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GALOIS REPRESENTATIONS ATTACHED
TO THE PRODUCT OF TWO ELLIPTIC CURVES

AMADEU REVERTER AND NÚRIA VILA

ABSTRACT. We study the images of mod p Galois rep-
resentations attached to the abelian variety product of two
elliptic curves. The case of two nonisogenous elliptic curves
without complex multiplication has been considered by Serre
[3]. In this paper we examine the case of two isogenous elliptic
curves.

Let E1, E2 be two elliptic curves defined over a number field K.
Let p be a prime number, and let E1[p] and E2[p] denote the group
of p-torsion points of E1 and E2. The action of the absolute Galois
group GK of K on the p-torsion points of E1 and E2 defines the Galois
representations

ρE1,p : GK −→ Aut (E1[p]), ρE2,p : GK −→ Aut (E2[p])

and the homomorphism

ψp : GK −→ Aut (E1[p]) × Aut (E2[p]).

Let us denote

Mp := {(s, s′) ∈ Aut (E1[p]) × Aut (E2[p]) : det s = det s′}.

Let χp be the mod p cyclotomic character. We have that det ρE1,p =
det ρE2,p = χp, by the Weil pairing. Then the image ψp(GK) is
contained in Mp.

Serre [3] studies the image ψp(GK) whenever the elliptic curves are
without complex multiplication and not K-isogenous. Using Falting’s
results [2] on the Tate conjecture, we have
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Theorem [3]. Let E1/K and E2/K be two elliptic curves without
complex multiplication and nonisogenous. Then ψp(GK) = Mp, for all
but finitely many primes p.

From now on we will consider elliptic curves defined over K and
K-isogenous. First we need some results concerning the relationship
between the image of mod p Galois representation attached to elliptic
curves, K-isogenies and p-torsion points.

1. Images and isogenies. Let K be a number field and let E/K
be an elliptic curve defined over K. Let p be a prime number, and let
χp be the mod p cyclotomic character. Let ρE,p be the mod p Galois
representation associated to the p-torsion points E[p] of the elliptic
curve E. Observe that the elliptic curve E/K admits an isogeny of
degree p defined over K if and only if the image ρE,p(GK) is contained
in a Borel subgroup. If E1/K and E2/K are related by an isogeny
defined over K of degree prime to p, then this isogeny induces a GK-
module isomorphism from E1[p] to E2[p], which identifies the images
ρE1,p(GK) and ρE2,p(GK). Moreover, we have

Lemma 1.1. Let E1/K and E2/K be two elliptic curves and
φ : E1 → E2 be a K-isogeny of degree p. Then the following conditions
are equivalent:

(i) There exists a one-dimensional GK-stable subspace of E1[p] not
annihilated by φ.

(ii) ρE1,p(GK) is contained in a split Cartan subgroup of Aut (E1[p]).

(iii) There exists an elliptic curve E3/K non-K-isomorphic to E2 and
a K-isogeny φ′ : E1 → E3 of degree p.

Lemma 1.2. Let E/K be an elliptic curve with nontrivial p-torsion
points defined over K. Then a basis of E[p] exists such that

ρp,E(GK) =




(
1 ∗
0 χp(GK)

)
if E has only one K-isogeny

of degree p,(
1 0

0 χp(GK)

)
otherwise.
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Proof. Let P ∈ E(K)[p]\{0} and Q ∈ E[p] such that {P,Q} is an
Fp-basis of E[p]. Let σ0 ∈ GK such that P σ0 = P , Qσ0 = cσ0P + dσ0Q
and dσ0 generate the cyclic group det ρE,p(GK) = χp(GK) ⊆ F∗

p. If
dσ0 	= 1, take {P,Q′} as a basis, where Q′ = cσ0P + (dσ0 − 1)Q. Then(

1 0
0 χp(GK)

)
⊆ ρE,p(GK) ⊆

(
1 ∗
0 χp(GK)

)
.

