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NORM CONVERGENCE OF MOVING
AVERAGES FOR τ -INTEGRABLE OPERATORS

DOĞAN ÇÖMEZ AND SEMYON LITVINOV

ABSTRACT. It is shown that if α is a positive linear map on
L1(M, τ) of a von Neumann algebra M with a faithful normal
(semi-)finite trace τ which is norm-reducing for both the
operator norm and the integral norm associated with τ , then
the moving averages converge in Lp-norm, 1 ≤ p < ∞. Using
this result it has been shown that similar norm convergence
results hold for some super-additive processes in Lp(M, τ)
relative to τ -preserving α.

1. Introduction. This article concerns some strong convergence
results for moving averages in the von Neumann algebra setting. Be-
ginning with the celebrated theorem of Lance and Yeadon, there has
been great interest in extending various results in classical ergodic the-
ory into operator algebras, particularly to von Neumann algebras. For
a review, see [6], [8]. Recently, such activities have been revived in the
context of obtaining various weighted ergodic theorems in von Neu-
mann algebras [7], [9], [10]. Study of convergence of moving averages
in von Neumann algebra settings is new. Actually we will obtain norm
convergence of moving averages for both additive and superadditive
processes in a von Neumann algebra.

Let M be a von Neumann algebra with the unit I, and let τ be
a faithful normal semi-finite trace on M . For the definition of Lp-
spaces, 1 ≤ p ≤ ∞, associated with (M, τ ), see [14], [12], [15], [4].
Lp = Lp(M, τ ), being noncommutative generalizations of the classical
Lp-spaces, inherit most of their important properties. For example, the
following form of the Hölder inequality holds [4]

‖xy‖r ≤ ‖x‖p‖y‖q

whenever p, q, r > 0 and p−1 +q−1 = r−1. When τ is finite, this implies
that if p > q then Lp ⊂ Lq.
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Let α : L1 → L1 be a positive linear map with α(x) ≤ I and
τ (α(x)) ≤ τ (x) for every x ∈ J = L1 ∩ M with 0 ≤ x ≤ I. Note
that if x = x∗ ∈ J then ‖α(x)‖p ≤ ‖x‖p for all 1 ≤ p ≤ ∞, and α
uniquely extends to a linear continuous map in Lp, 1 ≤ p < ∞, which
is also denoted by α (see [16], [17]).

Throughout this article, any sequence of the form w = {(kn,mn)}
with kn ≥ 0, mn > 0 integers and mn → ∞, will be called a moving
average sequence (MAS). The sums

awn (x) =
1
mn

mn−1∑
i=0

αkn+i(x), x ∈ L1,

will denote the moving averages of x associated with the MAS w.

Remarks. The condition mn → ∞ is a trivial consequence of a
more general condition under which w is called a B-sequence (see,
for example, [1], [5]). Note also that, with mn = n, kn = 0 for every
n, {an(x)} becomes the usual ergodic averages sequence of x.

More generally, if {µn} is a sequence of probability measures on
Z+,then for x ∈ L1(M, τ ) we define the weighted averages along {µn}
as

aµn
(x) =

∑
k∈Z+

µn(k)αk(x).

(If µn = (1/mn)χ[kn,kn+mn), then aµn
= awn .) When it is clear from

the context, we will also denote these averages by an(x). Again the
inequality ‖α(x)‖p ≤ ‖x‖p, x = x∗ ∈ Lp, implies that an : Lp → Lp

and ‖an‖p ≤ 2 for every n, 1 ≤ p ≤ ∞.

Let L1
s be the self-adjoint part of L1(M, τ ). A sequence F =

{xi}i≥0 ⊂ L1
s is called an α-superadditive process if the sequence of

partial sums {Fn}n≥1, where Fn =
∑n−1

i=0 xi satisfy

Fm+n ≥ Fm + αmFn for m,n > 1.

