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CONTINUOUS MAPS ON
IDEAL SPACES OF C∗-ALGEBRAS

MAY NILSEN

ABSTRACT. The set of ideals of a C∗-algebra can be given
a natural topology, which restricts to the hull-kernel topology
on the primitive ideals. Our primary interest is to study
continuous maps on the space of all ideals, rather than on
the subset of primitive ideals. We show how the properties of
a map between primitive ideal spaces carry over to properties
of the extended map between their ideal spaces.

As an application of these results we determine a number
of properties of maps between ideal spaces of tensor products,
both minimal and maximal. For example, for C∗-algebras A
and B, the map (kerπ, ker η) �→ ker (π⊗η) : Id (A)×Id (B) →
Id (A ⊗ B) is a homeomorphism onto its range. Finally,
we apply these results to tensor products of continuous C∗-
bundles.

Introduction. The set of ideals of a C∗-algebra can be given a nat-
ural topology associated to the partial ordering given by containment.
This topology restricts to the usual hull-kernel topology on the subset
of primitive ideals. It is clear that, given a continuous map between the
ideal spaces of two C∗-algebras, it need not restrict to a map between
primitive ideal spaces. On the other hand, given a continuous map
between primitive ideal spaces, does it extend to a continuous map
between ideal spaces? A less likely question to ask perhaps is, if we
begin with a continuous map from the Cartesian product of two primi-
tive ideal spaces into a primitive ideal space of a third C∗-algebra, will
this property be retained when we attempt to extend to a map on the
Cartesian product of the ideal spaces? We begin by answering these
questions in the affirmative (Section 1).

Given C∗-algebras A and B, we apply these results of Section 1 to
the study of three particular maps between the ideal spaces of A and
A⊗ B, for both minimal and maximal tensor products. Every ideal I
generates an ideal Ext (I) in A ⊗ B. Every representation of A ⊗ B
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1466 M. NILSEN

restricts to a representation of A; this is well-defined on ideals, so for
an ideal K in A ⊗ B we obtain the ideal Res (K) in A. There is a
third map which takes kerπ to ker (π ⊗ id), where id is the universal
representation of B. It turns out that this also gives a well-defined
process on ideals, so for an ideal I in A, there is an ideal Ind (I) in
A⊗B.
The tensor product by a group C∗-algebra can be viewed as a crossed

product by a trivial action. The maps Res, Ext and Ind have natural
counterparts in the crossed product set-up, and the interplay between
these three maps in that case gives an indication of what to expect
of these maps for tensor products, [11, Section 3]. It is well-known
from the theory of Morita equivalence that inducing representations
in crossed products is continuous [5, Proposition 11], [7, Proposition
4.1]. In [11, Propositions 2.1, 2.7] we gave an elementary proof of the
continuity of induction which works for crossed products by actions
as well as coactions. However, the proof relies on group theoretic
techniques and does not carry over to arbitrary tensor products. Part
of what we show in Section 2 is that Ind is continuous for both minimal
and maximal tensor products. To do so, we show that the map

(kerπ, ker η) �−→ ker (π ⊗ η) : Id (A)× Id (B) −→ Id (A⊗B)

is a homeomorphism onto its ranges, as is well known for primitive
ideals [6, Theorem 5].

Archbold, Kaniuth, Schlichting and Somerset have studied continuous
maps between ideal spaces of the Haagerup tensor products and showed,
among other things, results analogous to some of ours (for example, [2,
Theorem 1.5]).

Lastly, we use the results of Sections 1 and 2 to show that, given
a continuous C∗-bundle A and a nuclear C∗-algebra B, there exists a
continuous C∗-bundle A ⊗max B with section algebra Γ0(A) ⊗max B
and fibers Ax ⊗max B. The analogous result for exact C∗-algebras and
minimal tensor products follows along similar lines (see Section 3).

1. Ideals and primitive ideals. Let X be a topological space and
denote the collection of closed subsets of X by P(X) [4, Example 2.7].
This is a lattice with the partial order given by reverse containment.
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Give P(X) the lower topology, which means it has subbasic open sets
OF := {G : F 	⊇ G}, where F is a closed subset of X.

