GALOIS REPRESENTATIONS ATTACHED TO THE PRODUCT OF TWO ELLIPTIC CURVES

AMADEU REVERTER AND NÚRIA VILA

Abstract

We study the images of $\bmod p$ Galois representations attached to the abelian variety product of two elliptic curves. The case of two nonisogenous elliptic curves without complex multiplication has been considered by Serre [3]. In this paper we examine the case of two isogenous elliptic curves.

Let E_{1}, E_{2} be two elliptic curves defined over a number field K. Let p be a prime number, and let $E_{1}[p]$ and $E_{2}[p]$ denote the group of p-torsion points of E_{1} and E_{2}. The action of the absolute Galois group G_{K} of K on the p-torsion points of E_{1} and E_{2} defines the Galois representations

$$
\rho_{E_{1}, p}: G_{K} \longrightarrow \operatorname{Aut}\left(E_{1}[p]\right), \quad \rho_{E_{2}, p}: G_{K} \longrightarrow \operatorname{Aut}\left(E_{2}[p]\right)
$$

and the homomorphism

$$
\psi_{p}: G_{K} \longrightarrow \operatorname{Aut}\left(E_{1}[p]\right) \times \operatorname{Aut}\left(E_{2}[p]\right)
$$

Let us denote

$$
M_{p}:=\left\{\left(s, s^{\prime}\right) \in \operatorname{Aut}\left(E_{1}[p]\right) \times \operatorname{Aut}\left(E_{2}[p]\right): \operatorname{det} s=\operatorname{det} s^{\prime}\right\}
$$

Let χ_{p} be the $\bmod p$ cyclotomic character. We have that $\operatorname{det} \rho_{E_{1}, p}=$ $\operatorname{det} \rho_{E_{2}, p}=\chi_{p}$, by the Weil pairing. Then the image $\psi_{p}\left(G_{K}\right)$ is contained in M_{p}.
Serre [3] studies the image $\psi_{p}\left(G_{K}\right)$ whenever the elliptic curves are without complex multiplication and not \bar{K}-isogenous. Using Falting's results [2] on the Tate conjecture, we have

[^0] This research has been partially supported by DGES grant PB96-0970-C02-01.

Theorem [3]. Let E_{1} / K and E_{2} / K be two elliptic curves without complex multiplication and nonisogenous. Then $\psi_{p}\left(G_{K}\right)=M_{p}$, for all but finitely many primes p.

From now on we will consider elliptic curves defined over K and K-isogenous. First we need some results concerning the relationship between the image of $\bmod p$ Galois representation attached to elliptic curves, K-isogenies and p-torsion points.

1. Images and isogenies. Let K be a number field and let E / K be an elliptic curve defined over K. Let p be a prime number, and let χ_{p} be the $\bmod p$ cyclotomic character. Let $\rho_{E, p}$ be the $\bmod p$ Galois representation associated to the p-torsion points $E[p]$ of the elliptic curve E. Observe that the elliptic curve E / K admits an isogeny of degree p defined over K if and only if the image $\rho_{E, p}\left(G_{K}\right)$ is contained in a Borel subgroup. If E_{1} / K and E_{2} / K are related by an isogeny defined over K of degree prime to p, then this isogeny induces a $G_{K^{-}}$ module isomorphism from $E_{1}[p]$ to $E_{2}[p]$, which identifies the images $\rho_{E_{1}, p}\left(G_{K}\right)$ and $\rho_{E_{2}, p}\left(G_{K}\right)$. Moreover, we have

Lemma 1.1. Let E_{1} / K and E_{2} / K be two elliptic curves and $\phi: E_{1} \rightarrow E_{2}$ be a K-isogeny of degree p. Then the following conditions are equivalent:
(i) There exists a one-dimensional G_{K}-stable subspace of $E_{1}[p]$ not annihilated by ϕ.
(ii) $\rho_{E_{1}, p}\left(G_{K}\right)$ is contained in a split Cartan subgroup of Aut $\left(E_{1}[p]\right)$.
(iii) There exists an elliptic curve E_{3} / K non- K-isomorphic to E_{2} and a K-isogeny $\phi^{\prime}: E_{1} \rightarrow E_{3}$ of degree p.

