgroup of G, we actually have FG(e) = Ge for all F in G0 and G in
G. Since the closed linear hull of G(e) is E, it follows that G0 is trivial.

Corollary 3.2. Assume that G0 is not trivial, and let e be a vector of
isometric reflection in E such that the closed linear hull of G(e) is E.
Then H, defined as the closed linear hull of G0(e), is a Hilbert space,
the unit sphere of H coincides with G0(e), and there exists a contractive
projection (uniquely determined under suitable conditions) from E onto
H.

Proof. Put together Lemma 3.1 and [23, Theorem 1].

Recall that a family F of linear functionals on E is said to be total
if for every x in E\{0} there exists f in F satisfying f(x) �= 0.

Lemma 3.3. Assume that the group G admits only the trivial G-
invariant closed subspaces and that there exists a vector of isometric
reflection e in E. Then there exists a total family of isometric reflection
functionals on E. More precisely, if e∗ denotes the isometric reflection
functional associated to e, then the family {e∗ ◦ F : F ∈ G} is a total
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family of isometric reflection functionals on E.

Proof. Since e is a vector of isometric reflection and e∗ is its associated
isometric reflection functional, for every F in G, F−1(e) is a vector
of isometric reflection and e∗ ◦ F is its associated isometric reflection
functional. Moreover, the family {e∗ ◦ F : F ∈ G} is total because, for
every x in E\{0}, the closed linear hull of G(x) is E.

Theorem 3.4. Assume that G0 is nontrivial, that there exists a
vector of isometric reflection in E, and that there is a δ > 0 such that
coG(x) ⊇ δB for all x in S. Then E is isomorphic to a Hilbert space.
More precisely, there exist a natural number n ≤ δ−2 and pairwise
isomorphic Hilbert subspaces H1, . . . , Hn of E satisfying:

(i) E = ⊕n
i=1Hi.

(ii) For i = 1, . . . , n and F in G, there is j = 1, . . . , n with
F (Hi) = Hj.

(iii) For i = 1, . . . , n, Hi is invariant under G0.

Proof. Let e be the vector of isometric reflection whose existence
has been assumed. For x, y in G(e), define x � y if G0(x) = G0(y).
Then � is an equivalence relation on G(e), so that we may consider the
quotient set B := G(e)/ � (= {G0(x) : x ∈ G(e)}). Since, for x in G(e),
we have coG(x) ⊇ δB, it follows from Corollary 3.2 that, for β in B,
Hβ (defined as the closed linear hull of β) is a Hilbert space, the unit
sphere of Hβ coincides with β, and there exists a contractive projection
pβ (uniquely determined under suitable conditions) from E onto Hβ .
Moreover, since coG(e) ⊇ δB, we have that E = clos (

∑
β∈BHβ)

(where clos denotes closure). Now Lemma 3.3 allows us to apply [23,
5.3 and Lemma 5.4.c] so that we have pαpβ = 0 for all α, β in B with
α �= β and therefore E = clos (⊕β∈BHβ). From now on, we follow an
argument in the proof of [16, Theorem 6.4]. For every F in G, we have
F (e) ∈ γ := G0(F (e)) ∈ B, so that F (e) ∈ Hγ for some γ in β. Hence,∑

β∈B
‖pβ(F (e))‖ = 1.

Now for every finite subset Γ of B, the set {x ∈ E :
∑

β∈Γ ‖pβ(x)‖ ≤ 1}
is closed and convex in E and contains G(e). Since coG(e) ⊇ δB, it
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follows that, for every x in E, the family {‖pβ(x)‖}β∈B is summable in
R and

(3.1) δ
∑
β∈B

‖pβ(x))‖ ≤ ‖x‖.

We note that each F in G induces a bijection F∗ : B → B given by
F∗(β) = F (β) for all β in B, and, even more, the mapping F → F∗
is an action of G on B, see [23, 5.3]. Moreover, with our definition of
B, G acts transitively on B. As a consequence, the Hilbert spaces Hβ ,
β ∈ B, are pairwise isomorphic. Let β1, . . . , βn be pairwise distinct
elements in B. Then, choosing x1 ∈ β1, . . . , xn ∈ βn, for every F in G
we have

max{‖pβ(F (x1 + · · · + xn))‖ : β ∈ B} = 1.

Since δ‖x1 + · · · + xn‖e ∈ δ‖x1 + · · · + xn‖B ⊆ coG(x1 + · · · + xn), we
have

δ‖x1 + · · · + xn‖max{‖pβ(e))‖ : β ∈ B} ≤ 1.