Therefore, using Lemma 1.1 we obtain the result.

Lemma 1.3. Let E1/K and E2/K be two elliptic curves, and let
φ : E1 → E2 be a K-isogeny of degree p. Assume that,

(i) χp(GK) 	= {1}.
(ii) E1 and E2 have nontrivial K defined p-torsion points.

(iii) The image ρE1,p(GK) is conjugate to
(

1 ∗
0 χp(GK)

)
.

Then the image ρE2,p(GK) is conjugate to
(

1 0

0 χp(GK)

)
.

Proof. φ(E1[p]) is a GK-stable line in E2[p] on which GK acts via χp,
and E2[p] also contains a GK-stable line on which GK acts trivially, by
assumption (ii). The result follows from (i).

Lemma 1.4. Let E1/K and E2/K be two elliptic curves and φ :
E1 → E2 be a K-isogeny of degree p 	= 2. Assume that E2(K)[p] = {0}.
Then the curve E1 has nontrivial K-rational p-torsion points if and only
if ρE2,p(GK) is conjugate to

(
χp(GK) ∗

0 1

)
.

Proof. Assume that E1(K)[p] 	= {0}. φ(E1[p]) is a GK-stable line in
E2[p] on which GK acts via χp. As in Lemma 1.2, we see that there

exists a basis of E2[p] such that ρE2,p(GK) =
(

χp(GK) ∗
0 1

)
. Conversely,

by Lemma 1.1, φ̂(E2[p]) is a GK-stable line in E1[p] on which GK acts
trivially, where φ̂ is the dual isogeny to φ.

Definition. Let E/K be an elliptic curve and let p 	= 2 be a prime
number. We will say that E is a p-exceptional elliptic curve over K if
it satisfies the following conditions:
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(i) The elliptic curve E has no nontrivial K-rational p-torsion points.

(ii) There exist an elliptic curve E′/K and a K-isogeny φ : E → E′

of degree p.

(iii) Every elliptic curve E′ K-isogenous to E with isogeny of degree
p has no nontrivial K-rational p-torsion points.

We remark that, from the 722 elliptic curves without complex mul-
tiplication listed in the Antwerp tables [1], only 39 are 3-exceptional
over Q, 27 are 5-exceptional over Q, 8 are 7-exceptional over Q, 4
are 11-exceptional over Q and 4 are 13-exceptional over Q; if p > 13,
all elliptic curves are non-p-exceptional over Q. More precisely, the p-
exceptional elliptic curves over Q without complex multiplication, with
conductor less than or equal to 200 are:

p = 3 : 50A, 50B, 50C, 50D; 80A, 80B, 80C, 80D;
98A, 98B, 98C, 98D, 98E, 98F ; 100A, 100B, 100C, 100D;
112E, 112F, 112G, 112H, 112I, 112J ;
150I, 150J, 150K, 150L, 150M, 150N, 150O, 150P ;
175C, 175D, 175E; 176A, 176B; 196A, 196B

p = 5 : 50E, 50F, 50G, 50H; 75A, 75B;
99C, 99D, 99E; 121A, 121B, 121C;
150E, 150F, 150G, 150H; 171I, 171J ;
175F, 175G; 176D, 176E, 176F ; 198Q, 198R, 198S, 198T

p = 7 : 162A, 162B, 162C, 162D, 162G, 162H, 162I, 162J
p = 11 : 121F, 121G, 121H, 121I
p = 13 : 147A, 147B, 147I, 147J.

Using Lemmas 1.2 and 1.4 we can give the images of the mod p Ga-
lois representation attached to non-p-exceptional elliptic curves which
admit a K-isogeny of degree p.

Lemma 1.5. Let E/K be a non-p-exceptional elliptic curve over K.
Assume that E admits a K-isogeny of degree p, then

(i) If E(K)[p] 	= {0} and E admits only one K-isogeny of degree p,
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then there exists a basis of E[p] such that

ρE,p(GK) =
(

1 ∗
0 χp(GK)

)
.

