
ROCKY MOUNTAIN
JOURNAL OF MATHEMATICS
Volume 30, Number 4, Winter 2000

SECOND-ORDER DIFFERENTIAL OPERATORS WITH
INTEGRAL BOUNDARY CONDITIONS AND
GENERATION OF ANALYTIC SEMIGROUPS

JOSÉ M. GALLARDO

ABSTRACT. Consider a second-order differential operator
Lu = u′′+q1(x)u′+q0(x)u with integral boundary conditions
of the form

∫ b

a

Ri(t)u(t) dt +

∫ b

a

Si(t)u
′(t) dt = 0, i = 1, 2.

We study sufficient conditions on the functions Ri and Si,
i = 1, 2, such that the operator L is the generator of an
analytic semigroup of operators on Lp(a, b). The generation
of analytic semigroups is proved by showing the estimate

‖R(λ : L)‖ ≤ M

|λ|

for the resolvent operator in a suitable sector of the complex
plane. The motivation for this work is to generalize the
results in [3], where nonseparated boundary conditions were
considered.

1. Introduction. We consider a second-order differential operator
of the form

(1.1) l(u) = u′′ + q1(x)u′ + q0(x)u, x ∈ (a, b),

where each qi(x) is a regular function with complex values. We can
associate to l(u) a variety of boundary conditions, in particular, the
nonseparated ones:

(1.2)
{
a1u(a) + b1u

′(a) + c1u(b) + d1u
′(b) = 0,

a2u(a) + b2u
′(a) + c2u(b) + d2u

′(b) = 0.
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The spectral theory of the natural operator L associated to problem
(1.1) (1.2) was initiated by Birkhoff [1] [2] and continued by many
other authors (see [3], [6] and the references therein).

In our paper [3] we proved that, for Birkhoff-regular boundary con-
ditions, the operator L is the generator of an analytic semigroup of
bounded linear operators on Lp(a, b), for 1 ≤ p ≤ ∞. Moreover, when
p �= ∞ this analytic semigroup is strongly continuous. In the present
work we will try to generalize the results in [3] to the case of integral
boundary conditions:

(1.3) Bi(u) ≡
∫ b

a

Ri(t)u(t) dt+
∫ b

a

Si(t)u′(t) dt = 0, i = 1, 2

where the functions Ri and Si are in L∞(a, b). This kind of boundary
condition generalizes the nonseparated ones, at least in a formal sense:
when Ri = aiδa + ciδb and Si = biδa + diδb (δx being the Dirac delta
function at the point x), condition (1.3) is of the form (1.2). Let Lp be
the realization of problem (1.1) (1.3) in Lp(a, b), that is, Lpu = l(u),
with domain

D(Lp) = {u ∈W 2,p(a, b) : Bi(u) = 0, i = 1, 2}.

(Here W 2,p(a, b) stands for the standard Sobolev space of order (2, p).)

As is well-known [5, Chapter 2], for proving that Lp generates an
analytic semigroup on Lp(a, b) we must show that Lp is a sectorial
operator, that is

(i) the resolvent set ρ(Lp) contains a sector

Σδ,r = {λ ∈ C : | arg(λ− r)| < δ, λ �= r}

for some π/2 < δ < π and r ∈ R; and

(ii) there exists a constant M such that

(1.4) ‖R(λ : Lp)‖ ≤ M

|λ− r| , ∀λ ∈ Σδ,r,

where R(λ : Lp) = (λI − Lp)−1 is the resolvent operator associated to
λ, and the norm is the usual for bounded linear operators on Lp(a, b).
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When the domain D(Lp) is dense in Lp(a, b), the semigroup generated
by Lp is strongly continuous [5, Proposition 2.1.4].

We briefly outline the structure of the paper. First of all, we localize
the spectrum of Lp and prove (i). Then, in order to analyze the
resolvent of Lp, for each λ ∈ Σδ,r ⊂ ρ(Lp) we express the associated
resolvent operator in integral form:

(1.5) R(λ : Lp)f = −
∫ b

a

G(·, s;λ)f(s) ds, f ∈ Lp(a, b),

where G(x, s;λ) is the Green’s function for the problem{
l(u) − λu = f in (a, b),
Bi(u) = 0, i = 1, 2.

Following the technique in [3], we should bound (1.5) both in
the spaces L1(a, b) and L∞(a, b) by means of a suitable formula for
G(x, s;λ). Then, by interpolation, we would obtain similar bounds on
Lp(a, b) for 1 ≤ p ≤ ∞. In L1(a, b) we prove bound (1.4) for a certain
class of boundary conditions that we call regular in analogy with the
Birkhoff-regular boundary conditions. Unfortunately, in L∞(a, b) we
do not arrive to bound (1.4); we give an example where it is shown
that, even for regular boundary conditions, L∞ cannot be a sectorial
operator. We could then try to bound (1.5) directly in Lp(a, b), but
we do not get adequate bounds, so we restrict ourselves to the case
p = 1. For regular boundary conditions L1 is a sectorial operator, so it
generates an analytic semigroup on L1(a, b). As the domain D(L1) is
not necessarily dense in L1(a, b), we cannot assume that this semigroup
is strongly continuous.

However, for proving (ii) it will be necessary to make some additional
regularity hypotheses on the functions Ri and Si. First we will suppose
that Ri and Si are of class C1 on [a, b], and this will allow us to obtain
bound (1.4) in L1(a, b). Then, by means of an approximation method,
we will show that it is sufficient with supposing that Ri and Si are only
continuous in [a, b].

Finally, in the Appendix, we consider a mixed problem with both
nonseparated and integral boundary conditions:

(1.6)



a0u(a) + b0u

′(a) + c0u(b) + d0u
′(b) = 0,∫ b

a

R(t)u(t) dt+
∫ b

a

S(t)u′(t) dt = 0,



1268 J.M. GALLARDO

where R and S are continuous functions. We prove that, for a certain
class of boundary conditions, the operator M1 associated to problem
(1.1) (1.6) is also the generator of an analytic semigroup on L1(a, b)
that, in general, will not be strongly continuous.

2. Characteristic determinant and Green’s function. Con-
sider the differential system

(2.1)



l(u) = u′′ + q1(x)u′ + q0(x)u in (a, b),

Bi(u) =
∫ b

a

Ri(t)u(t) dt+
∫ b

a

Si(t)u′(t) dt = 0 i = 1, 2,

where q1 ∈ C1([a, b]; C), q0 ∈ C([a, b]; C) and Ri, Si are in L∞(a, b). In
every space Lp(a, b), 1 ≤ p ≤ ∞, system (2.1) has a natural realization
given by

Lpu = l(u), D(Lp) = {u ∈W 2,p(a, b) : Bi(u) = 0, i = 1, 2}.

