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PERTURBATION OF FRAMES FOR
A SUBSPACE OF A HILBERT SPACE

OLE CHRISTENSEN, CHRIS LENNARD AND CHRISTINE LEWIS

ABSTRACT. A frame sequence {fi}∞i=1 in a Hilbert space
H allows every element in the closed linear span, [fi], to be
written as an infinite linear combination of the frame elements
fi. Thus a frame sequence can be considered to be some
kind of “generalized basis.” Using an extension of a classical
condition, we prove that a perturbation {gi}∞i=1 of a frame
sequence {fi}∞i=1 is again a frame sequence whenever the gap
from [gi] to [fi] is small enough. In the special case of a Riesz
sequence {fi}∞i=1 the gap condition may be omitted.

1. Introduction. A frame sequence {fi}∞i=1 in a Hilbert space
H has the property that every element in [fi] := span {fi}∞i=1 has a
representation as an infinite linear combination of the frame elements
fi. In contrast with the situation for a basis, the corresponding
coefficients are not necessarily unique, which makes frame sequences
a very useful tool when more freedom is required. A frame sequence is
thus a very natural generalization of the concept of a Riesz sequence
(i.e., a sequence that is a Riesz basis for its closed linear span).

Our goal is to prove some perturbation results for frame sequences.
To motivate the following, remember that if {fi}∞i=1 is a Riesz sequence,
then {gi}∞i=1 ⊆ H is a Riesz sequence whenever

(1)
∥∥∥∥

∞∑
i=1

ci(fi − gi)
∥∥∥∥ ≤ µ

( ∞∑
i=1

|ci|2
)1/2

, ∀ {ci}∞i=1 ∈ l2(N),

for a sufficiently small constant µ. We prove the same conclusion holds
under a weaker condition than (1).

The direct analogue of this last Riesz sequence result for a frame
sequence {fi}∞i=1 does not hold unless [fi] is the whole Hilbert space.
This leads us to consider the notion of the gap from one subspace of
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a Hilbert space to another. The gap from a subspace K to a subspace
L is the supremum over a family of sine values, sin(θx), where each θx
is the angle between a given vector x in the unit sphere of K and the
orthogonal projection of x onto L. We prove an analogue for frame
sequences of the above-described result for Riesz sequences when the
gap from [gi] to [fi] is small enough.

Frame perturbation ideas have a long history. Implicitly, the original
frame paper of Duffin and Schaeffer [8] is concerned with a special
class of frame perturbations of the usual trigonometric orthonormal
basis of L2[−γ, γ]. Frame perturbations were first explicitly introduced
by Chris Heil in his Ph.D. thesis [11]. More recent references are [3],
[4], [6], [9]. The more technical question of perturbation of a frame
sequence was first treated in Lewis’ M.S. Thesis [15] and in [5]. Our
main result extends [15] along the lines of [3].

2. Preliminaries. First we collect some definitions and basic facts
that we will need later. In all that follows, H denotes a separable
Hilbert space with inner product 〈·, ·〉 linear in the first entry, over the
scalar field (which is either the real or complex numbers). Throughout,
I and J will denote countable index sets, and N will be the set of all
positive integers. Given a sequence {fi}i∈I ⊆ H, we let [fi] denote the
closed linear span of the elements {fi}i∈I . The orthogonal complement
of a subspace K in H and the orthogonal projection onto K will be
denoted by K⊥ and PK, respectively. We will also denote by l2(I) the
usual Hilbert space of all absolutely square-summable, scalar-valued
sequences with domain I. As usual and where appropriate, I will also
denote the identity operator on H.

A family of elements {fi}i∈I ⊆ H is called a frame if A,B > 0 exists
such that

(2) A‖f‖2 ≤
∑
i∈I

|〈f, fi〉|2 ≤ B‖f‖2, ∀ f ∈ H.

If at least the upper condition is satisfied, {fi}∞i=1 is a Bessel sequence.
In that case we can define a bounded linear operator

T : l2(I) −→ H, T{ci}i∈I =
∑
i∈I

cifi,
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and ‖T‖ ≤ √
B. In case {fi}∞i=1 is a frame, the frame operator S := TT ∗

is invertible. This leads to a representation of any f ∈ H as an
infinite linear combination of the frame elements, the so-called frame
decomposition:

f = SS−1f =
∑
i∈I

〈f, S−1fi〉fi, ∀ f ∈ H.

The numbers A,B in (2) are called frame bounds. It is well known that
{S−1fi}i∈I is also a frame, with bounds B−1, A−1. For more general
information about frames, we refer to [7], [12].