Lemma 1.1. Let X and Y be topological spaces, α : X → Y , and
define ᾱ : P(X) → P(Y ) by ᾱ(F ) = α(F ). If α is continuous, then ᾱ
is continuous. If α is continuous and onto, then ᾱ is onto. If α is a
homeomorphism onto its range, then ᾱ is a homeomorphism onto its
range.

Proof. Suppose α is continuous, and let S be a closed set in
Y . We will show that ᾱ−1(OS) is open in P(X) by showing that
ᾱ−1(OS) = Oα−1(S). Notice that, because α is continuous, α−1(S)
is closed in X, so Oα−1(S) is a subbasic open set in P(X). Firstly,
ᾱ−1(OS) = {C ∈ P(X) : ᾱ(C) ∈ OS} = {C : S 	⊇ ᾱ(C)}. On
the other hand, Oα−1(S) = {C : α−1(S) 	⊇ C}, so it suffices to show
that α−1(S) ⊇ C if and only if S ⊇ ᾱ(C). Suppose α−1(S) ⊇ C.
Then S ⊇ α(α−1(S)) ⊇ α(C). But S is closed so S ⊇ α(C) = ᾱ(C).
Conversely, suppose S ⊇ ᾱ(C). Then S ⊇ α(C), and thus α−1(S) ⊇
α−1(α(C)) ⊇ C.
Suppose α is continuous and onto, and let S be a closed subset of Y .

Then ᾱ(α−1(S)) = α(α−1(S)) = S = S and ᾱ is onto.

Now suppose that α is a homeomorphism onto its range, and let F
and G be closed sets in X such that α(F ) = α(G). To show that
ᾱ is injective, it is enough to show that F ⊆ G, so let x ∈ F . Then
α(x) ∈ α(G), and thus there exists a net yγ in α(G) converging to α(x).
Since α is a homeomorphism onto its range, α−1 is continuous on the
range of α, so α−1(yγ) converges to x. The injectivity of α implies that
each α−1(yγ) ∈ α−1(α(G)) = G, and hence x ∈ G.
It remains to show that ᾱ is open onto its range. Since ᾱ is injective,

it preserves intersections and it is enough to show that the image of a
subbasic open set is open. Then ᾱ(OF ) = {α(S) : F 	⊇ S}. On the
other hand,

O
α(F )

∩ ᾱ(P(X)) = {α(S) : α(F ) 	⊇ α(S)}.

We need to know that F ⊇ S if and only if α(F ) ⊇ α(S). The forward
direction is clear, and the argument used to show injectivity gives the
reverse direction.
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Lemma 1.2. Let X,Y and Z be topological spaces, α : X × Y → Z,
and define ᾱ : P(X) × P(Y ) → P(Z) by ᾱ(C,D) = α(C ×D). If
α is continuous, then ᾱ is continuous. If α is continuous and onto,
then ᾱ is onto. If α is a homeomorphism onto its range, then ᾱ is a
homeomorphism onto its range.

Proof. Let α(C ×D) ∈ OS . To show ᾱ is continuous, it suffices to
find closed sets E ⊆ X and F ⊆ Y such that C ∈ OE , D ∈ OF and
ᾱ(C ×D) ∈ ᾱ(OE ×OF ) ⊆ OS .

Since S 	⊇ α(C ×D) and S is closed, there exists (c, d) ∈ C ×D such
that α(c, d) /∈ S. Since α is continuous and CompS is open, there exist
closed sets E ⊆ X and F ⊆ Y such that (c, d) ∈ CompE × CompF ⊆
α−1(CompS).

Now c /∈ E and d /∈ F , so E 	⊇ C and F 	⊇ D, which means
(C,D) ∈ OE ×OF so that ᾱ(C,D) ∈ ᾱ(OE ×OF ).

It remains to check that ᾱ(OE×OF ) ⊆ OS . Suppose that E 	⊇ E′ and
F 	⊇ F ′, so that (E′, F ′) ∈ OE × OF . That means e′ ∈ E′ exists such
that e′ /∈ E; similarly for an f ′. Thus, (e′, f ′) ∈ CompE × CompF ⊆
α−1(CompS) and hence α(ε′, f ′) ∈ CompS. We have found a point in
α(E′ ×F ′) which is not in S, so S 	⊇ α(E′ ×F ′) and α(E′ × F ′) ∈ OS .
Hence, ᾱ is continuous.