Take an arbitrary λ ∈ C and let u1(x) ≡ u1(x;λ) and u2(x) ≡
u2(x;λ) be two solutions of the equation l(u) = λu with boundary
conditions given, respectively, by u1(a) = 0, u′1(a) = 1 and u2(a) = 1,
u′2(a) = 0. We define the characteristic determinant ∆(λ) of system
(2.1) to be

(2.2) ∆(λ) =
∣∣∣∣B1(u1) B1(u2)
B2(u1) B2(u2)

∣∣∣∣ .
It is easy to prove that the spectrum of Lp can be characterized as

σ(Lp) = {λ ∈ C : ∆(λ) = 0}.
As we are interested in operators for which condition (i) holds, we
will suppose that ∆(λ) is not identically zero. For construction, the
characteristic determinant is an entire function of λ, so the spectrum
of Lp is as much a denumerable set with no finite accumulation points.

Let λ ∈ C be such that ∆(λ) �= 0, and define the function

(2.3) N(x, s;λ) =

∣∣∣∣∣∣
u1(x) u2(x) g(x, s;λ)
B1(u1) B1(u2) B1(g)x

B2(u1) B2(u2) B2(g)x

∣∣∣∣∣∣
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where x, s ∈ [a, b] and the symbol Bi(g)x means that the operation Bi

is made over the function g(x, s;λ) with respect to the variable x. Here
g(x, s;λ) is defined as follows

(2.4) g(x, s;λ) = ± 1
2
u1(x)u2(s) − u1(s)u2(x)
u′1(s)u2(s) − u1(s)u′2(s)

,

where it takes the plus sign for x > s and the minus sign for x < s. It
is not difficult to prove that

(2.5) G(x, s;λ) =
N(x, s;λ)

∆(λ)

is Green’s function for the problem

{
l(u) − λu = f in (a, b),
Bi(u) = 0 i = 1, 2.

This means that the resolvent operator associated to λ can be expressed
as a Hilbert-Schmidt operator:

(2.6) R(λ : Lp)f = −
∫ b

a

G(·, s;λ)f(s) ds, f ∈ Lp(a, b).

Formulae (2.2) (2.6) are similar to those in [3], [2], [6], and they will
be the key for obtaining bound (1.4).

3. Some simplifications on the original problem. We are
going to introduce some modifications on the original problem in order
to simplify the calculations to be made eventually.

By means of a linear change of variables, we can consider problem
(2.1) on the interval (0, 1) instead of (a, b), so we begin with the system

(3.1)



l̃(v) = v′′ + q̃1(x)v′ + q̃0(x)v in (0, 1),

B̃i(v) =
∫ 1

0

R̃i(t)v(t) dt+
∫ 1

0

S̃i(t)v′(t) dt = 0, i = 1, 2

that has a natural realization L̃p.
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The next step is to eliminate the term q̃1v
′ in l̃(v), as it is made in

[6, Chapter II]. Consider the C2-diffeomorphism φ given by

φ(t) = exp
(
− 1

2

∫ t

0

q̃1(s) ds
)
, t ∈ [0, 1],

and let Mφ : Lp(0, 1) → Lp(0, 1) be multiplication by φ:

Mφu = φu, u ∈ Lp(0, 1).

We have that Mφ is a bounded linear operator with bounded inverse
M−1

φ = Mφ−1 , andMφ also mapsW 2,p(0, 1) one-to-one ontoW 2,p(0, 1).

For v ∈W 2,p(0, 1), define u =M−1
φ v, so l̃(v) = φl(u), where l(u) =

u′′ +q(x)u with q = q̃0− q̃21/4− q̃′1/2. Then system (3.1) can be written
as

(3.2)



l(u) = u′′ + q(x)u in (0, 1),

Bi(u) =
∫ 1

0

Ri(t)u(t) dt+
∫ 1

0

Si(t)u′(t) dt = 0, i = 1, 2

where Ri = φ(R̃i − (S̃iq̃1)/2) and Si = φS̃i. If Lp is the realization of
system (3.2), then the following relation holds

L̃p = MφLpM
−1
φ .

From this equality it is easy to see that the resolvent sets of Lp and L̃p

are equal, and

R(λ : L̃p) = MφR(λ : Lp)M−1
φ , ∀λ ∈ ρ(Lp) = ρ(L̃ρ).

As Mφ and M−1
φ are bounded operators, it is then sufficient to prove

bound (1.4) for Lp instead of L̃p.

Finally we write the operator Lp as

Lp = Tp +Qp,

where Tpu = u′′ and Qpu = qu for every u ∈ D(Lp) = D(Tp) = D(Qp).
The relation between the resolvents of Lp and Tp is given in the
following result [3, Proposition 4.2].
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Proposition 3.1. If λ ∈ ρ(Tp) is such that ‖R(λ : Tp)‖ ≤ ‖Qp‖−1/2,
then λ ∈ ρ(Lp) and ‖R(λ : Lp)‖ ≤ 2‖R(λ : Tp)‖.

If we prove bound (1.4) for the operator Tp, Proposition 3.1 allows us
to deduce a similar bound for Lp, with the advantage that for Tp the
calculations to be made in the following sections will be much simpler.

4. Bounds on the resolvent of the operator Tp. Due to the
considerations above, we center our attention on the operator Tpu = u′′,
D(Tp) = {u ∈W 2,p(0, 1) : Bi(u) = 0, i = 1, 2}, where

Bi(u) =
∫ 1

0

Ri(t)u(t) dt+
∫ 1

0

Si(t)u′(t) dt, i = 1, 2.

Given an arbitrary δ ∈ (π/2, π), we consider the sector

Σδ = {λ ∈ C : |arg (λ)| < δ, λ �= 0}.

For λ ∈ Σδ, define ρ as the square root of λ with positive real part (thus
ρ ∈ Σδ/2). In Section 2 we constructed the characteristic determinant
∆(λ) and the Green’s function G(x, s;λ) for a general problem from a
specific fundamental system of solutions of l(u) = λu. For λ �= 0, we can
consider a simpler fundamental system of solutions of u′′ = λu = ρ2u,
that it is given by u1(t) = e−ρt and u2(t) = eρt. Redefining (2.2) (2.5)
with this new fundamental system, it is straightforward to prove that
formula (2.6) remains true for the operator Tp. In particular, we have
that σ(Tp) \ {0} = {λ ∈ C : ∆(λ) = 0}. As 0 /∈ Σδ, we will not take
care of the value λ = 0.