When equality holds, then F is called an α-additive process. Clearly
α-additive processes are necessarily of the form {∑n−1

i=0 α
ix0}. If

supn≥1 ‖Fn‖1/n < ∞, the process is called bounded. It is well known
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that, if τ is finite, then any bounded α-superadditive process has a
dominant, that is, there exists a δ ∈ L1 satisfying τ (δ) = γF :=
supn≥1 ‖Fn‖1/n < ∞ such that Fn ≤ ∑n−1

i=0 α
iδ [8, Lemma 2.3.10].

Following the popular terminology, we will refer to this δ as the exact
dominant in what follows.

Remark. If F is an α-superadditive process, then G = {Gn} =
{∑n−1

i=0 α
ix0} is an α-additive process, and hence {Fn−Gn} is a positive

α-superadditive process.

If F is an α-superadditive process and w = {(kn,mn)} is an MAS,
we define the averages of F along w by

awn F =
1
mn

αknFmn
.

(Hence, if F is α-additive, then the corresponding moving averages
along w will be awn (x0) = (1/mn)αkn

∑mn−1
i=0 αix0, coinciding with the

previous definition). It should be noted here that, in the superadditive
setting, it is possible to give alternative definitions of moving averages;
however, such averages may fail to converge almost everywhere and in
the mean, even in the commutative case as shown in [3].

2. Norm convergence of additive processes. The first result
of this section is a simple consequence of properties of the reflexive
Banach spaces and behavior of MAS’s.

Theorem 2.1. Let M be a vNA with unit I, τ a faithful normal
semi-finite trace on M and α : L1 → L1 a positive linear map with
α(x) ≤ I and τ (α(x)) ≤ τ (x) for every x ∈ L1∩M . If w = {(kn,mn)}
is an MAS, then for every x ∈ Lp, 1 < p < ∞, the sequence awn (x)
converges in Lp to some α-invariant x̂ ∈ Lp.

Proof. Let B be the self-adjoint part of Lp(M, τ ). Then B is a
reflexive Banach space, while α is a contraction in it. Repeating the
steps of the proof of Theorem 9.1 in [11] and taking into account the
condition mn → ∞, we see that for every x ∈ B the moving averages
awn (x) converge in B to some α-invariant x̂ ∈ B which ends the proof
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due to the fact that every element of Lp is a sum of two self-adjoint
ones.

If τ is finite, it is straightforward, via Hölder’s inequality, to extend
Theorem 2.1 to the case p = 1. In this case, however, one can obtain
more. Namely, one can develop some tools, along the line of results
obtained in [13], that enables one to work on the norm convergence of
averages along MAS’s as well as more general weighted averages in the
vNA setting.

In the rest of this section, we will assume that τ is finite and
τ (I) = 1. Note that Hτ = (L2, ‖ · ‖2) is a Hilbert space, more precisely,
the completion of the pre-Hilbert space M (equipped with the inner
product (x, y) = τ (y∗x), x, y ∈ M). By the Gelfand-Naimark-Segal
representation theorem, there exists an embedding π : M → B(Hτ )
such that, if we denote x̄ the vector in Hτ generated by x ∈ M , then
π(x)ȳ = xy, x, y ∈M .

Besides, δ0 = Ī is a bicyclic vector for M in Hτ such that, for every
x ∈M ,

τ (x) = τ (Ix) = (x̄, ξ0) = (π(x)ξ0, ξ0),

or, abusing notations, τ (x) = (xξ0, ξ0). We use the same notation ‖ · ‖2

for the norm in L2(M, τ ) and for the norm in Hτ .

Lemma 2.2. If xn ∈M , ‖xn‖∞ ≤ C <∞ and xn → x̂ in L2, then
x̂ ∈M and xn → x̂ in Lp for every 1 ≤ p <∞.

Proof. Since x ∈M implies that ‖xδ0‖2 = ‖x̄‖2 = τ (x∗x)1/2 = ‖x‖2,
for every y′ from the commutant M ′ of M , we have

‖(xn − x̂)y′ξ0‖2 = ‖y′(xn − x̂)ξ0‖2

≤ ‖y′‖∞‖(xn − x̂)ξ0‖2

= ‖y′‖∞‖xn − x̂‖2.