Lemma 1.2. Let E / K be an elliptic curve with nontrivial p-torsion points defined over K. Then a basis of $E[p]$ exists such that

$$
\rho_{p, E}\left(G_{K}\right)=\left\{\begin{array}{cl}
\left(\begin{array}{cc}
1 & * \\
0 & \chi_{p}\left(G_{K}\right)
\end{array}\right) & \text { if E has only one K-isogeny } \\
\left(\begin{array}{cc}
1 & 0 \\
0 & \chi_{p}\left(G_{K}\right)
\end{array}\right) & \text { of degree } p \\
\text { otherwise. }
\end{array}\right.
$$

Proof. Let $P \in E(K)[p] \backslash\{0\}$ and $Q \in E[p]$ such that $\{P, Q\}$ is an \mathbf{F}_{p}-basis of $E[p]$. Let $\sigma_{0} \in G_{K}$ such that $P^{\sigma_{0}}=P, Q^{\sigma_{0}}=c_{\sigma_{0}} P+d_{\sigma_{0}} Q$ and $d_{\sigma_{0}}$ generate the cyclic group $\operatorname{det} \rho_{E, p}\left(G_{K}\right)=\chi_{p}\left(G_{K}\right) \subseteq \mathbf{F}_{p}^{*}$. If $d_{\sigma_{0}} \neq 1$, take $\left\{P, Q^{\prime}\right\}$ as a basis, where $Q^{\prime}=c_{\sigma_{0}} P+\left(d_{\sigma_{0}}-1\right) Q$. Then

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & \chi_{p}\left(G_{K}\right)
\end{array}\right) \subseteq \rho_{E, p}\left(G_{K}\right) \subseteq\left(\begin{array}{cc}
1 & * \\
0 & \chi_{p}\left(G_{K}\right)
\end{array}\right)
$$

Therefore, using Lemma 1.1 we obtain the result.

Lemma 1.3. Let E_{1} / K and E_{2} / K be two elliptic curves, and let $\phi: E_{1} \rightarrow E_{2}$ be a K-isogeny of degree p. Assume that,
(i) $\chi_{p}\left(G_{K}\right) \neq\{1\}$.
(ii) E_{1} and E_{2} have nontrivial K defined p-torsion points.
(iii) The image $\rho_{E_{1}, p}\left(G_{K}\right)$ is conjugate to $\left(\begin{array}{ll}1 & * \\ 0 & \chi_{p}\left(G_{K}\right)\end{array}\right)$.

Then the image $\rho_{E_{2}, p}\left(G_{K}\right)$ is conjugate to $\left(\begin{array}{ll}1 & 0 \\ 0 & \chi_{p}\left(G_{K}\right)\end{array}\right)$.

Proof. $\phi\left(E_{1}[p]\right)$ is a G_{K}-stable line in $E_{2}[p]$ on which G_{K} acts via χ_{p}, and $E_{2}[p]$ also contains a G_{K}-stable line on which G_{K} acts trivially, by assumption (ii). The result follows from (i).

Lemma 1.4. Let E_{1} / K and E_{2} / K be two elliptic curves and ϕ : $E_{1} \rightarrow E_{2}$ be a K-isogeny of degree $p \neq 2$. Assume that $E_{2}(K)[p]=\{0\}$. Then the curve E_{1} has nontrivial K-rational p-torsion points if and only if $\rho_{E_{2}, p}\left(G_{K}\right)$ is conjugate to $\left(\begin{array}{cc}\chi_{p}\left(G_{K}\right) & * \\ 0 & 1\end{array}\right)$.

Proof. Assume that $E_{1}(K)[p] \neq\{0\} . \phi\left(E_{1}[p]\right)$ is a $G_{K^{-}}$-stable line in $E_{2}[p]$ on which G_{K} acts via χ_{p}. As in Lemma 1.2 , we see that there exists a basis of $E_{2}[p]$ such that $\rho_{E_{2}, p}\left(G_{K}\right)=\left(\begin{array}{cc}\chi_{p}\left(G_{K}\right) & * \\ 0 & 1\end{array}\right)$. Conversely, by Lemma 1.1, $\hat{\phi}\left(E_{2}[p]\right)$ is a $G_{K^{-}}$-stable line in $E_{1}[p]$ on which G_{K} acts trivially, where $\hat{\phi}$ is the dual isogeny to ϕ.

Definition. Let E / K be an elliptic curve and let $p \neq 2$ be a prime number. We will say that E is a p-exceptional elliptic curve over K if it satisfies the following conditions:
(i) The elliptic curve E has no nontrivial K-rational p-torsion points.
(ii) There exist an elliptic curve E^{\prime} / K and a K-isogeny $\phi: E \rightarrow E^{\prime}$ of degree p.
(iii) Every elliptic curve $E^{\prime} K$-isogenous to E with isogeny of degree p has no nontrivial K-rational p-torsion points.