(ii) If E(K)[p] 	= {0} and E admits more than one K-isogeny of
degree p, then there exists a basis of E[p] such that

ρE,p(GK) =
(

1 0
0 χp(GK)

)
.

(iii) If E(K)[p] = {0}, then there exists a basis of E[p] such that

ρE,p(GK) =
(
χp(GK) ∗

0 1

)
.

2. Product of two K-isogenous elliptic curves. Let E1 and
E2 be two elliptic curves defined over K and K-isogenous. If we fix
a basis of E1[p] and a basis of E2[p], we can identify Aut (E1[p]) and
Aut (E2[p]) with GL2(Fp), and Aut (E1[p] ×E2[p]) with GL4(Fp). We
have a natural injection Aut (E1[p])×Aut (E2[p]) ↪→ Aut (E1[p]×E2[p]).

We consider the homomorphism

ψp : GK −→ Aut (E1[p]) × Aut (E2[p]).

We remark that, in the case of K-isogenous elliptic curves, we have
a strict inclusion ψp(GK) ⊂ Mp for all prime numbers p not dividing
the degree of the isogeny. In fact we have ψp(GK) = {(s, s) ∈ Mp : s ∈
ρE1,p(GK)} in this case.

Let us denote Np := Mp∩(ρE1,p(GK)×ρE2,p(GK)). Clearly, we have
that the image ψp(GK) ⊆ Np.

Theorem 2.1. Let E1/K and E2/K be two elliptic curves. Let p
be a prime number, and let φ : E1 → E2 be a K-isogeny of degree p.
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Suppose that the pth cyclotomic character χp over K is nontrivial and
that E1 is a non-p-exceptional elliptic curve, then ψp(GK) = Np.

Proof. By Lemmas 1.5, 1.2, 1.3 and 1.4, we can find a basis
of E1[p] × E2[p] such that Np has, matricially, one of the following
expressions:

(i)







1 0 0 0
0 d 0 0
0 0 1 c
0 0 0 d





d∈χp(GK)

c∈Fp

(ii)







1 0 0 0
0 d 0 0
0 0 1 0
0 0 0 d







d∈χp(GK)

(iii)







1 0 0 0
0 d 0 0
0 0 d c
0 0 0 1





d∈χp(GK)

c∈Fp

(iv)






a c 0 0
0 1 0 0
0 0 1 c′

0 0 0 a





a∈χp(GK)

c∈Fp

c′∈Fp

.

In cases (i), (ii) and (iii), if (s, s′) ∈ Np, let σ ∈ GK such that
s′ = ρE2,p(σ). Since det s = det s′, then ρE1,p(σ) = s and (s, s′) =
ψp(σ) ∈ ψp(GK).

In case (iv), if (s, s′) ∈ Np, with s =
( a c

0 1

)
and s′ =

(
1 c′

0 a

)
, let

σ ∈ GK such that ρE1,p(σ) = s. Then ρE2,p(σ) =
(

1 cσ

0 a

)
. There

exists σ′′ ∈ GK such that ρE2,p(σ′′) =
(

1 c′−cσ

0 1

)
and ρE1,p(σ′′) = id.

Therefore, (s, s′) = ψp(σ) ◦ ψp(σ′′) = ψp(σ ◦ σ′′) ∈ ψp(GK).

Remark. In the case of p-exceptional elliptic curves, we have a
strict inclusion ψp(GK) ⊂ Np. Let φ : E1 → E2 be a K-isogeny of
degree p. Let ϕE1

1 and ϕE1
2 , respectively ϕE2

1 and ϕE2
2 , be the two

characters GK → F∗
p, giving the action of GK on the stable line L and

on the quotient E1[p]/L, respectively on φ(L) and E2[p]/φ(L). Then
ϕE1

1 = ϕE2
2 and ϕE1

2 = ϕE2
1 , which are nontrivial, since E1 and E2 are

p-exceptional.
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