But, clearly, max{‖pβ(e))‖ : β ∈ B} = 1, and from (3.1) we obtain

nδ = δ

n∑
i=1

‖pβi
(xi)‖ = δ

∑
β∈B

‖pβ(x1 + · · · + xn)‖ ≤ ‖x1 + · · · + xn‖.

It follows that nδ2 ≤ 1.

The following corollary is immediate.

Corollary 3.5. Assume that G0 is nontrivial, that there exists a
vector of isometric reflection in E, and that there is δ > 2−1/2 such
that coG(x) ⊇ δB for all x in S. Then E is a Hilbert space.

The assumption that G0 is not trivial cannot be removed in the above
corollary. Indeed, if n is in N, and if E denotes R2 under the norm
whose closed unit ball is a regular polygon with 2(n+ 1) sides centered
at zero, then, for n large enough, all assumptions in the corollary, except
the nontriviality of G0, are satisfied by E.

We recall that the norm of E is called maximal if G cannot be
strictly enlarged to the group of all surjective linear isometries on any
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equivalent renorming of E. It is well known that convex transitivity
of the norm implies maximality of the norm, see, for instance, [22,
Theorem 9.7.1]. Actually the norm of E is convex transitive if and
only if the unique equivalent renormings of E which enlarge the group
of surjective linear isometries are those obtained by multiplying the
norm of E by a positive number [8].

Corollary 3.6. Assume that G0 is nontrivial, that there exists a
vector of isometric reflection in E, that the norm of E is maximal and
that there is a δ > 0 such that coG(x) ⊇ δB for all x in S. Then E is
a Hilbert space.

Proof. Let n and H1, . . . , Hn be the natural number and the Hilbert
subspaces of E, respectively, given by Theorem 3.4. For j = 1, . . . , n,
let πj denote the projection from E onto Hj corresponding to the
decomposition E = ⊕n

i=1Hi and consider the equivalent Hilbertian
norm ‖| · |‖ on E given by ‖|x|‖ := (

∑n
i=1 ‖πi(x)‖2)1/2. By Property

(ii) in the theorem, G(E, ‖| · |‖) enlarges G. Assume n > 1. Then
we can take nonzero elements x1 and x2 in H1 and H2, respectively,
with ‖|x1 + x2|‖ = 1 and an element F in G(E, ‖| · |‖) satisfying
F (x1) = ‖|x1|‖(x1 + x2). Again, by Property (ii) in the theorem, such
an F cannot belong to G. Therefore, G(E, ‖| · |‖) strictly enlarges G,
contradicting the fact that the norm of E is maximal.

Either from Corollary 3.5 or Corollary 3.6 we obtain the announced
“almost” improvement of [23, Theorem 2a]:

Corollary 3.7. Assume that G0 is nontrivial, that there exists a
vector of isometric reflection in E and that the norm of E is convex
transitive. Then E is a Hilbert space.

We do not know if the assumption in Corollaries 3.6 and 3.7 that G0

is not trivial can be removed. In any case the convex transitivity of the
norm of E does not imply that G0 is nontrivial. To see this, let E denote
the Banach algebra of all real valued continuous functions on the Cantor
set. Then we know that the norm of E is convex transitive. However,
if the 1 denotes the unit of E, and if F is in G with F (1) �= 1, then



76 J. BECERRA GUERRERO AND A. RODRIGUEZ PALACIOS

the well-known description of surjective isometries on E shows that
‖1−F (1)‖ = 2. Therefore G(1) is discrete, hence totally disconnected.
Since the mapping G → G(1) from G to G(1) is continuous when G is
endowed with the strong operator topology, it follows that G0(1) = {1},
and G0 becomes trivial in view of Lemma 3.1.

The rest of this section is devoted to prove that the number 2−1/2

in Corollary 3.5 is sharp. As a consequence, the assumption in Corol-
lary 3.6 that the norm of E is maximal cannot be removed. The fol-
lowing lemma is a straightforward consequence of the Hahn-Banach
separation theorem.

Lemma 3.8. Let x be in S and ρ be a positive number. Then
coG(x) ⊇ δB if and only if inf {sup{f(F (x)) : F ∈ G} : f ∈ S(E∗)} ≥
ρ.

The next lemma is surely well known.

Lemma 3.9. Let Ω and K be metrizable topological spaces with Ω
locally compact and K compact, and let h be a continuous mapping
from Ω × K into R. Then the mapping s : t → inf {h(t, k) : k ∈ K}
from Ω to R is continuous.