The remaining assertions are proved as in Lemma 1.1.

For C∗-algebra A, let Id (A) be the set of closed two-sided ideals of A
with subbasic open sets OI := {J ∈ Id (A) : J 	⊇ I} for some I ∈ Id (A).
The relative topology on the subspace of primitive ideals PrimA is the
hull-kernel topology, because all the closed sets of PrimA are of the
form CI := {P ∈ PrimA : P ⊇ I} [3, 3.1.2]. All open sets of PrimA
are of the form UI := {P ∈ PrimA : P 	⊇ I}.
It is well known that the map h : Id (A) → P(PrimA), defined

by h(I) = CI , is a homeomorphism. Indeed, it is injective because
if {P : P ⊇ J} = {P ′ : P ′ ⊇ I}, then I = J . For a closed
set S in PrimA, S = {P ′ : P ′ ⊇ ∩I∈SI}, so h is onto. Since
h−1(OCI

) = {J : h(J) ∈ OCI
} = {J : CI 	⊇ CJ} = {J : J 	⊇ I} = OI ,

h is continuous and a similar calculation shows h(OI) = OCI
, so h is

also open.
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Corollary 1.3. Let A and B be C∗-algebras, α : PrimA→ PrimB,
and define α̃ : Id (A) → Id (B) by α̃(I) := ∩{α(P ) : P ∈ PrimA, P ⊇
I}. If α is continuous, then α̃ is continuous. If α is continuous and
onto, then α̃ is onto. If α is a homeomorphism onto its range, then α̃
is a homeomorphism onto its range.

Corollary 1.4. Let A,B and C be C∗-algebras, α : PrimA ×
PrimB → PrimC, and define α̃ : Id (A)× Id (B) → Id (C) by

α̃(I, J) := ∩{α(P,Q) : P ∈ PrimA, Q ∈ PrimB, P ⊇ I, Q ⊇ J}.

If α is continuous, then α̃ is continuous. If α is continuous and onto,
then α̃ is onto. If α is a homeomorphism onto its range, then α̃ is a
homeomorphism onto its range.

All nonzero representations will be nondegenerate, and the extension
of a representation π of a C∗-algebra A to the multiplier algebraM(A)
will be denoted by π̄. Let AB := sp {ab : a ∈ A, b ∈ b} denote the
closed span of the products of elements of C∗-algebras A and B. Let
ι : A→M(B) be a homomorphism and define

(1) Resι : Id (B) −→ Id (A) by Resι(kerσ) = ker (σ̄ ◦ ι),

and

(2) Ext ι : Id (A) −→ Id (B) by Ext ι(I) = Bι(I)B.

In [10, Lemma 1.1] we showed that Resι is well defined, continuous and

(3) J ∈ Resι(OK) ⇐⇒ Ext ι(J) ∈ OK .

We also showed that Resι is open onto its range if and only if
Ext ι|Resι(Id (B)) is continuous. The proof states that this follows from
the fact that

Ext−1
ι (OK) ∩ Resι(Id (B)) = Res ι(OK).

But sets of the form OK are only subbasic open sets, so this alone is
not quite enough. However, the following argument shows that Resι
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preserves intersections of subbasic open sets, so this equation is in
fact sufficient. It follows from the definitions that Resι(OK ∩ OL) ⊆
Resι(OK) ∩ Resι(OL), so let J ∈ Resι(OK) ∩ Resι(OL). Equation 3
says that Ext ι(J) is in both OK and OL. That means Ext ι(J) 	⊇ K
and Ext ι(J) 	⊇ L. Since J is in the image of Resι, ResιExt ι(J) = J , so
there exists an idealM (namelyM = Ext ι(J)) such that Resι(M) = J
and M 	⊇ K and M 	⊇ L. Hence J ∈ Resι(OK ∩OL).

Corollary 1.5. Let A be a C∗-algebra, I an ideal in A and
q : A → A/I the quotient map. Then Resq : Id (A/I) → Id (A) is
a homeomorphism onto its range.