Remark 4.1. A fundamental system for λ = 0 is given by u1(t) = 1,
u2(t) = t. We then have that λ = 0 is an eigenvalue of Tp if and only if

∫ 1

0

(tR1(t) + S1(t)) dt
∫ 1

0

R2(t) dt

=
∫ 1

0

R1(t) dt
∫ 1

0

(tR2(t) + S2(t)) dt.
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In the following we are going to deduce adequate formulae for ∆(λ)
and G(x, s;λ). First of all, for i, j = 1, 2, we have

Bi(uj) =
∫ 1

0

Ri(t)e(−1)jρt dt+ (−1)jρ

∫ 1

0

Si(t)e(−1)jρt dt,

so we obtain from (2.2):

(4.1)

∆(λ) =
( ∫ 1

0

(R1(t)−ρS1(t))e−ρt dt

)( ∫ 1

0

(R2(t)+ρS2(t))eρt dt

)

−
(∫ 1

0

(R1(t)+ρS1(t))eρt dt

)(∫ 1

0

(R2(t)−ρS2(t))e−ρt dt

)
.

Formula (2.4) has the form:

g(x, s;λ) =




1
4ρ

(eρ(x−s) − eρ(s−x)) if x > s,

1
4ρ

(eρ(s−x) − eρ(x−s)) if x < s.

Thus we have

Bi(g)x

=
eρs

4ρ

( ∫ s

0

(Ri(t)−ρ(Si(t))e−ρt dt+
∫ 1

s

(−Ri(t)+ρSi(t))e−ρt dt

)

+
e−ρs

4ρ

(
−

∫ s

0

(Ri(t)+ρ(Si(t))eρt dt+
∫ 1

s

(Ri(t)+ρSi(t))eρt dt

)
.

After a long calculation, formula (2.3) can be written as

N(x, s;λ)

= ϕ(x, s;λ) +
eρ(x+s)

2ρ

[( ∫ s

0

(R1(t)−ρS1(t))e−ρt dt

)

·
( ∫ 1

s

(R2(t)−ρS2(t))e−ρt dt

)
−

( ∫ s

0

(R2(t)−ρS2(t))e−ρt dt

)

·
( ∫ 1

s

(R1(t)−ρS1(t))e−ρt dt

)]
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+
e−ρ(x+s)

2ρ

[( ∫ s

0

(R1(t)+ρS1(t))eρt dt

)

·
( ∫ 1

s

(R2(t)+ρS2(t))eρt dt

)
−

( ∫ s

0

(R2(t)+ρS2(t))eρt dt

)

·
( ∫ 1

s

(R1(t)+ρS1(t))eρt dt

)]
.

The function ϕ(x, s;λ) is given by

(4.2) ϕ(x, s;λ) =
{
ϕ1(x, s;λ) if x > s,
ϕ2(x, s;λ) if x < s,

where

ϕ1(x, s;λ)

=
eρ(x−s)

2ρ

[( ∫ 1

0

(R1(t)−ρS1(t))e−ρt dt

)

·
( ∫ s

0

(R2(t)+ρS2(t))eρt dt

)
−

(∫ s

0

(R1(t)+ρS1(t))eρt dt

)

·
( ∫ 1

0

(R2(t)−ρS2(t))e−ρt dt

)]

+
eρ(s−x)

2ρ

[( ∫ 1

0

(R1(t)+ρS1(t))eρt dt

)

·
( ∫ s

0

(R2(t)−ρS2(t)) − e−ρt dt

)
−

( ∫ s

0

(R1(t)−ρS1(t))e−ρt dt

)

·
( ∫ 1

0

(R2(t) + ρS2(t))eρt dt

)]

and

ϕ2(x, s;λ)

=
eρ(x−s)

2ρ

[( ∫ 1

s

(R1(t)+ρS1(t))eρt dt

)
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·
( ∫ 1

0

(R2(t)−ρS2(t))e−ρt dt

)
−

( ∫ 1

0

(R1(t)−ρS1(t))e−ρt dt

)

·
( ∫ 1

s

(R2(t)+ρS2(t))eρt dt

)]

+
eρ(s−x)

2ρ

[( ∫ 1

s

(R1(t)−ρS1(t))e−ρt dt

)

·
( ∫ 1

0

(R2(t)+ρS2(t))eρt dt

)
−

( ∫ 1

0

(R1(t)+ρS1(t))eρt dt

)

·
( ∫ 1

s

(R2(t)−ρS2(t))e−ρt dt

)]
.

We have that |Ri(t)± ρSi(t)| ≤ ‖Ri‖∞ + |ρ|‖Si‖∞, ∀ t ∈ [0, 1], where
‖ · ‖∞ is the supremum norm . Now we have

|N(x, s;λ)| ≤ |ϕ(x, s;λ)| +
e(x+s)Re (ρ)

|ρ|
· (‖R1‖∞ + |ρ|‖S1‖∞)(‖R2‖∞ + |ρ|‖S2‖∞)

·
( ∫ s

0

e−tRe (ρ) dt

)( ∫ 1

s

e−tRe (ρ) dt

)

+
e−(x+s)Re (ρ)

|ρ| (‖R1‖∞ + |ρ|‖S1‖∞)(‖R2‖∞ + |ρ|‖S2‖∞)

·
( ∫ s

0

etRe (ρ) dt

)( ∫ 1

s

etRe (ρ) dt

)
.