Proof. To prove the continuity of s at some point t0 of Ω is
enough to show the continuity of the restriction of s to some compact
neighborhood of t0 in Ω, hence we may assume that Ω is compact.
Then, by Heine’s theorem, h is uniformly continuous on Ω × K and
therefore the family of functions {h(·, k) : k ∈ K} is equicontinuous on
Ω. For ε > 0, let δ > 0 be such that |h(t1, k)−h(t2, k)| ≤ ε whenever k
is in K and t1 and t2 are in Ω with d(t1, t2) ≤ δ. Then, for k in K and
t1, t2 in Ω with d(t1, t2) ≤ δ, we have s(t1) ≤ h(t1, k) ≤ h(t2, k) + ε,
hence s(t1) ≤ s(t2) + ε, and by symmetry |s(t1) − s(t2)| ≤ ε.

Proposition 3.10. For every positive number δ < 2−1/2 there exists
a non-Hilbert real Banach space E with the following properties:

(i) G0(E) is nontrivial.

(ii) There is a vector of isometric reflection in E.
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(iii) coG(E)(x) ⊇ δB(E) for all x in S(E).

Proof. The Banach space E will be of the formH×H, for an arbitrary
real Hilbert space H of dimension ≥ 2, with norm ‖ · ‖ given by

‖(η, ξ)‖ := (‖η‖p + ‖ξ‖p)1/p

for a suitable real number p with 1 < p �= 2. Clearly such a Banach
space E is non-Hilbert and satisfies properties (i) and (ii) above.
We will see in what follows that, for δ < 2−1/2, we may choose
1 < p = p(δ) �= 2 in such a way that property (iii) also holds for
E. Consider the continuous function

h : (p, λ, µ) −→ max{λ(1 − µq)1/q + (1 − λp)1/pµ,

λµ+ (1 − λp)1/p(1 − µq)1/q}
from ]1,∞[ × [0, 1] × [0, 1] into R where, for p in ]1,∞[, q denotes the
real number determined by (1/p)+(1/q) = 1. According to Lemma 3.9,
the function

s : p −→ inf {h(p, λ, µ) : (λ, µ) ∈ [0, 1] × [0, 1]}
from ]1,∞[ to R is continuous, and a not difficult computation shows
that s(2) = 2−1/2. Now for δ < 2−1/2, the existence of 1 < p = p(δ) �= 2
with s(p) ≥ δ is not in any doubt. We fix such a p and consider the
corresponding Banach space E at the beginning of the proof. Let x
and f be in S(E) and S(E∗), respectively. Then there exist η, ξ, χ, ζ in
H satisfying x = (η, ξ), hence ‖η‖p + ‖ξ‖p = 1, ‖χ‖q + ‖ζ‖q = 1, and
f((y, z)) = (χ | y)+(ζ | z) for all (y, z) in H×H = E. Also we can find
elements M,P,Q, T in G(H) with ‖χ‖M(η) = ‖η‖χ, ‖ζ‖P (ξ) = ‖ξ‖ζ,
‖ζ‖Q(η) = ‖η‖ζ and ‖χ‖T (ξ) = ‖ξ‖χ. Therefore, since the mappings
(y, z) → (M(y), P (z)) and (y, z) → (T (z), Q(y)) are surjective linear
isometries on E, we have

sup{f(F (x)) : F ∈ G}
≥ max{(χ |M(η)) + (ζ | P (ξ)), (χ | T (ξ)) + (ζ | Q(η))}
≥ max{‖η‖‖χ‖ + ‖ξ‖‖ζ‖, ‖ξ‖‖χ‖ + ‖η‖‖ζ‖}
≥ inf {max{ac+ bd, bc+ ad} :

a, b, c, d ∈ R+
0 , a

p + bp = 1, cq + dq = 1}
= s(p) ≥ δ.
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Since x and f are arbitrary elements in S(E) and S(E∗), respectively,
Lemma 3.8 shows that property (iii) holds for E.

4. Applications to complex spaces. Throughout this section X
will denote a complex Banach space, and we will discuss the results
previously obtained for a real Banach space E when applied to E =
XR, the real Banach space underlying X. The key tool will be
the characterization of isometric reflection vectors in XR provided by
Proposition 4.2 below. The notation and definitions introduced in the
previous sections for real Banach spaces will now be taken verbatim
for complex Banach spaces. Sometimes some obvious formal changes
are needed. For example, we will say that an element e in X acts as a
unit on X if there exist a norm-unital complex Banach algebra A and
a (complex-) linear isometry φ from X to A satisfying φ(e) = 1.