Therefore ‖(xn − x̂)ξ‖2 → 0 for every ξ ∈ M ′ξ0. Because the set
M ′ξ0 is dense in Hτ and {‖xn‖∞} is bounded, we see that the above
convergence takes place for all ξ ∈ Hτ , i.e., xn → x̂ strongly in M ,
hence x̂ ∈M .
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Now if 1 ≤ p < 2, then xn → x̂ in Lp follows from the Hölder
inequality. Let 2 < p <∞. Since xn → x̂ strongly with ‖xn‖ ≤ C, we
conclude that ‖x̂‖∞ ≤ C and ‖xn − x̂‖∞ ≤ 2C. Therefore, we have
|xn − x̂|p ≤ (2C)p−2|xn − x̂|2, and hence

‖xn − x̂‖p
p ≤ (2C)p−2‖xn − x̂‖2

2 −→ 0.

The following simple fact is an immediate consequence of the Uniform
Boundedness principle.

Lemma 2.3. Let X be a Banach space, and let an : X → X,
n ≥ 1, be a sequence of continuous linear maps satisfying the condition
supn{‖an(x)‖} <∞ for all x ∈ X. Then the set X0 = {x ∈ X : an(x)
converges} is closed.

Lemma 2.4 (cf. [13]). The sequence {an(x)} converges in Lp for all
x ∈ Lp, 1 ≤ p <∞, if and only if it is convergent in L2 for all x ∈ L2.

Proof. Fix 1 ≤ p <∞. Since M = L∞ is dense in Lp and ‖an‖p ≤ 2,
by Lemma 2.3 it is enough to show that, for x ∈ M , an(x) → x̂ in
L2 implies that an(x) → x̂ in Lp. But this immediately follows from
Lemma 2.2 since, for xn = an(x), we have ‖xn‖∞ ≤ 2‖x‖∞.

As a corollary of this lemma and Theorem 2.1, we derive

Theorem 2.5. Let M be a von Neumann algebra with the identity
I, and let τ be a faithful normal finite trace on M . Assume that
α : L1 → L1 is a positive linear map satisfying α(x) ≤ I and
τ (α(x)) ≤ τ (x) if x ∈ M and 0 ≤ x ≤ I. If w = {(kn,mn)} is an
MAS and x ∈ Lp, 1 ≤ p <∞, then the corresponding moving averages
awn (x) converge in Lp to some α-invariant x̂ ∈ Lp.

Remarks. 1. Due to the similarities involved,the results obtained in
this section are also valid for block sequences (see [3]).

2. For p = 1, it is essential that τ is finite.
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Now, using a method similar to the one utilized in [13], we establish
the following.

Theorem 2.6. If α is an automorphism such that τ (α(x)) = τ (x)
for every x ≥ 0, then the following conditions are equivalent

(i) aµn
(x) =

∑
k∈Z µn(k)αk(x) converges in Lp for all x ∈ Lp,

1 ≤ p <∞;

(ii) the Fourier transforms µ̂n(γ) =
∑

k∈Z µn(k)γ̄k converge for all
γ ∈ T = {|z| = 1}.

Proof. Assume first that µ̂n converges pointwise on T . Let x ∈ L2

and consider the function tx(k) = τ (x∗αk(x)). Then tx is a positive
definite function on Z; so, by the Herglotz theorem, there is a positive
regular Borel measure νx on T for which ν̂x(k) = tx(k), k ∈ Z, holds.
But then

‖an(x)‖2
2 = τ (an(x)∗an(x))

=
∑
k∈Z

∑
l∈Z

µn(k)µn(l)τ (αl(x∗)αk(x))

=
∑
k∈Z

∑
l∈Z

µn(k)µn(l)τ (x∗αk−l(x))

=
∑
k∈Z

∑
l∈Z

µn(k)µn(l)ν̂x(k − l)

=
∑
k∈Z

∑
l∈Z

µn(k)µn(l)
∫

T

γ̄k−l dνx(γ)

=
∫

T

|µ̂n(γ)|2 dνx(γ).