Proof. There is a map α : Prim (A/I) → Prim (A), satisfying
α(q(P )) = P (where P is a primitive ideal containing I), which
is a homeomorphism onto its range [3, 3.2.1]. By Corollary 1.3,
α̃ : Id (A/I) → Id (A) is a homeomorphism onto its range. It remains
to check that α̃(q(J)) = Resq(q(J)), which we do by showing they are
both equal to J .

Since q is onto, Ext q(J) = q(J) and then Resq(q(J)) = J on the
range of Res q [10, Lemma 1.1]. To show α̃(q(J)) = J we need to see
that P ⊇ J if and only if q(P ) ⊇ q(J). The forward direction is clear,
and the reverse direction depends on the fact that if q(j) ∈ q(P ) and
P contains I, then j ∈ P .

2. Tensor products. For the applications in Section 3, we need
to show that Ind : Id (A) → Id (A ⊗min B), where Ind (kerσ) =
ker (σ ⊗ id) is continuous. However, more is true. In fact, the map
j : Id (A)×Id (B) → Id (A⊗minB) satisfying j(kerσ, ker τ ) = ker (σ⊗τ )
is a homeomorphism onto its range, which is dense in Id (A⊗min B).

As we will see, it is not that hard to show that j is injective and
open onto its range, which is dense. The difficulty is the continuity.
But, at the level of states, continuity is easy. More precisely, the map
S(A)× S(B) → S(A⊗min B), satisfying f × g �→ f ⊗ g, is continuous.
So one might try to lift this continuity from the states to ideals using
the canonical map θ : S(A) → Id (A).

This idea certainly works for pure states and primitive ideals. This
is how Guichardet proved that j, restricted to primitive ideals, is a
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homeomorphism onto its range, which is dense in Prim (A⊗min B) [6,
Theorem 5]. More precisely, there is a commutative diagram:

(4)

P (A)× P (B) w
Φ

u

θA×θB

P (A⊗min B)

u

θA⊗B

Prim (A)× Prim (B) w
j

Prim (A⊗min B)

The maps θA, θB and θA×θB are continuous, open surjections [3, p. 44],
and a diagram chase shows that j is continuous on Prim (A)×Prim (B)
(cf. [13, pp. 256 257]). One important ingredient in this recipe is the
surjectiveness of the map from pure states to primitive ideals and, un-
fortunately, this is not always true from states to ideals. Primitive
ideals are kernels of irreducible representations, and irreducible repre-
sentations are always cyclic, and therefore are unitarily equivalent to
the GNS representation obtained from the cyclic vector. To get around
this difficulty we will first prove the continuity on primitive ideals and
extend this to continuity on all ideals using Lemma 1.4.

Let A and B be C∗-algebras, and denote the algebraic tensor product
by A � B. In general there will be more than one C∗-norm on A � B
[9, p. 190]. For a C∗-norm γ on A � B, we denote the completion of
A�B with respect to γ by A⊗γ B.

Proposition 2.1. Let A and B be C∗-algebras and γ a C∗-norm on
A�B. Define jγ : Id (A)× Id (B) → Id (A⊗γ B) by jγ(kerπ, ker η) =
ker (π⊗η). Then jγ is a homeomorphism onto its range, the restriction
jγ : Prim (A)× Prim (B) → Prim (A⊗γ B) is a homeomorphism onto
its range. Also, jmin(Id (A) × Id (B)) is dense in Id (A ⊗min B) and
jmin(Prim (A)× Prim (B)) is dense in Prim (A⊗min B).

Proof. We begin by showing that j := jmin is a homeomorphism onto
its range. But first we need to see that it is well-defined on ideals.
Let qI be the quotient map from A to A/I and similarly for qJ . Then
π = π′ ◦ qI and η = η′ ◦ qJ for faithful nondegenerate representations
π′ and σ′ of A/I and B/J , respectively. Note that π′ ⊗ σ′ is a faithful
representation of (A/I) ⊗min (B/J). It follows from [9, 6.5.1] that
qI ⊗ qJ is a well-defined bounded homomorphism from A⊗min B onto
(A/I) ⊗min (B/J). Moreover, π ⊗ η = (π′ ⊗ η′) ◦ (qI ⊗ qJ ). Thus,



1472 M. NILSEN

ker (π ⊗ η) = ker (qI ⊗ qJ ) and it depends only on I and J . Thus, j is
well-defined.