In particular, a frame {fi}i∈I is a total set in H, i.e., [fi] = H. If a
family {fi}i∈I is not total in H it might still happen that {fi}i∈I is a
frame for [fi], in which case we say that {fi}i∈I is a frame sequence.
In this case the frame operator S is invertible as an operator from [fi]
onto [fi].

A Riesz basis is a special case of a frame. Recall that {fi}i∈I is a
Riesz basis for H if [fi] = H and A,B > 0 exists for which

A
∑
i∈I

|ci|2 ≤
∥∥∥∥ ∑

i∈I

cifi

∥∥∥∥
2

≤ B
∑
i∈I

|ci|2, ∀ {ci}i∈I ∈ l2(I).

The numbers A,B above are actually frame bounds. We say that
{fi}i∈I is a Riesz sequence if {fi}i∈I is a Riesz basis for [fi].

Our goal is to prove some perturbation results for frame sequences.
The perturbation condition we consider here has several classical pre-
decessors, of which we only mention a few. Paley and Wiener [17]
proved that if {fi}i∈I is an orthonormal basis for L2[a, b] and λ ∈ [0, )
exists such that ∥∥∥∥ ∑

i∈F

ci(fi − gi)
∥∥∥∥ ≤ λ

∥∥∥∥∑
i∈F

cifi

∥∥∥∥
for all finite scalar sequences {ci}i∈F , F ⊆ I, then {gi}i∈I is a Riesz
basis for L2[a, b]. Later, Boas [2] proved that the same holds if {fi}i∈I

is a Riesz basis and L2[a, b] is replaced by any Hilbert space. Pollard
[16] showed that if {fi}i∈I is total and λ1, λ2 ∈ [0, (1/

√
2)) exist such

that ∥∥∥∥ ∑
i∈F

ci(fi − gi)
∥∥∥∥ ≤ λ1

∥∥∥∥ ∑
i∈F

cifi

∥∥∥∥ + λ2

∥∥∥∥∑
i∈F

cigi

∥∥∥∥
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for all finite scalar sequences {ci}i∈F , F ⊆ I, then {gi}i∈I is total.
Hilding [13] relaxed the condition to λ1, λ2 ∈ [0, 1). Both conditions
can be viewed as “boundedness conditions” on the operator {ci}i∈I →∑

i∈I ci(fi − gi). A different condition concerning this operator can be
found in the book of Kato [14]: the operator {ci}i∈I → ∑

i∈I ci(fi−gi)
is said to be bounded with respect to the operator {ci}i∈I → ∑

i∈I cifi

if λ, µ ≥ 0 exists for which

∥∥∥∥ ∑
i∈F

ci(fi − gi)
∥∥∥∥ ≤ λ

∥∥∥∥ ∑
i∈F

cifi

∥∥∥∥ + µ
( ∑

i∈F

|ci|2
)1/2

for all finite scalar sequences {ci}i∈F , F ⊆ I.
Conditions of this type are also important in modern analysis. Based

on the consequences of the validity of the above condition, Favier and
Zalik [9] were able to show that if

{fi}i∈I :=
{

1
2n/2

ψ(2nx− bm)
}

m,n∈Z

is a frame for L2(R) (for a certain b > 0 and a function ψ satisfying
some mild conditions), then

{gi}i∈I :=
{

1
2n/2

ψ(2nx− b̃m)
}

m,n∈Z

is also a frame for b̃ close to b. This is indeed a surprising result:
for b �= b̃, the two functions x → 1/2n/2ψ(2nx − bm) and x →
1/2n/2ψ(2nx−b̃m) are moving far apart from each other for large values
of m, so {fi}i∈I , {gi}i∈I are not close to each other in the traditional
sense. Frames of this special type are called wavelet frames.

The condition we consider in the sequel incorporates all the cases
discussed above. We assume that {fi}i∈I is a frame sequence in a
Hilbert space H, and that constants λ1, λ2, µ exist such that

∥∥∥∥∑
i∈F

ci(fi − gi)
∥∥∥∥ ≤ λ1

∥∥∥∥ ∑
i∈F

cifi

∥∥∥∥ + λ2

∥∥∥∥ ∑
i∈F

cigi

∥∥∥∥ + µ
( ∑

i∈F

|ci|2
)1/2

for all finite scalar sequences {ci}i∈F , F ⊆ I.
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Clearly we still have to restrict the values of the parameters in order
to get conclusions about {gi}i∈I . The complication which appears
compared to the situation where a frame {fi}i∈I for H is perturbed
(cf. [3], [4]), is that a perturbation {gi}i∈I might be outside of [fi].