Evaluating the integrals, we obtain

|N(x, s;λ)| ≤ |ϕ(x, s;λ)|

+
exRe (ρ)

|ρ|(Re (ρ))2
(‖R1‖∞ + |ρ|‖S1‖∞)(‖R2‖∞ + |ρ|‖S2‖∞)

· (esRe (ρ) − 1)(e−sRe (ρ) − e−Re (ρ))

+
e−xRe (ρ)

|ρ|(Re (ρ))2
(‖R1‖∞ + |ρ|‖S1‖∞)(‖R2‖∞ + |ρ|‖S2‖∞)

· (1 − e−sRe (ρ))(eRe (ρ) − esRe (ρ)),
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where

|ϕ1(x, s;λ)|

≤ exRe (ρ)

|ρ|(Re (ρ))2
(‖R1‖∞ + |ρ|‖S1‖∞)(‖R2‖∞ + |ρ|‖S2‖∞)

· (1 − e−Re (ρ))(1 − e−sRe (ρ))

+
e−xRe (ρ)

|ρ|(Re (ρ))2
(‖R1‖∞ + |ρ|‖S1‖∞)(‖R2‖∞ + |ρ|‖S2‖∞)

· (eRe (ρ) − 1)(esRe (ρ) − 1)

and

|ϕ2(x, s;λ)|

≤ exRe (ρ)

|ρ|(Re (ρ))2
(‖R1‖∞ + |ρ|‖S1‖∞)(‖R2‖∞ + |ρ|‖S2‖∞)

· (1 − e−Re (ρ))(e(1−s)Re (ρ) − 1)

+
e−xRe (ρ)

|ρ|(Re (ρ))2
(‖R1‖∞ + |ρ|‖S1‖∞)(‖R2‖∞ + |ρ|‖S2‖∞)

· (eRe (ρ) − 1)(1 − e(s−1)Re (ρ)).

Bounds in L1(0, 1). Suppose now that p = 1. From (2.6) we have,
for every f ∈ L1(0, 1),

(4.3) ‖R(λ : T1)f‖L1(0,1) ≤
(

sup
0≤s≤1

∫ 1

0

|G(x, s;λ)| dx
)
‖f‖L1(0,1),

so we need to bound

sup
0≤s≤1

∫ 1

0

|G(x, s;λ)| dx =
1

|∆(λ)| sup
0≤s≤1

∫ 1

0

|N(x, s;λ)| dx.
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First of all, we have from the inequalities previously calculated:

∫ 1

0

|N(x, s;λ)| dx ≤
∫ 1

0

|ϕ(x, s;λ)| dx+
eRe (ρ)−1

|ρ|(Re (ρ))3

· (‖R1‖∞ + |ρ|‖S1‖∞)(‖R2‖∞ + |ρ|‖S2‖∞)

· (esRe (ρ) − 1)(e−sRe (ρ) − e−Re (ρ))

+
1 − e−Re (ρ)

|ρ|(Re (ρ))3

· (‖R1‖∞ + |ρ|‖S1‖∞)(‖R2‖∞ + |ρ|‖S2‖∞)

· (1 − e−sRe (ρ))(eRe (ρ) − esRe (ρ)),

so

∫ 1

0

|N(x, s;λ)| dx ≤
∫ 1

0

|ϕ(x, s;λ)| dx+
2

|ρ|(Re (ρ))3

· (‖R1‖∞ + |ρ|‖S1‖∞)(‖R2‖∞ + |ρ|‖S2‖∞)

· (eRe (ρ) − e−Re (ρ) − esRe (ρ)

+ e−sRe (ρ) − e(1−s)Re (ρ) + e(s−1)Re (ρ)).

We use (4.2) to write
∫ 1

0
|ϕ(x, s;λ)| dx as follows

∫ 1

0

|ϕ(x, s;λ)| dx =
∫ s

0

|ϕ2(x, s;λ)| dx+
∫ 1

s

|ϕ1(x, s;λ)| dx.

From the inequalities obtained for |ϕi(x, s;λ)|, we have

∫ s

0

|ϕ2(x, s;λ)| dx

≤ 2
|ρ|(Re (ρ))3

(‖R1‖∞ + |ρ|‖S1‖∞)(‖R2‖∞ + |ρ|‖S2‖∞)

· (eRe (ρ) − e−Re (ρ) − esRe (ρ) + e−sRe (ρ)

− e(1−s)Re (ρ) + e(s−1)Re (ρ))
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and ∫ 1

s

|ϕ1(x, s;λ)| dx

≤ 2
|ρ|(Re (ρ))3

(‖R1‖∞ + |ρ|‖S1‖∞)(‖R2‖∞ + |ρ|‖S2‖∞)

· (eRe (ρ) − e−Re (ρ) − esRe (ρ) + e−sRe (ρ)

− e(1−s)Re (ρ) + e(s−1)Re (ρ)).

Adding up the formulae obtained, we get
∫ 1

0

|N(x, s;λ)| dx

≤ 6
|ρ|(Re (ρ))3

(‖R1‖∞ + |ρ|‖S1‖∞)(‖R2‖∞ + |ρ|‖S2‖∞)

· (eRe (ρ) − e−Re (ρ) − esRe (ρ) + e−sRe (ρ)

− e(1−s)Re (ρ) + e(s−1)Re (ρ)).

As Re (ρ) > 0, the part depending on s in the right member above is
negative, so

sup
0≤s≤1

∫ 1

0

|N(x, s;λ)| dx

≤ 6eRe (ρ)

|ρ|(Re (ρ))3
(‖R1‖∞ + |ρ|‖S1‖∞)(‖R2‖∞ + |ρ|‖S2‖∞).

As Re (ρ) ≥ |ρ| cos(δ/2), we have that

sup
0≤s≤1

∫ 1

0

|N(x, s;λ)| dx

≤ 6eRe (ρ)

|ρ|4 cos3(δ/2)
(‖R1‖∞ + |ρ|‖S1‖∞)(‖R2‖∞ + |ρ|‖S2‖∞).

From (2.5) and (4.3), we deduce the following inequality

‖R(λ : T1)‖ ≤ 6
cos3(δ/2)

eRe (ρ)

|ρ|4|∆(λ)|
· (‖R1‖∞ + |ρ|‖S1‖∞)(‖R2‖∞ + |ρ|‖S2‖∞),
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that can be written as

(4.4) ‖R(λ : T1)‖ ≤ H(ρ)
|ρ|2 =

H(ρ)
|λ| ,

where
(4.5)

H(ρ) =
6

cos3(δ/2)
eRe (ρ)

|∆(ρ2)|
(‖R1‖∞

|ρ| + ‖S1‖∞
)(‖R2‖∞

|ρ| + ‖S2‖∞
)
.