We remark that, from the 722 elliptic curves without complex multiplication listed in the Antwerp tables [1], only 39 are 3-exceptional over $\mathbf{Q}, 27$ are 5 -exceptional over $\mathbf{Q}, 8$ are 7 -exceptional over $\mathbf{Q}, 4$ are 11-exceptional over \mathbf{Q} and 4 are 13-exceptional over \mathbf{Q}; if $p>13$, all elliptic curves are non- p-exceptional over \mathbf{Q}. More precisely, the p exceptional elliptic curves over \mathbf{Q} without complex multiplication, with conductor less than or equal to 200 are:

```
p=3:50A,50B, 50C, 50D; 80A, 80B, 80C, 80D;
    98A, 98B, 98C, 98D, 98E, 98F; 100A, 100B, 100C, 100D;
    112E, 112F, 112G, 112H, 112I, 112J;
    150I, 150J, 150K, 150L, 150M, 150N, 150O, 150P;
    175C, 175D, 175E; 176A, 176B;196A, 196B
p=5:50E, 50F,50G,50H;75A,75B;
    99C, 99D, 99E; 121A, 121B, 121C;
    150E, 150F, 150G, 150H; 171I, 171J;
    175F, 175G; 176D, 176E, 176F; 198Q, 198R, 198S, 198T
p=7:162A,162B,162C,162D,162G,162H,162I, 162J
p=11:121F, 121G, 121H, 121I
p=13:147A, 147B, 147I, 147J.
```

Using Lemmas 1.2 and 1.4 we can give the images of the $\bmod p$ Galois representation attached to non- p-exceptional elliptic curves which admit a K-isogeny of degree p.

Lemma 1.5. Let E / K be a non-p-exceptional elliptic curve over K. Assume that E admits a K-isogeny of degree p, then
(i) If $E(K)[p] \neq\{0\}$ and E admits only one K-isogeny of degree p,
then there exists a basis of $E[p]$ such that

$$
\rho_{E, p}\left(G_{K}\right)=\left(\begin{array}{cc}
1 & * \\
0 & \chi_{p}\left(G_{K}\right)
\end{array}\right)
$$

(ii) If $E(K)[p] \neq\{0\}$ and E admits more than one K-isogeny of degree p, then there exists a basis of $E[p]$ such that

$$
\rho_{E, p}\left(G_{K}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & \chi_{p}\left(G_{K}\right)
\end{array}\right)
$$

(iii) If $E(K)[p]=\{0\}$, then there exists a basis of $E[p]$ such that

$$
\rho_{E, p}\left(G_{K}\right)=\left(\begin{array}{cc}
\chi_{p}\left(G_{K}\right) & * \\
0 & 1
\end{array}\right)
$$

2. Product of two K-isogenous elliptic curves. Let E_{1} and E_{2} be two elliptic curves defined over K and K-isogenous. If we fix a basis of $E_{1}[p]$ and a basis of $E_{2}[p]$, we can identify Aut $\left(E_{1}[p]\right)$ and Aut $\left(E_{2}[p]\right)$ with $\mathrm{GL}_{2}\left(\mathbf{F}_{p}\right)$, and Aut $\left(E_{1}[p] \times E_{2}[p]\right)$ with $\mathrm{GL}_{4}\left(\mathbf{F}_{p}\right)$. We have a natural injection $\operatorname{Aut}\left(E_{1}[p]\right) \times \operatorname{Aut}\left(E_{2}[p]\right) \hookrightarrow \operatorname{Aut}\left(E_{1}[p] \times E_{2}[p]\right)$.

We consider the homomorphism

$$
\psi_{p}: G_{K} \longrightarrow \operatorname{Aut}\left(E_{1}[p]\right) \times \operatorname{Aut}\left(E_{2}[p]\right)
$$

We remark that, in the case of K-isogenous elliptic curves, we have a strict inclusion $\psi_{p}\left(G_{K}\right) \subset M_{p}$ for all prime numbers p not dividing the degree of the isogeny. In fact we have $\psi_{p}\left(G_{K}\right)=\left\{(s, s) \in M_{p}: s \in\right.$ $\left.\rho_{E_{1}, p}\left(G_{K}\right)\right\}$ in this case.

Let us denote $N_{p}:=M_{p} \cap\left(\rho_{E_{1}, p}\left(G_{K}\right) \times \rho_{E_{2}, p}\left(G_{K}\right)\right)$. Clearly, we have that the image $\psi_{p}\left(G_{K}\right) \subseteq N_{p}$.

Theorem 2.1. Let E_{1} / K and E_{2} / K be two elliptic curves. Let p be a prime number, and let $\phi: E_{1} \rightarrow E_{2}$ be a K-isogeny of degree p.

Suppose that the pth cyclotomic character χ_{p} over K is nontrivial and that E_{1} is a non-p-exceptional elliptic curve, then $\psi_{p}\left(G_{K}\right)=N_{p}$.

