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HARMONIC BESOV SPACES ON
THE UNIT BALL IN Rn

MIROLJUB JEVTIĆ AND MIROSLAV PAVLOVIĆ

ABSTRACT. We define and characterize the harmonic
Besov space Bp, 1 ≤ p ≤ ∞, on the unit ball B in Rn. We
prove that the Besov spaces Bp, 1 ≤ p ≤ ∞, are natural quo-
tient spaces of certain Lp spaces. The dual of Bp, 1 ≤ p < ∞,
can be identified with Bq , 1/p + 1/q = 1, and the dual of the
little harmonic Bloch space B0 is B1.

1. Introduction. Let dν be the volume measure on the unit ball
B = Bn in Rn normalized so that B has volume equal to one. For
any real α > 0 we consider the measure dνα(x) = cα(1−|x|2)α−1 dν(x)
where the constant cα is chosen so that dνα has total mass 1. An
integration in polar coordinates shows that cα = (2/n)[B(n/2, α)]−1.
See [1]. Also, we let dτ (x) = (1− |x|2)−n dν(x).

For f harmonic on B, f ∈ h(B), and any positive integer m, we
write |∂mf(x)| = ∑

|α|=m |∂αf(x)|, where ∂αf(x) = (∂|α|f/∂xα)(x), α
a multi-index.

For 1 ≤ p ≤ ∞, the harmonic Besov space Bp = Bp(B) consists of
harmonic functions f on B such that the function (1 − |x|2)k|∂kf(x)|
belongs to Lp(B, dτ ) for some positive integer k > (n− 1)/p. We note
that the definition is independent of k (see Theorem 3.2).

Let B0 be the subspace of B∞ consisting of functions f ∈ h(B) with

(1− |x|2)k|∂kf(x)| −→ 0, as x → S, for some k > 0,

where S = ∂B is the (full) topological boundary of B in Rn.

For α > 0 and 0 < p < ∞, we let lp,α−1 denote the closed subspace
of Lp,α−1 = Lp(B, dνα) consisting of harmonic functions in Lp,α−1.

The purpose of the present paper is to study the Besov spaces Bp.
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In Section 2 we list some of the known properties of the Bergman
kernel Kα of the orthogonal projection Pα of the space L2,α−1 onto
l2,α−1 that will be of great importance in the rest of the paper.

In Section 3 we characterize the Besov spaces Bp in terms of certain
differential and integral operators that involve the Bergman kernel Kα.

In Section 4 we show that Pα maps Lp(B, dτ ) onto Bp and C0(B),
the space of continuous functions on B that vanish on the boundary
∂B, onto the little Bloch space B0.

Section 5 deals with duality. The results are: (Bp)� = Bq, 1 ≤ p < ∞
and 1/p+ 1/q = 1; B�

0 = B1.

It should be noted that the analogous results for analytic functions
are known. See, for example, [8] and [10] and the references therein.

2. The Bergman kernel. It is well known that the projection
operator Pα from L2,α−1 onto l2,α−1 is an integral operator

(2.1) Pαf(x) =
∫

B

Kα(x, y)f(y) dνα(y), f ∈ L2,α−1.

In [1, p. 154], an explicit formula for the reproducing kernel K1(x, y)
is given. It is shown that K1(x, y) =

∑∞
j=0 A

1
jZj(x, y), where

A1
j = B(n/2, 1)/B(n/2 + j, 1), j = 0, 1, 2, . . . , and Zj(x, y) are ex-

tended zonal harmonics. The same argument shows that Kα(x, y) =∑∞
j=0 A

α
j Zj(x, y), where Aα

j = B(n/2, α)/B(n/2 + j, α), α > 0,
j = 0, 1, 2, . . . .

The following two estimates for the Bergman kernel were obtained in
[5].

Lemma 2.1. If α > 0, |x| < 1 and |y| = 1, then

|Kα(x, y)| ≤ C|x− y|−n+1−a.