The next step is to determine the cases for which the function H(ρ)
remains bounded as |ρ| → ∞ with | arg(ρ)| < δ/2. It will then be
necessary to bound |∆(λ)| appropriately. However, formula (4.1) is not
useful for this purpose, so we are going to make a regularity assumption
on the functions Ri and Si that leads to an improved formula for ∆(λ).
Suppose that Ri, Si ∈ C1([0, 1]; C), so we can integrate by parts in
(4.1) to get

(4.6)

∆(ρ2) = eρ
[
S2(0)S1(1) − S1(0)S2(1) +

1
ρ2

(R1(0)R2(1)

−R2(0)R1(1)) +
Φ(ρ)
ρ2

+
1
ρ

(R1(0)S2(1)

−R2(0)S1(1) − R2(1)S1(0) +R1(1)S2(0))
]
,

where

Φ(ρ) = (R2(0) − ρS2(0))

·
∫ 1

0

(R′
1(t) + ρS′

1(t))eρ(t−1) dt− (R1(0) − ρS1(0))

·
∫ 1

0

(R′
2(t) + ρS′

2(t))eρ(t−1) dt+ (R1(1) − ρS1(1))

·
∫ 1

0

(R′
2(t) + ρS′

2(t))eρ(t−2) dt− (R2(1) − ρS2(1))

·
∫ 1

0

(R′
1(t) + ρS′

1(t))eρ(t−2) dt+ (R2(1) + ρS2(1))

·
∫ 1

0

(R′
1(t) − ρS′

1(t))e−ρt dt− (R1(1) + ρS2(1))
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·
∫ 1

0

(R′
2(t) − ρS′

2(t))e−ρt dt+ (R1(0) + ρS1(0))

·
∫ 1

0

(R′
2(t) − ρS′

2(t))e−ρ(t+1) dt− (R2(0) + ρS2(0))

·
∫ 1

0

(R′
1(t) − ρS′

1(t))e−ρ(t+1) dt

+
( ∫ 1

0

(R′
2(t)−ρS′

2(t))e−ρt dt

)( ∫ 1

0

(R′
1(t)+ρS′

1(t))eρ(t−1) dt

)

−
( ∫ 1

0

(R′
1(t)−ρS′

1(t))e−ρt dt

)( ∫ 1

0

(R′
2(t)+ρS′

2(t))eρ(t−1) dt

)

+ 2ρe−ρ(R2(0)S1(0) −R1(0)S2(0) +R2(1)S1(1) −R1(1)S2(1))

+ [(R1(1) − ρS1(1))(R2(0) + ρS2(0))

− (R1(0) + ρS1(0))(R2(1) − ρS2(1))]e−2ρ.

After a straightforward calculation we obtain the following inequality,
valid for ρ ∈ Σδ/2 with Re (ρ) sufficiently large:

|Φ(ρ)| ≤ 1
cos(δ/2)

·
[( |R2(0)|+|R2(1)|

|ρ| + |S2(0)| + |S2(1)|
)

(‖R′
1‖∞+ |ρ|‖S′

1‖∞)

+
( |R1(0)|+|R1(1)|

|ρ| +|S1(0)|+|S1(1)|
)

(‖R′
2‖∞+|ρ|‖S′

2‖∞)
]

(2.7) + 2|ρ||R2(0)S1(0)−R1(0)S2(0)+R2(1)S1(1)−R1(1)S2(1)|e−Re (ρ)

+
2

(Re (ρ))2
(‖R′

1‖∞ + |ρ|‖S′
1‖∞)(‖R′

2‖∞ + |ρ|‖S′
2‖∞)

+ 2(‖R1‖∞ + |ρ|‖S1‖∞)(‖R2‖∞ + |ρ|‖S2‖∞)e−2Re (ρ),

where we have used that 1 − e−2Re (ρ) < 1 and Re (ρ) > |ρ| cos(δ/2).

There are now several cases to analyze, depending on the functions
Ri and Si.

Case A. Suppose ‖S1‖∞ · ‖S2‖∞ �= 0, that is, the functions S1 and
S2 are not identically zero. We must consider two subcases, depending
on the coefficient S2(0)S1(1) − S1(0)S2(1) in (4.6).
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Case A.1. S2(0)S1(1) − S1(0)S2(1) �= 0. From (4.6) we have for |ρ|
sufficiently large

|∆(ρ2)| ≥ eRe (ρ)

[
|S2(0)S1(1) − S1(0)S2(1)|

− 1
|ρ|2 |R1(0)R2(1) −R2(0)R1(1)|

− 1
|ρ| |R1(0)S2(1) −R2(0)S1(1)

−R2(1)S1(0) +R1(1)S2(0)| − |Φ(ρ)|
|ρ|2

]
.

Take Re (ρ) > r0, where r0 > 0 is a constant to be chosen later. Then
we can write

|∆(ρ2)| ≥ eRe (ρ)

[
|S2(0)S1(1)−S1(0)S2(1)|

− 1
r20

|R1(0)R2(1) −R2(0)R1(1)|

− 1
r0

|R1(0)S2(1) −R2(0)S1(1)

−R2(1)S1(0) +R1(1)S2(0)| − |Φ(ρ)|
r0|ρ|

]
.

From (4.7), we have

|Φ(ρ)|
|ρ|
≤ 1

cos(δ/2)

[( |R2(0)|+|R2(1)|
r0

+ |S2(0)| + |S2(1)|
)

·
(‖R′

1‖∞
r0

+ ‖S′
1‖∞

)
+

( |R1(0)|+|R1(1)|
r0

+ |S1(0)| + |S1(1)|
)

·
(‖R′

2‖∞
r0

+ ‖S′
2‖∞

)]
+

2
r0 cos(δ/2)

·
(‖R′

1‖∞
r0

+ ‖S′
1‖∞

)(‖R′
2‖∞
r0

+ ‖S′
2‖∞

)

+
1

cos(δ/2)

(‖R1‖∞
r0

+ ‖S1‖∞
)(‖R2‖∞

r0
+ ‖S2‖∞

)

+ 2|R2(0)S1(0) −R1(0)S2(0) +R2(1)S1(1) −R1(1)S2(1)|
≡ C0(r0),
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where we have used that e−Re (ρ) < 1 and |ρ|e−2Re (ρ) < (2 cos(δ/2))−1

for Re (ρ) > 0 with | arg(ρ)| < δ/2. We then have

|∆(ρ2)| ≥ eRe (ρ)

[
|S2(0)S1(1) − S1(0)S2(1)|

− 1
r20

|R1(0)R2(1) −R2(0)R1(1)|

− 1
r0

|R1(0)S2(1) −R2(0)S1(1)

−R2(1)S1(0) +R1(1)S2(0)| − C0(r0)
r0

]
.

We can now choose r0 > 0 such that

1
r0

|R1(0)S2(1) −R2(0)S1(1) −R2(1)S1(0) +R1(1)S2(0)|

+
1
r20

|R1(0)R2(1) −R1(1)R2(0)| +
C0(r0)
r0

<
|S2(0)S1(1)−S1(0)S2(1)|

2
.