The main tool in our generalization is the gap from a subspace K to
a subspace L, a notion that can be found in [14].

Definition 1. Let K and L be subspaces of H. When K �= {0}, the
gap from K to L is given by

δ(K,L) := sup
x∈K,‖x‖=1

inf
y∈L

‖x− y‖

= sup
x∈K,‖x‖=1

min
y∈L

‖x− y‖.

Also, when K = {0}, we define δ(K,L) = 0.

Note that the gap from a subspace K to a subspace L is the supremum
over a family of sine values, sin(θx), where each θx is the angle between
a given vector x in the unit sphere of K and the orthogonal projection
of x onto L.
We can calculate δ(K,L) using the orthogonal projections PL⊥ and

PK.

Lemma 2.1. δ(K,L) = ‖PKPL⊥‖, for all subspaces K and L of H.

Proof. We may assume that K �= {0}. By definition,

δ(K,L) = sup
x∈K
‖x‖=1

‖x− PLx‖ = sup
x∈K
‖x‖=1

‖PL⊥x‖

= sup
x∈H
‖x‖=1

‖PL⊥PKx‖

= ‖PL⊥PK‖ = ‖PKPL⊥‖.

Generally, δ(K,L) �= δ(L,K). For example, whenever K and L
are subspaces of H with K properly contained in L, we have that
δ(K,L) = 0 and δ(L,K) = 1.
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A crucial point in the proof of our main theorem in the next section
is to show that a certain operator on H is invertible. We will need the
following lemma.

Lemma 2.2. Suppose that U is a bounded operator on H and that
there exist λ1 and λ2 ∈ [0, 1) such that

‖x− Ux‖ ≤ λ1‖x‖+ λ2‖Ux‖, ∀x ∈ H.

Then U is onto and invertible.

A proof can be found in [3]. That paper also contains an example
showing that the hypothesis of Lemma 2.2 is weaker than the Neumann
condition ‖I − U‖ < 1.

3. Perturbation results. The next theorem is our main result.

Theorem 3.1. Let {fi}i∈I be a frame sequence with bounds A,B
and let {gi}i∈I ⊆ H. Let K := [gi], L := [fi] and assume that there
exist constants λ2 ∈ [0, 1) and λ1, µ ≥ 0 such that

λ1 +
µ√
A
<

√
1− δ(K,L)2

and

(3)
∥∥∥∥ ∑

i∈F

ci(fi−gi)
∥∥∥∥ ≤ λ1

∥∥∥∥ ∑
i∈F

cifi

∥∥∥∥+λ2

∥∥∥∥ ∑
i∈F

cigi

∥∥∥∥+µ
( ∑

i∈F

|ci|2
)1/2

,

for all finite scalar sequences {ci}i∈F , F ⊆ I. Then {gi}i∈I is a frame
sequence with bounds

(4) A

(
1− λ1 + λ2 + µ/

√
A

1 + λ2

)2

and B

(
1 +

λ1 + λ2 + µ/
√
B

1− λ2

)2

.

(5)
Moreover, [gi] is isomorphic to [fi] and [gi]⊥ is isomorphic to [fi]⊥.
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Proof. Standard arguments (cf. [4], [3]) give the existence (and value)
of the upper frame bound for {gi}i∈I and that (3) actually holds for
all sequences {ci}i∈I ∈ l2(I). Let S be the frame operator for {fi}i∈I .
Since {gi}i∈I is a Bessel sequence, we can define a bounded operator

U : H −→ H, Uh =
∑
i∈I

〈h, S−1fi〉gi + PK⊥PL⊥h.

We want to show that U is invertible. Fix h ∈ H and write h = h1+h2,
where h1 ∈ L = [fi], h2 ∈ [fi]⊥. Then, using the frame representations
of h1 and h2 we obtain that

‖h− Uh‖ ≤ ‖h1 − Uh1‖+ ‖h2 − Uh2‖
=

∥∥∥∥ ∑
i∈I

〈h1, S
−1fi〉(fi − gi)