Lemma 2.2. If α is a multi-index, s > 0, x ∈ B and y = rξ, where
0 ≤ r < 1 and ξ ∈ S, then

|∂α
xKs(x, y)| ≤ C

|rx− ξ|n−1+s+|α| .
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Here C is a constant that depends only on n, s and α.

Lemma 2.3. Let m > n − 1. There exists a constant C > 0 such
that ∫

S

dσ(y)
|x− y|m ≤ C

(1− |x|)m−n+1
, for all x ∈ B.

As usual, σ is the normalized surface measure on S.

Proof. Without loss of generality, we may assume x = re1, e1 =
(1, 0, . . . , 0), 0 < r < 1. Then∫

S

|x− y|−m dσ(y) =
∫

S

(r2 − 2ry1 + 1)−m/2 dσ(y)

= Cn

∫ 1

−1

(r2 − 2rt+ 1)−m/2(1− t2)(n−3)/2 dt,

by Corollary A6 [1, p. 216]. A change of variable 1− t = (1−r)2ξ gives
∫

S

|x− y|−m dσ(y) ≤ C

∫ 1

0

(1− 2rt+ r2)−m/2(1− t)(n−3)/2 dt

≤ C

∫ (1−r)−2

0

[(1− r)2 + 2r(1− r)2ξ]−m/2

· (1− r)n−1ξ(n−3)/2 dξ

≤ C(1− r)−m+n−1

∫ ∞

0

ξ(n−3)/2dξ

(1 + 2rξ)m/2

≤ C(1− r)−m+n−1.

(The last integral converges since (m/2)− (n− 3)/2 > 1.)

Using integration in polar coordinates, Lemma 2.1 and Lemma 2.3
we obtain

Lemma 2.4. Let m, γ > 0 and (n+m− 1)p > n− 1 + γ. Then∫
B

(1− |y|2)γ−1|Km(x, y)|p dν(y)

≤ C(1− |x|)γ+n−1−p(n+m−1), x ∈ B.
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3. A characterization of the Besov space Bp. Now we charac-
terize the Besov space Bp in terms of certain fractional differential and
integral operators on B whose kernel involves the Bergman kernel Kα.

Let s > 0 and m ≥ 0. We define a linear operator Rm
s on L1(B, dνs)

by

Rm
s u(x) = cs

∫
B

Ks+m(x, y)u(y)(1− |y|2)s−1 dν(y),

u ∈ L1(B, dνs).

We note that the formula (2.1) extends the domain of Ps to L1(B, dνs)
and Ps is the identity map on l1,s−1. We write Psu = R0

su, u ∈
L1(B, dνs). We also write Em,su(x) = (1 − |x|2)mRm

s u(x) for u ∈
L1(B, dνs).

Theorem 3.1. Suppose m > max{0,−α}, α real, s > max{0, α}
and 1 ≤ p ≤ ∞. Then the operator Em,s is bounded on Lp(B, dµα)
where dµα(x) = (1− |x|2)α−1 dν(x).

Proof. The case p = 1 follows from Lemma 2.4 and Fubini’s theorem.
Also the case p = ∞ is a direct consequence of Lemma 2.4.

Next we consider the case 1 < p < ∞. As usual, we shall need to use
Schur’s theorem (see [9]).

Let p−1 + q−1 = 1, let ε be any positive number satisfying 0 < ε <
min{m/q, (s − α)/p}, and let H(x) = (1 − |x|2)ε. Using Lemma 2.4
again, we obtain∫

B

(1− |x|2)m(1− |y|2)s−α|Ks+m(x, y)|H(y)q dµα(y) ≤ CH(x)q

and∫
B

(1− |x|2)m(1− |y|2)s−α|Ks+m(x, y)|H(x)p dµα(x) ≤ CH(y)p

for some constant C > 0 and all x, y ∈ B. This completes the proof of
Theorem 3.1 in view of Schur’s theorem.