Then, for Re (ρ) > r0, we have

|∆(ρ2)| ≥ |S2(0)S1(1) − S1(0)S2(1)|
2

eRe (ρ).

From (4.5) we deduce the following bound, valid for every Re (ρ) > r0
with | arg(ρ)| < δ/2

H(ρ) ≤ 12
cos3(δ/2)|S2(0)S1(1) − S1(0)S2(1)|
·
(‖R1‖∞

|ρ| + ‖S1‖∞
)(‖R2‖∞

|ρ| + ‖S2‖∞
)

≤ 12
cos3(δ/2)|S2(0)S1(1) − S1(0)S2(1)|
·
(‖R1‖∞

r0
+ ‖S1‖∞

)(‖R2‖∞
r0

+ ‖S2‖∞
)
.

This proves that H(ρ) remains bounded as |ρ| → ∞ in the sector Σδ/2.
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Case A.2. Suppose that S2(0)S1(1)−S1(0)S2(1) = 0. Now H(ρ) will
not be bounded in any case. For proving this, note that, from (4.6),
we have

|∆(ρ2)| ≤ eRe (ρ)

|ρ|
[
|R1(0)S2(1)−R2(0)S1(1)−R2(1)S1(0)+R1(1)S2(0)|

+
|R1(0)R2(1) −R1(1)R2(0)|

|ρ| +
|Φ(ρ)|
|ρ|

]
.

In Case A.1 we proved that

|Φ(ρ)|
|ρ| ≤ C0(r0)

for every Re (ρ) > r0, so

|∆(ρ2)| ≤ eRe (ρ)

|ρ|
[
|R1(0)S2(1)−R2(0)S1(1)−R2(1)S1(0)+R1(1)S2(0)|

+
|R1(0)R2(1) −R1(1)R2(0)|

r0
+
C0(r0)
r0

]

≡ C1
eRe (ρ)

|ρ| ,

where C1 is a constant. From (4.5) we obtain

H(ρ) ≥ 6
C1 cos3(δ/2)

(‖R1‖∞ + |ρ|‖S1‖∞)
(‖R2‖∞

|ρ| + ‖S2‖∞
)
,

where the second member goes to infinity as |ρ| → ∞.

The remaining cases are treated as before, so we simply state the
results.

Case B. Suppose that ‖S1‖∞ = 0 and ‖S2‖∞ �= 0. If R1(0)S2(1) +
R1(1)S2(0) �= 0, we have the following bound, valid for Re (ρ) > r0
with | arg(ρ)| < δ/2

H(ρ) ≤ 12‖R1‖∞
cos3(δ/2)|R1(0)S2(1) +R1(1)S2(0)|

(‖R2‖∞
r0

+ ‖S2‖∞
)
.
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If R1(0)S2(1) +R1(1)S2(0) = 0, then H(ρ) is not bounded.

Case C. Suppose that ‖S1‖∞ �= 0 and ‖S2‖∞ = 0. Then H(ρ)
remains bounded if and only if R2(0)S1(1) +R2(1)S1(0) �= 0.

Case D. Now ‖S1‖∞ = ‖S2‖∞ = 0, that is, the functions S1 and
S2 are identically zero (then ‖R1‖∞ · ‖R2‖∞ �= 0). If R1(0)R2(1) −
R1(1)R2(0) �= 0, we have

H(ρ) ≤ 12‖R1‖∞‖R2‖∞
cos3(δ/2)|R1(0)R2(1) −R2(0)R1(1)| ,

which proves that H(ρ) is bounded. If R1(0)R2(1) − R1(1)R2(0) = 0,
H(ρ) will not be bounded.

The preceding study of cases for H(ρ) motivates the following def-
inition, in which we only impose to the coefficients of the boundary
conditions to be continuous.

Definition 4.1. Consider the boundary conditions

Bi(u) ≡
∫ 1

0

Ri(t)u(t) dt+
∫ 1

0

Si(t)u′(t) dt = 0, i = 1, 2

where Ri and Si are in C([0, 1]; C). We say that {B1, B2} are regular
if one of the following conditions holds:

• S1(0)S2(1) − S1(1)S2(0) �= 0;

• S1 ≡ 0 and R1(0)S2(1) +R1(1)S2(0) �= 0;

• S2 ≡ 0 and R2(0)S1(1) +R2(1)S1(0) �= 0;

• S1 ≡ 0, S2 ≡ 0 and R1(0)R2(1) −R1(1)R2(0) �= 0.

Example 4.1. Consider the particular case in which Ri = S′
i for

i = 1, 2. Then the boundary conditions {B1, B2} can be written as
nonseparated ones


B1(u) ≡

∫ 1

0

(S1(t)u(t))′ dt = −S1(0)u(0) + S1(1)u(1) = 0,

B2(u) ≡
∫ 1

0

(S2(t)u(t))′ dt = −S2(0)u(0) + S2(1)u(1) = 0.
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It is a simple exercise to see that the integral conditions {B1, B2}
are regular if and only if they are Birkhoff-regular (as nonseparated
boundary conditions).

For regular boundary conditions with Ri, Si ∈ C1([0, 1]; C), we have
proved the existence of two positive constants r0 and M0 such that if
|ρ| > r0 and | arg(ρ)| < δ/2 then H(ρ) ≤ M0. This means that λ = ρ2

belongs to ρ(T1) and

‖R(λ : T1)‖ ≤ M0

|λ| .

Define r = r20/ sin(δ) and M = M0(1 + 1/ sin(δ)). Then the sector Σδ,r

is contained in ρ(T1) and

‖R(λ : T1)‖ ≤ M

|λ− r| , ∀λ ∈ Σδ,r.

This proves the following result.

Theorem 4.1. Let {B1, B2} be regular boundary conditions, and
suppose that Ri, Si ∈ C1([0, 1]; C), i = 1, 2. Let T1 be the differential
operator in L1(0, 1) defined as T1u = u′′, D(T1) = {u ∈ W 2,1(0, 1) :
B1(u) = B2(u) = 0}. Then T1 is the generator of an analytic semigroup
{etT1}t≥0 of bounded linear operators on L1(0, 1) that, in general, will
not be strongly continuous.

Remark 4.2. In Section 5 we will see that the condition Ri, Si ∈
C1([0, 1]; C) in Theorem 4.1 can be dropped.