Hence, for m,n ≥ 1, ‖am(x) − an(x)‖2
2 =

∫
T
|µ̂m(γ) − µ̂n(γ)|2 dνx(γ).

But {µ̂n} is a uniformly bounded sequence of continuous functions
on T which converges pointwise on T . Therefore, by the bounded
convergence theorem, {µ̂n} converges in L2(T, ν). Thus, {an(x)} is
L2-norm Cauchy and must converge in Lp by Lemma 2.2.

Conversely, let γ ∈ T , and let M = L∞(T, λ) with λ the usual
normalized Lebesgue measure on T . If τ (f) =

∫
T
f dλ, 0 ≤ f ∈ M ,

and α : L1(T ) → L1(T ) is given by α(f)(z) = f(γ̄z), z ∈ T , then for
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the function f(z) = z we have

an(f)(z) =
∑
k∈Z

µn(k)αk(f)(z) =
∑
k∈Z

µn(k)γ̄kz = µ̂nf(z).

Then the convergence of an(f) in the L2-norm implies the converges of
µ̂n(γ).

Remark. This result suggests that further developments similar to
those of [13] should be possible to carry out in the noncommutative
setting.

3. Convergence of moving averages of superadditive pro-
cesses. In this section we will extend the main result of the previous
section to α-superadditive processes, where α is τ -preserving and τ is
finite. First we will obtain some lemmas which are instrumental in
obtaining the norm convergence when p = 1.

Lemma 3.1. Let 0 ≤ x1 ≤ x2 ≤ · · · be a sequence in L1(M, τ ) with,
for some x ∈ L1, xn ≤ x, n ≥ 1. Then there exists x̂ ∈ L1

+ such that
limn ‖x̂− xn‖1 = 0. Furthermore, τ (x̂) = limn τ (xn).

Proof. Clearly, 0 ≤ τ (x1) ≤ τ (x2) ≤ · · · τ (x). Hence, the sequence
{τ (xn)} is Cauchy. Since

‖xn − xm‖1 = τ (xn − xm) = τ (xn) − τ (xm) −→ 0

(assuming xm ≤ xn), the lemma follows. (x̂ ≥ 0 by [4, Theorem 3.2].)

Remark. The same argument also proves that the assertion of
Lemma 3.1 holds if 0 ≤ x1 ≤ x2 ≤ · · · is a sequence in L1(M, τ )
with supn ‖xn‖1 <∞.

The following is an adaptation of a lemma of Akcoglu and Sucheston
(see [2]) to the von Neumann algebra setting. Since it is proved
similarly, via the techniques in [8, Section 2.3], we omit the proof.
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Lemma 3.2. Let F = {xi} ⊂ L1 be a positive α-superadditive
process. If hj = (1/j)Fj, j ≥ 1, then (with the convention that sums
over void sets are zero) Fn ≥ ∑n−j−1

i=0 αihj.

For each j ≥ 1, define the α-additive processHj by Hj
n =

∑n−1
i=0 α

ihj .

Lemma 3.3. Let F ⊂ L1
s be a positive bounded α-superadditive

process, and w an MAS. Then, for each j ≥ 1, the moving averages
awn (hj) converges in norm to a gj ∈ L1. Furthermore, given ε > 0 one
can pick j such that τ (gj) > γF − ε.

Proof. From Theorem 2.5 norm convergence follows immediately.
For the second assertion, given ε > 0, find j such that ‖hj‖1 =
‖(1/j)Fj‖1 > γF − ε/2. Also, find N ≥ 1 such that ‖gj −Hj

n‖1 < ε/2,
n ≥ N . Since α is τ -preserving, we have τ (Hj

n) = τ (hj). Then

|τ (gj) − γF | ≤ |τ (gj) − τ (Hj
n)| + |τ (Hj

n) − γF |
= |‖gj‖1 − ‖Hj

n‖1| + |‖Hj
n‖1 − γF |

≤ ‖gj −Hj
n‖1 + |τ (hj) − γF |

≤ ε/2 + |‖hj‖1 − γF | < ε
since, by definition, τ (|x|) = ‖x‖1, x ∈ L1.