If an element e in X acts as a unit on X, then clearly e acts as a
unit on XR. Therefore, we may apply Corollary 2.5 with E = XR

and the Bohnenblust-Karlin theorem [4], asserting that the unit of a
norm-unital complex Banach algebra A is a vertex of B(A) to obtain
that, if the set of elements in X which act as a unit in X is not rare in
S(X), then X is one-dimensional. As a consequence, if X is a subspace
of a norm-unital complex Banach algebra A containing the unit of A,
and if the norm of X is almost transitive, then X is one-dimensional.
Actually the last assertion can be refined as follows:

Proposition 4.1. There exists a universal constant C > 1 such
that, for every complex Banach space Y with almost transitive norm
and Dim (Y ) ≥ 2 and for every closed subspace M of any norm-
unital complex Banach algebra A containing the unit of A, we have
d(Y,M) ≥ C where d(·, ·) means the Banach-Mazur distance.

Proof. Assume the result is not true. Then, for each n in N, we can
find a complex Banach space Yn with almost transitive norm, norm-
one elements un, vn in Yn with ‖un + Cvn‖ ≥ 1, and a norm-unital
complex Banach algebra An together with a bicontinuous injective
linear mapping φn : Yn → An satisfying 1n ∈ Φn(Yn), where 1n

denotes the unit of An, ‖Φn‖ = 1, and ‖Φ−1
n ‖ < 1 + (1/n). If we

take an ultrafilter U in N refining the Fréchet filter, then the mapping
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Φ : (xn) → (Φn(xn)) from the complex Banach space (Yn)U to the
norm-unital complex Banach algebra (An)U is a linear isometry with
1 ∈ Φ((Yn)U ), where 1 stands for the unit of (An)U . Moreover, the fact
that Yn has almost transitive norm for all n in N implies that the norm
of (Yn)U is (almost) transitive; this is folklore, see, for instance, [11,
Remark p. 479]. It follows from the comment before the proposition
that (Yn)U is one-dimensional. But this is a contradiction because (un)
and (vn) are norm-one elements in (Yn)U satisfying ‖(un)+C(vn)‖ ≥ 1.

A bounded linear operator T on X is called Hermitian if, for all λ in
R, exp(iλT ) is an isometry.

Proposition 4.2. Let e be a norm-one element in X. Then Ce is
the range of a Hermitian projection on X if and only if e is an isometric
reflection vector in XR.

Proof. Assume that e is a norm-one element in X such that Ce is
the range of a Hermitian projection π on X. Then there exists e∗ in
X∗ satisfying π(x) = e∗(x)e for all x in X, hence e∗(e) = 1. For x in
X, we may choose λ in R with e∗(x) = (sin(λ/2) − i cos(λ/2))|e∗(x)|,
so that

‖x‖ = ‖ exp(iλπ)(x)‖ = ‖x+ (exp(iλ) − 1)π(x)‖
= ‖x− 2 sin(λ/2)(sin(λ/2) − i cos(λ/2))π(x)‖
= ‖x− 2 sin(λ/2)(sin(λ/2) − i cos(λ/2))e∗(x)e‖
= ‖x− 2Re (e∗(x))e‖.

Therefore the equality ‖x − 2Re (e∗(x))e‖ = ‖x‖ holds for all x in X,
hence e is an isometric reflection vector in XR. Now assume the e is
an isometric reflection vector in XR. Then there exists a norm-one
element e∗ in X∗ satisfying e∗(e) = 1 and ‖x−2Re (e∗(x))e‖ = ‖x‖ for
all x in X. For every x in X and λ in R, we take µ in C with |µ| = 1
and

µ|e∗(x)| = e∗(x)(sin(λ/2) + i cos(λ/2)),
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so that

‖x‖ = ‖µx‖ = ‖µx− 2Re (e∗(µx))e‖
= ‖x− 2µ̄Re (µe∗(x))e‖
= ‖x− 2 sin(λ/2)(sin(λ/2) − i cos(λ/2))e∗(x)e‖.

Therefore the mapping π : x→ e∗(x)e is a Hermitian projection on X
with range equal to Ce.

The next corollary is the complex variant of Theorem 2.2.

Corollary 4.3. The following assertions are equivalent:

(i) The set of all elements e in S(X) such that Ce is an L2-summand
of X is not rare in S(X).

(ii) The set of all elements e in S(X) such that Ce is the range of a
Hermitian projection on X is not rare in S(X).