Bounds in L∞(0, 1). As we commented in the introduction, we would
like to obtain bound (1.4) for the L∞-realization T∞ in order to use
interpolation for proving (ii) in every space Lp(0, 1), 1 ≤ p ≤ ∞, as
it was made in [3] for the case of nonseparated boundary conditions.
However, even for regular boundary conditions, we cannot obtain the
desired kind of bounds in L∞(0, 1) as the following example shows.
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Example 4.2. Consider the boundary conditions



B1(u) ≡

∫ 1

0

u′(t) dt = 0,

B2(u) ≡
∫ 1

0

etu(t) dt = 0.

We have that R1 ≡ 0, S1 ≡ 1, R2(t) = et and S2 ≡ 0. As
R2(0)S1(1) + R2(1)S1(0) = 1 + e �= 0, the conditions are regular.
Note also that Ri and Si belong to C1([0, 1]; C), so we have stronger
conditions on the coefficients than mere regularity.

Fix M > 0 and take f0 ≡ 1. If λ = ρ2 ∈ Σδ,r, for r sufficiently large
we have

‖R(λ : T∞)‖ ≥ ‖R(λ : T∞)f0‖L∞(0,1)

= sup
0≤x≤1

|R(λ : T∞)f0(x)|

= sup
0≤x≤1

∣∣∣∣
∫ 1

0

G(x, s;λ) ds
∣∣∣∣

= sup
0≤x≤1

∣∣∣∣ 1
∆(λ)

∫ 1

0

N(x, s;λ) ds
∣∣∣∣.

The characteristic determinant is, in this case,

∆(ρ2) =
e−ρ − 1
ρ2 − 1

[ρ(e+1)(eρ−1) − (e−1)(eρ+1)].

After a long calculation, we obtain

∫ 1

0

N(x, s;λ) ds = (e− 1)
eρ − 1
ρ(ρ2 − 1)

[−ρ(1+e−ρ) + (1−e−ρ)],

so

sup
0≤x≤1

∣∣∣∣ 1
∆(ρ2)

∫ 1

0

N(x, s;λ) ds
∣∣∣∣

≥
∣∣∣∣ (e−1)(eρ − 1)
ρ(e−ρ−1)

(1 − e−ρ) − ρ(1 + e−ρ)
ρ(1+e)(eρ−1) − (e−1)(eρ+1)

∣∣∣∣.
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The second member can be made greater than M/|ρ|2, taking |ρ|
sufficiently large.

We have seen that for every M > 0 we can take r > 0 such that

‖R(λ : T∞)‖ > M

|λ| >
M

|λ− r| , ∀λ ∈ Σδ,r.

This proves that the operator T∞ cannot be sectorial.

Remark 4.3. We could also try to directly bound Tp in the Lp(0, 1)
norm, but we do not arrive to appropriate bounds.

5. Approximation. We are going to extend Theorem 4.1 to the
case of regular boundary conditions, that is, we will drop the condition
Ri, Si ∈ C1([0, 1]; C), i = 1, 2. We will need the following result [4,
Chapter 9].

Proposition 5.1. Let {An}n∈N be a family of linear operators on
the Banach space X. Suppose that constants r ∈ R, M ≥ 0, and
δ ∈ (π/2, π) exist such that

(∗)



ρ(An) ⊃ Σδ,r = {λ ∈ C : λ �= r, | arg(λ− r)| < δ};

‖R(λ : An)‖ ≤ M

|λ− r| , ∀λ ∈ Σδ,r.

If there is a λ0 ∈ Σδ,r such that R(λ0 : An)f converges in X as n→ ∞
for every f ∈ X, then a unique operator A exists on X such that
Σδ,r ⊂ ρ(A) and R(λ : An) converges to R(λ : A) strongly in X as
n→ ∞ for every λ ∈ Σδ,r. As a consequence, A satisfies condition (∗),
so it is a sectorial operator on X.

Suppose that Ri, Si ∈ C([0, 1]; C), i = 1, 2, and that the boundary
conditions {B1, B2} are regular. For every i = 1, 2, we can build two
sequences of functions, {Rn

i }n∈N and {Sn
i }n∈N such that

1. Rn
i , S

n
i ∈ C1([0, 1]; C) for every n ∈ N.

2. The sequences {Rn
i }, {Sn

i }, {(Rn
i )′} and {(Sn

i )′} are uniformly
bounded.
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3. limn→∞ ‖Rn
i −Ri‖∞ = 0 and limn→∞ ‖Sn

i − Si‖∞ = 0.

4. Rn
i (0) = Ri(0), Rn

i (1) = Ri(1), Sn
i (0) = Si(0) and Sn

i (1) = S(1)
for each n ∈ N. If Si ≡ 0, we take Sn

i ≡ 0 for every n ∈ N.

For each n ∈ N, define the operator Anu = u′′ with domain

D(An) = {u ∈W 2,1(0, 1) : Bn
1 (u) = Bn

2 (u) = 0},

where

Bn
i (u) =

∫ 1

0

Rn
i (t)u(t) dt+

∫ 1

0

Sn
i (t)u′(t) dt = 0, i = 1, 2.

Note that condition 4 implies that the boundary conditions {Bn
1 , B

n
2 }

are regular, and they satisfy the same regularity condition as conditions
{B1, B2}. As the coefficients Rn

i , S
n
i are of class 1, we have that every

operator An is sectorial. Moreover, it is easily seen from 1 4 and the
analysis of cases made in Section 4 that we can choose the constants
δ ∈ (π/2, π), M ≥ 0 and r ∈ R in a uniform way, so we have

‖R(λ : An)‖ ≤ M

|λ− r| , ∀λ ∈ Σδ,r ⊂ ρ(An), ∀n ∈ N.

This shows that condition (∗) in Proposition 5.1 holds for the operator
{An} with X = L1(0, 1).

Let ∆(λ) and ∆n(λ) be the characteristic determinants associated to
the operators T1 and An, respectively. As we stated in Section 2, the
set of zeros of ∆(λ) is as much a denumerable set, so we can choose
λ0 ∈ Σδ,r such that ∆(λ0) �= 0. As λ0 ∈ ρ(An), we also have that
∆n(λ0) �= 0.

In order to apply Proposition 5.1, we are going to see that R(λ0 :
An)f converges to R(λ0 : T1)f in L1(0, 1) for every f ∈ L1(0, 1). We
begin with the following result

Lemma 5.2. The numerical sequence {∆n(λ0)}n∈N converges to
∆(λ0).
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Proof. Let {u1, u2} be a fundamental system of solutions for the
differential equation u′′ = λ0u. For i, j = 1, 2, we can write

Bn
i (uj) −Bi(uj) =

∫ 1

0

[Rn
i (t) −Ri(t)]uj(t) dt

+
∫ 1

0

[Sn
i (t) − Si(t)]u′j(t) dt,

so

|Bn
i (uj) −Bi(uj)|

≤ ‖Rn
i −Ri‖∞‖uj‖L1(0,1) + ‖Sn

i −Si‖∞‖u′j‖L1(0,1).