Proof. By Lemmas 1.5, 1.2, 1.3 and 1.4, we can find a basis of $E_{1}[p] \times E_{2}[p]$ such that N_{p} has, matricially, one of the following expressions:
(i) $\left\{\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & 1 & c \\ 0 & 0 & 0 & d\end{array}\right)\right\} \underset{\substack{d \in \chi_{p}\left(G_{K}\right) \\ c \in \mathbf{F}_{p}}}{ }$
(ii) $\left\{\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & d\end{array}\right)\right\}_{d \in \chi_{p}\left(G_{K}\right)}$
(iii) $\left\{\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & d & 0 & 0 \\ 0 & 0 & d & c \\ 0 & 0 & 0 & 1\end{array}\right)\right\} \begin{gathered}\substack{d \in \chi_{p}\left(G_{K}\right) \\ c \in \mathbf{F}_{p}} \\ \end{gathered}$
(iv) $\left\{\left(\begin{array}{cccc}a & c & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & c^{\prime} \\ 0 & 0 & 0 & a\end{array}\right)\right\} \begin{gathered}\substack{\left.a \in \chi_{p}\left(G_{K}\right) \\ c \in \mathbf{F}_{p}\right) \\ c^{\prime} \in \mathbf{F}_{p}}\end{gathered}$.

In cases (i), (ii) and (iii), if $\left(s, s^{\prime}\right) \in N_{p}$, let $\sigma \in G_{K}$ such that $s^{\prime}=\rho_{E_{2}, p}(\sigma)$. Since $\operatorname{det} s=\operatorname{det} s^{\prime}$, then $\rho_{E_{1}, p}(\sigma)=s$ and $\left(s, s^{\prime}\right)=$ $\psi_{p}(\sigma) \in \psi_{p}\left(G_{K}\right)$.
In case (iv), if $\left(s, s^{\prime}\right) \in N_{p}$, with $s=\left(\begin{array}{ll}a & c \\ 0 & 1\end{array}\right)$ and $s^{\prime}=\left(\begin{array}{cc}1 & c^{\prime} \\ 0 & a\end{array}\right)$, let $\sigma \in G_{K}$ such that $\rho_{E_{1}, p}(\sigma)=s$. Then $\rho_{E_{2}, p}(\sigma)=\left(\begin{array}{cc}1 & c_{\sigma} \\ 0 & a\end{array}\right)$. There exists $\sigma^{\prime \prime} \in G_{K}$ such that $\rho_{E_{2}, p}\left(\sigma^{\prime \prime}\right)=\left(\begin{array}{cc}1 & c^{\prime}-c_{\sigma} \\ 0 & 1\end{array}\right)$ and $\rho_{E_{1}, p}\left(\sigma^{\prime \prime}\right)=\mathrm{id}$. Therefore, $\left(s, s^{\prime}\right)=\psi_{p}(\sigma) \circ \psi_{p}\left(\sigma^{\prime \prime}\right)=\psi_{p}\left(\sigma \circ \sigma^{\prime \prime}\right) \in \psi_{p}\left(G_{K}\right)$.

Remark. In the case of p-exceptional elliptic curves, we have a strict inclusion $\psi_{p}\left(G_{K}\right) \subset N_{p}$. Let $\phi: E_{1} \rightarrow E_{2}$ be a K-isogeny of degree p. Let $\varphi_{1}^{E_{1}}$ and $\varphi_{2}^{E_{1}}$, respectively $\varphi_{1}^{E_{2}}$ and $\varphi_{2}^{E_{2}}$, be the two characters $G_{K} \rightarrow \mathbf{F}_{p}^{*}$, giving the action of G_{K} on the stable line L and on the quotient $E_{1}[p] / L$, respectively on $\phi(L)$ and $E_{2}[p] / \phi(L)$. Then $\varphi_{1}^{E_{1}}=\varphi_{2}^{E_{2}}$ and $\varphi_{2}^{E_{1}}=\varphi_{1}^{E_{2}}$, which are nontrivial, since E_{1} and E_{2} are p-exceptional.

REFERENCES

1. B. Birch and W. Kuyk (eds.), Modular functions of one variable IV, Lecture Notes in Math. 476, Springer-Verlag, New York, 1972.
2. G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349-366.
3. J.-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), 259-331.
4. J.H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Math. 106, Springer-Verlag, New York, 1986.

Seminari de Matemàtiques, I.B. Bellvitge., Avda. Amèrica, 99, E-08907
L'Hospitalet de Llobregat, Spain
E-mail address: areverte@pie.xtec.es
Departament d'Àlgebra i Geometria, Facultat de Matemàtiques, Universitat de Barcelona, Gran Via de les Corts Catalanes, 585, E-08007 Barcelona, Spain
E-mail address: vila@cerber.mat.ub.es

[^0]: Received by the editors on April 5, 1999, and in revised form on May 11, 1999.