Define k : Id (A ⊗min B) → Id (A) × Id (B) by k(kerπ) = (ker (π̄ ◦
iA), ker (π̄ ◦ iB)), where iA and iB are the canonical embeddings of A
and B into the multiplier algebra M(A ⊗min B). Since k ◦ j = id on
Id (A)×Id (B), j is injective. Furthermore, the map kerπ �→ ker (π̄◦iA),
is just ResiA

, and so is continuous, and thus k is continuous. It follows
that j : Id (A)× Id (B) → Id (A⊗min B) is open onto its range.

The range of j is dense in Id (A ⊗min B) because every nonempty
subbasic open set contains the zero ideal, and the zero ideal is in the
range of j [9, Theorem 6.5.1].

Define Φ : S(A) × S(B) → S(A ⊗min B) by Φ(f, g) = f ⊗ g [9,
Theorem 6.4.6]. This map is continuous for the weak∗ topologies and
restricts to a map P (A) × P (B) → P (A ⊗minB) [13, p. 256]. By [3,
p. 44] we have continuous, open surjections θA, θB and θA⊗B, diagram 4
commutes and hence j : Prim (A) × Prim (B) → Prim (A ⊗min B)
is continuous. The restriction of an injective open map is open, so
j : Prim (A)×Prim (B) → Prim (A⊗min B) is open onto its range. By
Lemma 1.4, the map j̃ : Id (A)× Id (B) → Id (A⊗minB) is continuous.
We need to show that

ker (σ ⊗ τ ) = ∩{ker (π ⊗ η) : kerπ ∈ PrimA, ker η ∈ PrimB,
kerπ ⊇ kerσ, ker η ⊇ ker τ}.

This will follow from
(5)

‖x‖A⊗minB = sup{‖π ⊗ η(x)‖ : kerπ ∈ Prim (A), ker η ∈ Prim (B)},
[6, Theorem 2] for the following reasons. There is a bijection from
Prim (A/I) onto the subset of Prim (A) for primitive ideals containing
I [3, 2.11.5]. Thus, every irreducible representation π̃ of A/kerσ is of
the form π ◦ qσ where qσ : A→ A/kerσ is the quotient map. Similarly
for A/ker τ . Thus,

‖σ ⊗ τ (x)‖ = ‖qσ ⊗ qτ (x)‖(A/ker σ)⊗min(B/ker τ)

= sup{‖π̃ ⊗ η(qσ ⊗ qτ (x)‖ : ker π̃ ∈ Prim (A/kerσ),
ker η̃ ∈ Prim (B/ker τ )}

= sup{‖π ⊗ η(x)‖ : kerπ ⊇ kerσ, ker η ⊇ ker τ )}.
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[9, Theorem 6.4.2] says that ‖x‖A⊗minB = sup{‖πf ⊗ πg(x)‖ : f ∈
S(A), g ∈ S(B)}. The argument given there is based on the fact
that for any C∗-algebra, there exists a faithful representation which
is a direct sum of representations obtained from the GNS construction.
But the direct sum of irreducible representations obtained from the
GNS construction (that is all of them) is also faithful. So Equation (5)
follows by the same argument. And it follows from Equation (5) that
the range of j|Prim (A)×Prim (B) is dense in Prim (A⊗min B).

Let σ : A→ B(Hσ) and η : A→ B(Hη) be representations, and let q
be the canonical quotient map A⊗γB → A⊗minB. The representation
σ⊗γ η of A⊗γB is defined by σ⊗γ η := (σ⊗η)◦q so that jγ = Resq ◦j.
Thus jγ is injective and continuous (Lemma 1.5). Since Resq is open
and injective, it restricts to an open map on the range of j, and thus
jγ is open onto its range.