(iii) X is a Hilbert space.

Proof. (i) implies (ii) because every L2-projection on a complex
Banach space is Hermitian, (ii) implies (iii) in view of Proposition 4.2
and Theorem 2.2 and (iii) clearly implies (i).

The above result improves the one of Berkson [3], see also [16,
Corollary 4.4] showing that, if for every e in S(X), Ce is the range
of a Hermitian projection on X, then X is a Hilbert space.

Now note that, for our complex Banach space X, G0(XR) is always
nontrivial. More precisely, G0(X) contains all multiplications by uni-
modular complex numbers and, from the inclusion G(X) ⊆ G(XR)
we obtain that G0(X) is contained in G0(XR). Therefore the next
corollary follows immediately from Proposition 4.2 and Theorem 3.4,
with E = XR.

Corollary 4.4. Assume that there exists a Hermitian projection
on X with one-dimensional range and that there is a δ > 0 such that
coG(X)(x) ⊇ δB(X) for all x in S(X). Then X is isomorphic to a
Hilbert space. More precisely, there exist a natural number n ≤ δ−2
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and pairwise isomorphic (complex) Hilbert subspaces H1, . . . , Hn of X
satisfying:

(i) X = ⊕n
i=1Hi.

(ii) For i = 1, . . . , n and F in G(X), there is j = 1, . . . , n with
F (Hi) = Hj.

(iii) For i = 1, . . . , n, Hi is invariant under G0(x).

The above corollary is the natural complex variant of Theorem 3.4.
However, in deriving it from that theorem, the reader can have observed
that the corollary remains true if the assumption that there is a δ > 0
with coG(X)(x) ⊇ δB(X) for all x in S(X) is relaxed to the one
that there is δ > 0 with coG(XR)(x) ⊇ δB(X) for all x in S(X).
Moreover, property (ii) above can be replaced by the stronger one
that, for i = 1, . . . , n and F in G(XR), there is j = 1, . . . , n with
F (Hi) = Hj .

The next corollary is derived from the preceding one in a similar way
as Corollaries 3.5 and 3.6 were obtained from Theorem 3.4.

Corollary 4.5. Assume that there exists a Hermitian projection on
X with one-dimensional range and that either there is a δ > 2−1/2

such that coG(X)(x) ⊇ δB(X) for all x in S(X) or there is a δ > 0
such that coG(X)(x) ⊇ δB(X) for all x in S(X) and the norm of X
is maximal. Then X is a Hilbert space.

Corollary 4.5 contains the Kalton-Wood result asserting that, if the
norm of X is convex transitive and if there is a Hermitian projection on
X with one-dimensional range, then X is a Hilbert space [16, Theorem
6.4]. As we noticed in the appropriate place, we adapted with some
refinements the Kalton-Wood argument to cover a part of the proof
of Theorem 3.4. This has allowed us to obtain the improvement of
the Kalton-Wood theorem provided by Corollary 4.4. In fact, similar
refinements can be made in the original Kalton-Wood proof to directly
obtain Corollary 4.4, and hence Corollary 4.5. The actual interest of
our approach relies on the fact that, via Proposition 4.2, the Kalton-
Wood theorem is nothing but Corollary 3.7 when applied to the real
Banach spaces underlying the complex ones.
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Remark 4.6. For δ < 2−1/2, let p = p(δ) be as in the proof of
Proposition 3.10 and, for every nonzero complex Hilbert space H,
let X denote the complex Banach space H × H under the norm
‖(η, ξ)‖ := (‖η‖p + ‖ξ‖p)1/p. Then X is non-Hilbert, there exist
Hermitian projections on X with one-dimensional range, and, argu-
ing as in the proof of Proposition 3.10, we see that the inclusion
coG(X)(x) ⊇ δB(X) holds for all x in S(X).
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Fréchet differentiability of the norm with applications to numerical ranges, Glasgow
Math. J. 28 (1986), 121 137.

2. J. Becerra and A. Rodriguez, Isometries which are one-dimensional perturba-
tions of the identity, Universidad de Granada, Quart. J. Math. Oxford 50 (1999),
147 153.

3. E. Berkson, A characterization of complex Hilbert spaces, Bull. London Math.
Soc. 2 (1970), 313 315.

4. H.F. Bohnenblust and S. Karlin, Geometrical properties of the unit ball of
Banach algebras, Ann. of Math. 62 (1955), 217 229.

5. F.F. Bonsall and J. Duncan, Numerical ranges II, Cambridge University Press,
Cambridge, 1973.
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