Theorem 3.2. Let 1 ≤ p ≤ ∞ and s > 0. If f ∈ h(B), then the
following statements are equivalent:
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(i) There exists a positive integer m > (n − 1)/p such that (1 −
|x|2)mRm

s f(x) ∈ Lp(τ ),

(ii) There exists a positive integer m > (n − 1)/p such that (1 −
|x|2)m|∂mf(x)| ∈ Lp(τ ),

(iii) For all positive integers k > (n−1)/p, (1−|x|2)kRk
sf(x) ∈ Lp(τ ),

(iv) For all positive integers k > (n−1)/p, (1−|x|2)k|∂kf(x)| ∈ Lp(τ ).

Proof. Let (1−|x|2)m|∂mf(x)| ∈ Lp(τ ). Then (1−|x|2)m|∂mf(x)| =
O(1) and therefore f ∈ Lp(B, dνs) for any p > 0 and s > 0. Let
f(x) =

∑∞
j=0 fj(x), x ∈ B, be a homogeneous expansion of f . Then

we have

Rm
s f(x) = cs

∫
B

(1− |y|2)s−1Ks+m(x, y)f(y) dν(y)

= csn

∫ 1

0

tn−1(1− t2)s−1 dt

·
∫

S

( ∑
j

As+m
j Zj(x, ty)

)(∑
j

fj(ty)
)
dσ(y)

=
∑

j

As+m
j cs

n

2
B(n/2 + j, s)fj(x).

Using this and the equality

As+m
j =

n/2 + j + s+m− 1
n/2 + s+m− 1

As+m−1
j

we find that

Rm
s f(x) =

((
I +

1
n/2 + s+m− 1

R
)
Rm−1

s

)
(f)(x).

Here, as usual, R =
∑n

j=1 xj(∂/∂xj) denotes the radial derivative.
Note that R0

sf(x) = Psf(x) = f(x). Thus

|Rm
s f(x)| ≤ C

∑
|a|≤m

|∂αf(x)|.
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It is easy to see that if |∂mf(x)|(1 − |x|2)m ∈ Lp(τ ), then (1 −
|x|2)m|∂αf(x)| ∈ Lp(τ ) for any multi-index α for which |α| ≤ m. Thus
(1− |x|2)mRm

s f(x) ∈ Lp(τ ).

Conversely, assume that (1− |x|2)mRm
s f(x) ∈ Lp(τ ). Using Fubini’s

theorem, we get

f(x) = cs+m

∫
B

(1− |y|2)s+m−1Rm
s f(y)Ks(x, y) dν(y).

Using Lemma 2.2, we find that

|∂αf(x)| ≤ C

∫
B

(1− |ρ|2)s+m−1|Rm
s f(ρξ)| dν(ρξ)

|ρx− ξ|n−1+s+|α| .

From this, as in Theorem 3.1, we find that (1−|x|2)m|∂αf(x)| ∈ Lp(τ ),
|α| ≤ m (note that by Lemma 2.3 we have

∫
S
|rη − ξ|−s dσ(η) ≤

C(1− r)−s+n−1, where 0 ≤ r < 1, ξ ∈ S and s > n− 1).

To finish the proof of Theorem 3.2, it is sufficient to prove the
equivalence (ii) ⇔ (iv). This is standard. For more general results,
see [6]. See also [2] and [4].

Remark 3.3. Carefully examining the proof of Theorem 3.2 above,
we actually see that the following are equivalent norms on Bp for the
appropriate p’s:

( ∫
B

(1− |x|2)mp|∂mf(x)|p dτ (x)
)1/p

+
∑

|α|<m

|∂αf(0)|,
(3.1)

( ∫
B

(1− |x|2)mp|Rm
s f(x)|p dτ (x)

)1/p

+ |f(0)|.
(3.2)

In the sequel, by ‖f‖Bp , we will mean any of the expressions (3.1) and
(3.2). In the case p = ∞ we have

‖f‖B∞ ∼= |f(0)|+ sup
x∈B

(1− |x|2)m|Rm
s f(x)|.
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Corollary 3.4. Let m > (n− 1)/p be a positive integer, 1 ≤ p ≤ ∞,
and s, t > 0. If f ∈ h(B), then (1− |x|2)mRm

s f(x) ∈ Lp(τ ) if and only
if (1− |x|2)mRm

t f(x) ∈ Lp(τ ).