A C∗-algebra B is nuclear if A ⊗max B = A ⊗min B for every C∗-
algebra A [9, p. 193]. Proposition 2.2 is an analogue of the crossed
product results [11, Section 3].

Proposition 2.2. Let B be a C∗-algebra and iA : A→M(A⊗maxB)
the canonical embedding for any C∗-algebra A. Define

ResA : Id (A⊗max B) → Id (A) by ResA(kerπ) = ker (π̄ ◦ iA),
ExtA : Id (A) → Id (A⊗max B) by ExtA(I) = I ⊗max B,

and

IndA : Id (A) → Id (A⊗max B) by IndA(kerπ) = ker (π ⊗ id),

where id is the faithful universal representation of B. Then

(i) ResAIndA(I) = I = ResAExtA(I); ExtA(I) ⊆ IndA(I);

(ii) IndA is a homeomorphism onto its range;

(iii) ExtA = IndA for all A, if and only if B is nuclear; and

(iv) if B is nuclear, then ExtA is continuous for all A.

Proof. By definition ResA = ResiA
, Equation (1). The ideal I⊗maxB

is identified with the ideal in A⊗maxB generated by I [13, Proposition
B.30], thus ExtA = Ext iA

.
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(ii) To see that IndA is well defined, injective and continuous on
ideals, note that IndA is obtained by composing jmax (Proposition 2.1)
with the map p : Id (A) → Id (A)×Id (B) such that p(I) = (I, 0), which
is a homeomorphism onto its range. Since jmax is injective, it restricts
to an open map on the range of p, and thus IndA is open onto its range.

(i) It follows from the formulas for IndA and ResA that ResAIndA =
id. Thus ResA is onto and hence ResAExtA(I) = I [10, Proof of
Lemma 1.1]. The inclusion ExtA(I) ⊆ IndA(I) is clear by looking at
elementary tensors.

(iii) Let π be a representation with kerπ = I and π̃ : (A/I) → B(H)
the faithful representation associated to π. The following diagram
commutes because it does so on elementary tensors.

A⊗max B w
φ

u

π⊗id

(A/I)⊗max B
�
�
�
��

π̃⊗id

B(H ⊗HB).

The sequence 0 → I⊗maxB → A⊗maxB
φ→ (A/I)⊗maxB → 0 is short

exact since the tensor product is maximal, so kerφ = ExtA(I). If B is
nuclear, then (A/I)⊗max B ∼= (A/I)⊗min B. Hence, π̃ ⊗ id is faithful
and ExtA(I) = IndA(I).

Conversely, suppose ExtA = IndA for all C∗-algebras A. In partic-
ular, then, ExtA(0) = IndA(0), so π ⊗ id is faithful for all faithful π
representations of A.

A⊗max B w

u

π⊗id

A⊗min B
h

h

h
hk

B(H ⊗HB).

Since π ⊗ id factors through A ⊗min B, A ⊗max B ∼= A ⊗min B for all
A, and B is nuclear.

(iv) It follows immediately from parts (ii) and (iii) that if B is nuclear
then ExtA is a homeomorphism onto its range for all A.
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A C∗-algebra B is exact if the following sequence is short exact for
all C∗-algebras A and ideals I of A [13, B.33]: 0 → I ⊗min B →
A⊗min B → (A/I)⊗min B → 0.

Proposition 2.3. Let B be a C∗-algebra and iA : A→M(A⊗minB)
the canonical embedding for any C∗-algebra A. Define

ResA : Id (A⊗min B) −→ Id (A) by ResA(kerπ) = ker (π̄ ◦ iA),
ExtA : Id (A) −→ Id (A⊗min B) by ExtA(I) = I ⊗min B,

and

IndA : Id (A) −→ Id (A⊗min B) by IndA(kerπ) = ker (π ⊗ id),

where id is the faithful universal representation of B. Then

(i) ResAIndA(I) = I = ResAExtA(I); ExtA(I) ⊆ IndA(I);

(ii) IndA is a homeomorphism onto its range;

(iii) ExtA = IndA for all A if and only if B is exact; and

(iv) if B is exact, then ExtA is continuous for all A.

Proof. The proofs for parts (i), (ii) and (iv) work the same as in
Proposition 2.2.