Theorem 3.4. Let F ⊂ L1
s be a bounded α-superadditive process,

and w an MAS. Then the moving averages awn F converge in norm to
some α-invariant x̂ ∈ L1.

Proof. By Theorem 2.5, we can assume that F is positive. Since F
is bounded, an exact dominant δ exists. Given ε > 0, pick j such that
‖hj‖1 > γF − ε/2. Then, from Lemma 3.2 and superadditivity, for all
n > j ≥ 1, Hj

n−j ≤ Fn ≤ Gn where Gn =
∑n−1

i=0 α
iδ. Hence, for n

large enough,

0 ≤ 1
mn

(Fmn
−Hj

mn−j) ≤ 1
mn

(Gmn
−Hj

mn−j).

Both the processes {Gn} and {Hj
n} are positive α-additive pro-

cesses. Thus, by Theorem 2.5, the averages (1/mn)αknGmn
and
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(1/mn)αknHj
mn

converge in the L1-norm to some α-invariant δ∗ and
gj , respectively. Also, observe that

L1 − lim
n

1
mn

αknHj
mn

= L1 − lim
n

1
mn

αknHj
mn−j .

Hence, limn(1/mn)αkn(Gmn
−Hj

mn−j) = δ∗−gj exists in the L1-norm,
and consequently,

0 ≤ L1 − lim
1
mn

αkn(Fmn
−Hj

mn−j) ≤ δ∗ − gj .

Next, by superadditivity, for all j ≥ 1,

g2j = L1 − lim
n

1
mn

αknH2j
mn

≥ L1 − lim
n

1
2mn

αkn(Hj
mn

+ αjHj
mn

)

=
1
2

[
L1 − lim

n

1
mn

(αknHj
mn

+ αkn+jHj
mn

)
]

= gj .

This implies that {xi := g2ij}i is an increasing sequence in L1 which
is bounded by δ∗ ∈ L1. Hence, by Lemma 3.1, there exists a x̂ ∈
L1 such that xi → x̂ in L1-norm. So there exists an i such that
‖xi − x̂‖1 < (ε/2). Since ‖(1/mn)αknHj

mn
‖1 ≤ ‖(1/j)Fj‖1, it follows

that ‖xi‖1 ≤ γF for all i. Also, one can pick i large enough so that
τ (xi) > γF − (e/2) by Lemma 3.2. Then

‖δ∗ − x̂‖1 ≤ ‖δ∗ − xi‖1 + ‖xi − x̂‖1

< [τ (δ∗) − τ (xi)] +
ε

2
<

(
γF − γF +

ε

2

)
+
ε

2
= ε,

since τ (δ∗)≤γF . Arbitrariness of ε implies that L1−limn(1/mn)αknFmn

exists (and is equal to x̂). The invariance of the limit follows from that
of xi’s and δ∗.

As observed in [2], the condition supn ‖(1/n)Fn‖p < ∞ does not
yield to the norm convergence of (ordinary) averages of superadditive
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processes. Hence, when 1 < p < ∞ for the Lp-norm convergence of
superadditive processes one needs more than the boundedness condition
on the process. In [2] it has been shown that for a more restrictive class
of superadditive processes, namely, Chacon admissible processes, one
can obtain affirmative results for the convergence in the Lp-norm. That
is why, for the rest of this section, we will work with such processes.

Definition. A sequence {xn} ⊂ Lp
s(M, τ ) is called an α-admissible

sequence if αxi ≤ xi+1 for all i ≥ 1. If {xn} is α-admissible, then the
process F = {Fn} where Fn =

∑n−1
i=0 xi is an α-superadditive process,

called an α-admissible process. Such a process is called strongly bounded
if supn ‖xn‖p <∞.