A similar argument shows that the following is true.

Theorem 3.5. Let k and m be positive integers and s > 0. If
f ∈ h(B), then the following statements are equivalent.

(i) (1− |x|2)mRm
s f(x) → 0, |x| → 1,

(ii) (1− |x|2)m|∂mf(x)| → 0, |x| → 1,

(iii) (1− |x|2)kRk
sf(x) → 0, |x| → 1,

(iv) (1− |x|2)k|∂kf(x)| → 0, |x| → 1.

Corollary 3.6. Let m be a positive integer and s, t > 0. If
f ∈ h(B), then (1 − |x|2)mRm

s f(x) → 0, |x| → 1 if and only if
(1− |x|2)mRm

t f(x) → 0, |x| → 1.

4. Harmonic Besov spaces. In this section we prove that the
harmonic Besov spaces Bp are natural quotient spaces of certain Lp

spaces.

Theorem 4.1. For 1 ≤ p ≤ ∞, the Bergman projection Ps, s > 0,
maps Lp(B, dτ ) boundedly onto the harmonic Besov space Bp.

Proof. It is easily seen that PsL
p(B, dτ ) ⊂ l1,s−1. Let m >

n− 1. Given f in Lp(B, dτ ), by Fubini’s theorem and the reproducing
property of the kernel functions, we easily obtain

Rm
s Psf(x) = cs

∫
B

(1− |y|2)s−1Ks+m(x, y)Psf(y) dν(y)

= c2s

∫
B

(1− |y|2)s−1Ks+m(x, y) dν(y)

·
∫

B

(1− |ξ|2)s−1Ks(y, ξ)f(ξ) dν(ξ)
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= c2s

∫
B

(1− |ξ|2)s−1f(ξ) dν(ξ)

·
∫

B

(1− |y|2)s−1Ks(ξ, y)Ks+m(y, x) dν(y)

= cs

∫
B

(1− |ξ|2)s−1Ks+m(x, ξ)f(ξ) dν(ξ)

= Rm
s f(x).

Thus,
(1− |x|2)mRm

s Psf(x) = Em,sf(x).

By Theorem 3.1, the operator Em,s is bounded on Lp(B, dτ ) for all
1 ≤ p ≤ ∞. Thus, the function (1 − |x|2)mRm

s Psf(x) is in Lp(B, dτ )
and hence Psf is in Bp, by Theorem 3.2.

That Ps maps Lp(B, dτ ) onto Bp follows from the fact that if f ∈ Bp,
then f(x) = cs+mc−1

s Ps((1− |x|2)mRm
s f(x)).

A slight modification of the previous arguments gives the following:

Theorem 4.2. The Bergman projection Ps, s > 0, maps C0(B)
boundedly onto B0.

5. Duality. In this section we deal with duality. The main result is
the following.

Theorem 5.1. Let 1 ≤ p < ∞, m > n− 1 and s = m− n+ 1. The
integral pairing

〈f, g〉τ =
∫

B

Em,sf(y)Em,sg(y) dτ (y)

induces the following dualities

(a) (Bp)� = Bq, where 1/p+ 1/q = 1,

(b) (B0)� = B1.

Proof. (a) By Theorem 3.2, f ∈ Bp if and only if Em,sf ∈ Lp(B, dτ );
thus, the above pairing is well defined and we clearly have Bq ⊂ (Bp)�

under the above pairing.
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Conversely, assume that λ is a bounded linear functional on Bp;
we show that λ arises from a function in Bq. Since Em,s maps Bp

into Lp(B, dτ ) isometrically, λ ◦E−1
m,s is a bounded linear functional on

the image space of Em,s in Lp(B, dτ ). By the Hahn-Banach theorem
λ ◦ E−1

m,s extends to a bounded linear functional on Lp(B, dτ ). Thus
there exists a function φ ∈ Lq(B, dτ ) such that

λ ◦E−1
m,s(f) =

∫
B

f(y)φ(y) dτ (y), f ∈ Lp(B, dτ ).