(iii) Let π be a representation with kerπ = I and π̃ : (A/I) → B(H)
the faithful representation associated to π. We have the following
commutative diagram.

A⊗min B w
φ

u

π⊗id

(A/I)⊗min B
�

�
�
��

π̃⊗id

B(H ⊗HB).

Since the tensor product is minimal, π̃ ⊗ id is faithful and so kerφ =
IndA(I). The sequence 0 → I⊗minB → A⊗minB

φ→ (A/I)⊗minB → 0,
is short exact for all C∗-algebras A and ideals I in A if and only
if B is exact. Since kerφ = IndA(I), this happens if and only if
ExtA(I) = IndA(I).
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3. C∗-bundles. A C∗-algebra A is a C0(X)-algebra if there exists
a nondegenerate injection ι of C0(X) into ZM(A), the center of the
multiplier algebra of A [10, Section 2]. An upper semi-continuous
(continuous) C∗-bundle A can be thought of as a family of C∗-algebras
Ax parametrized by a locally compact Hausdorff spaceX, together with
an algebra Γ0(A) of upper semi-continuous (continuous) sections (maps
f on X such that f(x) ∈ Ax for all x ∈ X, with pointwise operations)
[10, Section 1].

Let A be a C0(X)-algebra with i : C0(X) → ZM(A), and let B
be a C∗-algebra with canonical embedding iA : A → M(A ⊗ B) (for
both minimal and maximal tensor products). Then we can define
ι : C0(X) → ZM(A ⊗ B) by ι = īA ◦ i, so that A ⊗ B is again a
C0(X)-algebra.

The section algebra Γ0(A) of an upper semi-continuous C∗-bundle A
over X is a C0(X)-algebra because there is an embedding i : C0(X) →
ZM(Γ0(A)) given by i(g)f = gf . Conversely, in [10, Theorem 2.3],
we showed that every C0(X)-algebra A gives rise to an upper semi-
continuous C∗-bundle C over X. Specifically, there is an upper semi-
continuous C∗-bundle C over X with section algebra Γ0(C) ∼= A and
fibers Cx

∼= A/Ext i(Ix) where Ix := {g ∈ C0(X) : g(x) = 0}.
This theorem can be used to show that if A is an upper semi-

continuous C∗-bundle over X and B is a C∗-algebra, then there
exists an upper semi-continuous C∗-bundle C over X such that Cx

∼=
Ax ⊗max B and Γ0(C) ∼= Γ0(A) ⊗max B. This is because Ext i(Ix) =
{f ∈ Γ0(A) : f(x) = 0} [10, Section 3], and

Cx
∼= (Γ0(A)⊗max B)/(Ext i(Ix)⊗max B)
∼= (Γ0(A)/Ext i(Ix))⊗max B ∼= Ax ⊗max B.

The more difficult step is to show that if A is a continuous C∗-bundle,
then C is a continuous C∗-bundle. This requires the assumption that
B is a nuclear C∗-algebra.

Lemma 3.1. Let D be a C0(X)-algebra. Then Resι restricts to a
continuous map from PrimD into X with dense range such that

(6) P ⊇ Ext ι(Ix) ⇐⇒ Resι(P ) = x,
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and Resι : PrimD → X is open if and only if Ext ι : X → Id (D) is
continuous.

Proof. We showed in [10, Proposition 2.1] that Resι restricts to
a continuous map from PrimD into X with dense range satisfying
Equation (6). To verify the last claim, we will use the following:

(7) x ∈ Resι(UK) ⇐⇒ Ext ι(Ix) ∈ OK .

Suppose that x ∈ Resι(UK). That means there exists a primitive ideal
Q such that Q 	⊇ K and Resι(Q) = x. In other words, there exists a
Q such that Q 	⊇ K and Q ⊇ Ext ι(Ix). That is, Ext ι(Ix) 	⊇ K, which
means that Ext ι(Ix) ∈ OK .

Equation (7) says that Res (UK) = Ext−1(OK) ∩ X, which suffices
because every open set in PrimD is of the form UK .