Condition 3 implies that the right member tends to zero as n goes
to infinity, so limn→∞Bn

i (uj) = Bi(uj). From (2.2), we deduce the
desired result.

Now take f ∈ L1(0, 1). If G(x, s;λ0) and Gn(x, s;λ0) are, respec-
tively, the Green’s functions associated to the operators T1 and An, we
have that

‖R(λ0 : An)f −R(λ0 : T1)f‖L1(0,1)

≤ ‖f‖L1(0,1) sup
0≤s≤1

∫ 1

0

|Gn(x, s;λ0)−G(x, s;λ0)| dx.

As we did in Lemma 5.2, it is easily seen from (2.3) (2.5) that the
second member in the above inequality goes to zero as n → ∞. This
proves the convergence of R(λ0 : An)f to R(λ0 : T1)f in L1(0, 1) for
every f ∈ L1(0, 1).

We can now apply Proposition 5.1 for obtaining a certain operator
A that, in particular, verifies conditions (∗) so it is sectorial. From
uniqueness, A = T1.

We have the following result.

Theorem 5.3. Let {B1, B2} be regular boundary conditions, and let
T1 be the differential operator T1 : D(L1) ⊂ L1(0, 1) → L1(0, 1) defined
as

T1u = u′′, D(T1) = {u ∈W 2,1(0, 1) : B1(u) = B2(u) = 0}.
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Then T1 is the generator of an analytic semigroup {etT1}t≥0 of bounded
linear operators on L1(0, 1). In general this semigroup will not be
strongly continuous.

Remark 5.1. Note that, in Definition 4.1 of regular boundary con-
ditions, we only impose continuity to the coefficients of the boundary
conditions.

Remark 5.2. For every t ≥ 0, the operator etT1 can be obtained as
the limit in L(L1(0, 1)) of the operators etAn with uniform convergence
in every interval [t0,∞), t0 > 0.

6. Generation of analytic semigroups. In the previous section
we showed that T1 is a sectorial operator when the boundary conditions
{B1, B2} are regular. We are now going to generalize this result for the
most general operators L1 and L̃1 defined in Section 3.

Remember that L1 = T1 +Q1 where Q1 was multiplication by q. As
Q1 is a bounded operator, we can choose r sufficiently large for

‖R(λ : T1)‖ ≤ 1
2
‖Q1‖−1, ∀λ ∈ Σδ,r.

Now Proposition 3.1 assures that L1 is a sectorial operator.

As we stated in Section 3, the resolvents of the operators L1 and L̃1

were related as follows

R(λ : L̃1) = MφR(λ : L1)M−1
φ , ∀λ ∈ ρ(L1) = ρ(L̃1).

As Mφ and M−1
φ are bounded operators, we deduce that L̃1 is also

sectorial. It is straightforward to prove that the regularity of the
boundary conditions does not depend on the changes introduced.

Finally, the linear change of variables for passing from (a, b) to (0, 1)
does not affect the bounds obtained. We can then state our main result
(note that some terms have been renamed).

Theorem 6.1. Consider the differential system

l(u) = u′′ + q1(x)u′ + q0(x)u in (a, b),

Bi(u) ≡
∫ b

a

Ri(t)u(t) dt+
∫ b

a

Si(t)u′(t) dt = 0 i = 1, 2,
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where q0, Ri, Si ∈ C([a, b]; C) and q1 ∈ C1([a, b]; C). Suppose that the
boundary conditions are regular, i.e., they verify one of the following
conditions :

• S1(a)S2(b) − S1(b)S2(a) �= 0;

• S1 ≡ 0 and R1(a)S2(b) +R1(b)S2(a) �= 0;

• S2 ≡ 0 and R2(a)S1(b) +R2(b)S1(a) �= 0;

• S1 ≡ 0, S2 ≡ 0 and R1(a)R2(b) −R1(b)R2(a) �= 0.

Define L1 : D(L1) ⊂ L1(a, b) → L1(a, b) as

L1u = l(u), D(L1) = {u ∈W 2,1(a, b) : Bi(u) = 0, i = 1, 2}.
Then L1 is the generator of an analytic semigroup {etL1}t≥0 of bounded
linear operators on L1(a, b). In general this semigroup will not be
strongly continuous.

Example 6.1. In Example 4.1 the domainD(L1) is dense in L1(0, 1),
so the analytic semigroup generated by L1 is strongly continuous.

Let X be the closure of D(L1) in L1(a, b), and let L be the part of L1

in X, that is, Lu = L1u and D(L) = {u ∈ D(L1) : L1u ∈ X}). Then
L verifies the hypotheses of Theorem 6.1 so it generates an analytic
semigroup {etL}t≥0 on X; as the domain D(L) is dense in X, the
semigroup {etL}t≥0 is strongly continuous. Moreover, etLu = etL1u for
every u ∈ X.

7. Appendix. Consider the operator l(u) = u′′ + q1(x)u′ + q0(x)u,
x ∈ (a, b), together with the mixed boundary conditions given by

(7.1)



V1(u) ≡ a0u(a) + b0u

′(a) + c0u(b) + d0u
′(b) = 0,

V2(u) ≡
∫ b

a

R(t)u(t) dt+
∫ b

a

S(t)u′(t) dt = 0,

where q0, R, S ∈ C([a, b]; C), q1 ∈ C1([a, b]; C) and the complex
numbers a0, b0, c0, d0 are not simultaneously zero.

Let M1 be the operator

M1u = l(u), D(M1) = {u ∈W 2,1(a, b) : Vi(u) = 0, i = 1, 2}.
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Following a similar plan as we did in Section 4, we obtain the following
result.

Theorem 7.1. If the boundary conditions (7.1) verify one of the
following conditions

• b0S(b) − d0S(a) �= 0;

• b0 = d0 = 0 and a0S(b) + c0S(a) �= 0;

• S ≡ 0 and b0R(b) + d0R(a) �= 0;

• S ≡ 0, b0 = d0 = 0 and a0R(b) − c0R(a) �= 0,

then M1 is the generator of an analytic semigroup of bounded linear
operators {etM1}t≥0 on L1(a, b). In general, this semigroup will not be
strongly continuous.
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