Theorem 3.5. Let α be a τ -preserving ∗-automorphism and {xn} ⊂
Lp

s(M, τ ), 1 < p <∞, an α-admissible sequence with supn ‖xn‖p <∞
where F is the associated strongly bounded α-admissible process. If
w = {(kn,mn)} is an MAS, then the moving averages awn (α)F converge
in the Lp-norm, and the limit is α-invariant.

Proof. Since {xi} ⊂ Lp is an admissible sequence,
∑n−1

j=0 α
jx0 ≤ Fn,

and hence we can assume that xi ≥ 0, i ≥ 0. For convenience, define
Pi = xi − αxi−1, i ≥ 1, where we set P0 = x0. Observe that, by
the Clarkson type inequality in Lp(M, τ ) [4, Theorem 5.3] and strong
boundedness,

‖Pr‖p
p = τ (xr − αxr−1)p ≤ Cp[τ (xp

r) − τ (xp
r−1)] <∞

Cp = 2q−1,
1
p

+
1
q

= 1.

Now we will use a technique employed in [3]: for a fixed positive
integer k, define

yk
n =

{
αn−kxk for n > k
xn for 0 ≤ n ≤ k.

Then it follows that xn − yk
n =

∑m
i=1 α

m−iPk+i for n > k where m =
n− k, and xn − yk

n = 0 for 0 ≤ n ≤ k. Defining Di =
∑mi−1

n=0 xn − yk
n,
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we estimate that

Di ≤
mi−1∑
n=0

n∑
r=k+1

αn−rPr.

Next if we let bk,t =
∑t

r=k+1 α
rPr and bk = limt→∞ bk,t, then bk,t ≥ 0

and bk ≥ 0. Using the Fack-Kosaki monotone convergence theorem
[4, Theorem 3.5], we obtain that

τ (bpk) = lim
t→∞ τ (bpk,t) ≤

∞∑
r=k+1

τ (P p
r ) ≤ Cp sup

r
‖xr‖p

p <∞.

Having bk,t ↑ bk and bk ∈ LP , we conclude that αjbk,t ↑ αjbk in Lp for
all j, since α is strongly continuous. This in turn implies that

αkiDi ≤
mi−1∑
n=0

αki+nbk.

On the other hand, by Jensen type inequality in Lp(M, τ ) [4, Proposi-
tion 4.6] and by the τ -preserving property of α, as k → ∞,

∥∥∥∥ 1
mi

mi−1∑
n=0

αki+nbk

∥∥∥∥
p

p

≤ ‖bk‖p
p ≤

∞∑
i=k+1

τ (P p
i ) ↓ 0.

By Theorem 2.3 we have Yk := Lp− limi→∞(1/mi)αki
∑mi−1

n=0 yk
n exists

and is α-invariant. Since, for all n ≥ 1, yk
n ≤ yk+1

n , we also have Y k ≤
Y k+1. Therefore, {Y k} is a monotone increasing sequence in Lp with
supk τ (Y p

k ) < ∞ and, consequently, by Lemma 3.1, Y = limk→∞ Y k

exists in Lp and is α-invariant. Now, given ε > 0, find a positive integer
K such that for k ≥ K, ‖bk‖p

p < ε/3, ‖(1/mi)αki
∑mi−1

n=0 yk
n − Y k‖p

p <

ε/3, and ‖Y − Y k‖p
p < ε/3. Then

∥∥∥∥ 1
mi

αki

mi−1∑
n=0

xn−Y
∥∥∥∥

p

p

≤
∥∥∥∥ 1
mi

αki

mi−1∑
n=0

(xn−yk
n)

∥∥∥∥
p

p

+
∥∥∥∥ 1
mi

αki

mi−1∑
n=0

yk
n−Y k

∥∥∥∥
p

p

+ ‖Y −Y k‖p
p < ε,
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proving the assertion.
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