Remark. Because ResExtRes = Res, Ext ι is injective on the range
on Resι. This also shows that Ext ι : Resι(PrimD) → Id (D) is open
onto its range, because Resι is its continuous inverse. These facts,
together with Lemma 3.1 and [10, Theorem 2.3] extend part of [1,
Theorem 3.1]. Let A be an upper semi-continuous C∗-bundle A over
X, and let X ′ be the subset of X for which Ext i(Ix) is proper. Then A
is continuous if and only if Ext i|X′ is a homeomorphism onto its range.

Suppose A is a continuous C∗-bundle and B is nuclear. Since A
is continuous, Resi : Prim (Γ0(A)) → X is open [10, Theorem 2.3],
and thus Ext i : X → Id (Γ0(A)) is continuous, Lemma 3.1. The
nuclearity of B implies that ExtA : Id (Γ0(A)) → Id (Γ0(A)⊗max B) is
continuous, Proposition 2.2. Since Ext ι = ExtA ◦ Ext i, Ext ι : X →
Id (Γ0(A)⊗maxB) is continuous. By Lemma 3.1 and [10, Theorem 2.3]
again, Resι : Prim (Γ0(A)⊗max B) → X is open and C is a continuous
C∗-bundle.

Kirchberg and Wassermann show that nuclearity is actually a nec-
essary and sufficient condition. More precisely, they construct a con-
tinuous C∗-bundle A such that if B is not a nuclear C∗-algebra, then
A⊗max B is not a continuous C∗-bundle [8, p. 684].

In the case of minimal tensor products, there exists an upper
semi-continuous C∗-bundle C over X such that Cx

∼= (Γ0(A) ⊗min
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B)/(Ext (Ix)⊗minB) and Γ0(C) ∼= Γ0(A)⊗minB. If B is exact, then C
is continuous and

Cx
∼= (Γ0(A)/Ext (Ix))⊗min B ∼= Ax ⊗min B.

Kirchberg and Wassermann’s work does not show that exactness
is a necessary and sufficient condition in this case because we are
considering different bundles: they work with the lower semi-continuous
C∗-bundle whose fibers are Ax ⊗min B [8].

We have studied analogous results for full crossed products by action
and coaction [10, Theorem 5.1, Corollary 5.3], [12, Theorem 4.3], but
the argument given in the proof of [10, Corollary 5.3] is inaccurate.
However, the proof given above for tensor products works in exactly
the same manner for crossed products. There is just one point which
should be made clear.

In the tensor product case, with the appropriate assumptions, ExtA =
IndA on all of Id (A). However, for full crossed products, even when G
is amenable, the set on which ExtA = IndA is not all of Id (A), so that
ExtA is not necessarily continuous on all of Id (A). So what we have
to check is that the subset of Id (A) on which ExtA = IndA contains
the image of Ext i, so that the composition Ext i = ExtA ◦ Ext i is
continuous.

For the action case, ExtA = IndA on the α-invariant ideals, when
G is amenable [10, Lemma 5.2(iii)]. Given a C∗-bundle A over X, to
construct a bundle with section algebra isomorphic to Γ0(A)×αG, the
action G must leave the embedding of C0(X) into Γ0(A) fixed, and it
follows easily from this condition that the ideal Ext i(Ix) is α-invariant
[10, Proof of Theorem 5.1] (cf. [14, Definition 3.1]).

For the coaction case [12, Theorem 4.3], we have to be even more
careful because invariant ideals come in more than one flavor. There
are three sets of ideals in Id (A) worthy of attention. First the δ-
invariant ideals are exactly the image of ResA, that is, those ideals I for
whom there exists a covariant representation (π, µ) such that I = kerπ
[11, Sections 1, 3]. Second, the nondegenerately δ-invariant ideals I
satisfy a condition which ensure that the coaction on A restricts to
a coaction on I [12, Section 2]. Thirdly, there are those ideals I for
which there is a well-defined coaction on the quotient A/I. Fortunately,
this third set contains the first two, and it is the third set on which
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ExtA = IndA. We verified in [12, Proposition 3.1] that the ideals
Ext i(Ix) are nondegenerately δ-invariant, and so the image of Ext i is
contained in the third set, and Ext ι = ExtA ◦ Ext i is continuous.
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