∥∥∥∥ + ‖(PL⊥ − PK⊥PL⊥)h2‖

≤ λ1

∥∥∥∥ ∑
i∈I

〈h1, S
−1fi〉fi

∥∥∥∥ + λ2

∥∥∥∥ ∑
i∈I

〈h1, S
−1fi〉gi

∥∥∥∥
+ µ

(∑
i∈I

|〈h1, S
−1fi〉|2

)1/2

+ ‖(I − PK⊥)PL⊥‖ · ‖h2‖

≤ λ1‖h1‖+ λ2‖Uh1‖+ µ√
A
‖h1‖+ δ(K,L)‖h2‖

=
(
λ1 +

µ√
A

)
‖h1‖+ δ(K,L)‖h2‖+ λ2‖Uh1‖

≤
√(

λ1 +
µ√
A

)2

+ δ(K,L)2 ·
√
‖h1‖2 + ‖h2‖2 + λ2‖Uh‖

=

√(
λ1 +

µ√
A

)2

+ δ(K,L)2 · ‖h‖+ λ2‖Uh‖.

By Lemma 2.2 we conclude that U is onto and invertible. Thus, U
maps [fi] onto [gi] and [fi]⊥ onto [gi]⊥ which establishes (5). Now let
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h ∈ K = [gi]. Since U−1h ∈ [fi], we have

‖h‖4 = |〈UU−1h, h〉|2

=
∣∣∣∣ ∑

i∈I

〈U−1h, S−1fi〉〈gi, h〉
∣∣∣∣
2

≤
∑
i∈I

|〈U−1h, S−1fi〉|2 ·
∑
i∈I

|〈gi, h〉|2

≤ 1
A

· ‖U−1h‖2 ·
∑
i∈I

|〈gi, h〉|2.

In order to estimate ‖U−1h‖, we observe that our estimate for ‖h−Uh‖
above shows that

‖k − Uk‖ ≤
(
λ1 +

µ√
A

)
‖k‖+ λ2‖Uk‖, ∀ k ∈ [fi].

Therefore,

‖Uk‖ ≥ ‖k‖ − ‖Uk − k‖
≥

(
1−

(
λ1 +

µ√
A

))
‖k‖ − λ2‖Uk‖, ∀ k ∈ [fi],

and so

‖Uk‖ ≥ 1− (λ1 + µ/
√
A)

1 + λ2
‖k‖, ∀ k ∈ [fi].

Thus, for h ∈ [gi], with k := U−1h we have

‖U−1h‖ ≤ 1 + λ2

1− (λ1 + µ/
√
A)

‖h‖

and therefore by the above calculation

‖h‖4 ≤ 1
A

(
1 + λ2

1− (λ1 + µ/
√
A)

)2

‖h‖2 ·
∑
i∈I

|〈gi, h〉|2.

Hence,

∑
i∈I

|〈gi, h〉|2 ≥ A
(
1− (λ1 + µ/

√
A)

1 + λ2

)2

‖h‖2

= A
(
1− λ1 + λ2 + µ/

√
A

1 + λ2

)2

· ‖h‖2, ∀h ∈ [gi].
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Observe that
√
1− δ(K,L)2 is the infimum over the family of cosine

values, cos(θx), where each θx is the angle between a given vector x in
the unit sphere of K and the orthogonal projection of x onto L. Also,
as pointed out to us by an anonymous referee, one can show by an
argument similar to the proof of Lemma 2.1 that√

1− δ(K,L)2 = inf {‖PLx‖ | x ∈ K, ‖x‖ ≤ 1}.
Thus, δ(K,L) < 1 if and only if PL is an isomorphism of K onto L.
If {fi}i∈I is a frame for H, we have L := [fi] = H and therefore

δ(K,L) = ‖PKPL⊥‖ = 0. Moreover, it follows from (5) in Theorem 3.1
that K := [gi] = H and so {gi}i∈I is a frame for H. Consequently,
Theorem 3.1 is an extension of the main result of [3].

In the special case where {fi}i∈I is a Riesz sequence the gap δ(K,L)
does not need to be included in the hypotheses.

Theorem 3.2. Let {fi}i∈I be a Riesz sequence with bounds A,B,
and let {gi}i∈I ⊆ H. Assume that there exist constants λ2 ∈ [0, 1[ and
λ1, µ ≥ 0 such that λ1 + µ/

√
A < 1 and∥∥∥∥ ∑

i∈F

ci(fi − gi)
∥∥∥∥ ≤ λ1

∥∥∥∥ ∑
i∈F

cifi

∥∥∥∥ + λ2

∥∥∥∥ ∑
i∈F

cigi

∥∥∥∥ + µ
( ∑

i∈F

|ci|2
)1/2

,

for all finite scalar sequences {ci}i∈F , F ⊆ I. Then {gi}i∈I is a Riesz
sequence with the same bounds as in (4) of Theorem 3.1.

Proof. The upper frame condition is equivalent to the upper Riesz
basis condition, so this part is proved by the same argument as in
the proof of Theorem 3.1. For the proof of the lower Riesz sequence
condition, let {ci}i∈I ∈ l2(I). Then∥∥∥∥ ∑

i∈I

cigi

∥∥∥∥ ≥
∥∥∥∥ ∑

i∈I

cifi

∥∥∥∥ −
∥∥∥∥ ∑

i∈I

ci(fi − gi)
∥∥∥∥

≥ (1−λ1)
∥∥∥∥∑

i∈I

cifi

∥∥∥∥−λ2

∥∥∥∥ ∑
i∈I

cigi

∥∥∥∥−µ
( ∑

i∈I

|ci|2
)1/2

.

≥ (1−λ1)
√
A

( ∑
i∈I

|ci|2
)1/2

−λ2

∥∥∥∥∑
i∈I

cigi

∥∥∥∥−µ
( ∑

i∈I

|ci|2
)1/2

.
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So ∥∥∥∥ ∑
i∈I

cigi

∥∥∥∥ ≥ (1− λ1)
√
A− µ

1 + λ2

( ∞∑
i=1

|ci|2
)1/2

.

By assumption ((1− λ1)
√
A−µ)(1+ λ2)−1 is positive, from which the

result follows.

However, in the case that {fi}i∈I is a frame sequence, the condition
in Theorem 3.2 is not enough to guarantee stability.

Example. Let {ei}∞i=1 be an orthonormal basis for the Hilbert space
H. Fix µ ∈ (0,

√
2) and a sequence {αi}∞i=1 ⊆ C\{0}, converging to

zero and with maxi |αi| ≤ µ. Let

{fi}∞i=1 = {e1, e1, e3, e3, . . . , e2k−1, e2k−1, . . . },

and

{gi}∞i=1 = {e1, e1 + α1e2, e3, e3 + α2e4, . . . , e2k−1, e2k−1 + αke2k, . . . }.

Then ∥∥∥∥
∞∑

i=1

ci(fi − gi)
∥∥∥∥ ≤ µ

( ∑
i∈I

|ci|2
)1/2

, ∀ {ci}i∈I ∈ l2(N).

Moreover, {fi}∞i=1 is a frame sequence with bounds A = B = 2.
The condition in Theorem 3.2 is satisfied, but {gi}∞i=1 is not a frame
sequence. The example corresponds to the situation δ(K,L) = 1 that
cannot be handled by Theorem 3.1.

Our final theorem describes a way in which the gap δ(K,L) in
Theorem 3.1 can be calculated from {gi}i∈I and {fi}i∈I . Henceforth
we will assume that the index set I = N or {1, . . . ,m} for somem ∈ N.
Let us define the function ν : H → H by

ν(0) := 0 and ν(x) :=
x

‖x‖ if x �= 0.

The next lemma is a simple variation on the Gram-Schmidt orthogo-
nalization process. A proof is therefore omitted.
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Lemma 3.3. Let {hi}i∈I be a sequence in H. Then the sequence
{h̃i}i∈I defined by

h̃i := ν(hi −Qi−1hi),

where

Qi−1 = Qi−1({hi}i∈I) :=
i−1∑
j=1

〈·, h̃j〉h̃j

and Q0 := 0, is a normalized tight frame for M := [hi] whose nonzero
elements form an orthonormal basis for M.

Theorem 3.4. Suppose that {fi}i∈I and {gi}i∈I are sequences in H.
Let K := [gi], L := [fi], and for each i ∈ I define

hi := PLg̃i =
∑
j∈I

〈g̃i, f̃j〉f̃j .

Then

δ(K,L) = sup
x∈H,‖x‖=1

( ∑
i∈I

|〈x, g̃i − hi〉|2
)1/2

.

Proof. We know that δ(K,L) = ‖PKPL⊥‖. Now fix x ∈ H. By
Lemma 3.3,

‖PKPL⊥x‖2 =
∥∥∥∥ ∑

i∈I

〈PL⊥x, g̃i〉g̃i
∥∥∥∥

2

=
∑
i∈I

|〈x, PL⊥ g̃i〉|2

=
∑
i∈I

|〈x, g̃i − hi〉|2.

Frames for Banach spaces were introduced by Gröchenig [10]. Ex-
tensions of Theorem 3.1 are considered by the authors in a paper in
preparation.
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