When f is in Bp, Em,sf is Lp(B, dτ ). Therefore,

λ(f) =
∫

B

Em,sf(y)φ(y) dτ (y), f ∈ Bp.

Let h = Psφ. Then h ∈ Bq by Theorem 4.1. Using Fubini’s theorem,
we obtain

Em,sh(x) = (1− |x|2)mRm
s h(x) = (1− |x|2)mRm

s (Psφ)(x)
= (1− |x|2)m(Rm

s φ)(x) = Em,sφ(x).

To finish the proof of Theorem 5.1, it remains to show that

〈Em,sf,Em,sφ〉τ = 〈E2
m,sf, φ〉τ

and that
cm+sE

2
m,sf = csEm,sf.

This follows easily from Fubini’s theorem and reproducing property of
Ps. Note that s = m − n + 1. We leave the details to the interested
reader. Thus,

λ(f) =
∫

B

Em,sf(y)Em,sg(y) dτ (y)

for all f ∈ Bp where g = cm+sc
−1
s h ∈ Bq.

(b) Since f → Em,sf is one-to-one for harmonic f and

‖f‖Bp ∼= ‖Em,sf‖Lp(B,dτ),
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we clearly have B1 ⊂ (B0)�.

If λ is a bounded linear functional on B0, then λ◦E−1
m,s : Em,s(B0) →

C is a bounded linear functional on the closed subspace Em,s(B0)
of C0(B). By Hahn-Banach, λ ◦ E−1

m,s extends to a bounded linear
functional on C0(B). By Riesz representation, there exists a finite
complex Borel measure dµ on B such that

λ ◦ E−1
m,s(f) =

∫
B

f(y) dµ(y), f ∈ C0(B).

In particular,

λ(f) =
∫

B

Em,sf(y) dµ(y), f ∈ B0.

Let
g(x) =

∫
B

(1− |y|2)mKs(x, y) dµ(y).

Then g is harmonic in B and

Rm
s g(x) = cs

∫
B

(1− |y|2)s−1Ks+m(x, y)g(y) dν(y)

= c2

∫
B

(1− |y|2)s−1Ks+m(x, y) dν(y)

·
∫

B

(1− |ξ|2)mKs(y, ξ) dµ(ξ)

=
∫

B

(1− |ξ|2)m dµ(ξ)cs

·
∫

B

(1− |y|2)s−1Ks(y, ξ)Ks+m(x, y) dν(y)

=
∫

B

(1− |ξ|2)mKs+m(x, ξ) dµ(ξ).

Hence,

‖(1− |x|2)mRm
s g‖L1(τ)

≤ C

∫
B

(1−|x|2)m−n

( ∫
B

(1−|ξ|2)m|Ks+m(x, ξ)|d|µ|(ξ)
)
dν(x)

= C

∫
B

(1−|ξ|2)m d|µ|(ξ)
∫

B

(1−|x|2)m−n|Ks+m(x, ξ)| dν(x)
≤ C|µ|(B).
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Thus, g ∈ B1. Here we have used Lemma 2.4 again and the fact that
s+ n− 1 = m.

Since 〈Em,sf,Em,sg〉τ = 〈f,E2
m,sg〉τ and cs+mE2

m,sg = csEm,sg, we
have

〈f, g〉τ =
∫

B

f(y)E2
m,sg(y) , dτ (y)

= csc
−1
s+m

∫
B

f(y)Em,sg(y) dτ (y)

= csc
−1
s+m

∫
B

f(y)(1− |y|2)m−n dν(y)

·
∫

B

(1− |ξ|2)mKs+m(y, ξ) dµ(ξ)

= csc
−1
s+m

∫
B

(1− |ξ|2)m dµ(ξ)

·
∫

B

(1− |y|2)s−1Ks+m(ξ, y)f(y) dν(y)

= c−1
s+m

∫
B

Em,sf(ξ) dµ(ξ).

Thus,

λ(f) =
∫

B

Em,sf(y)Em,sh(y) dτ (y),

where h = cs+mg.
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4. J. Detraz, Classes de Bergman de fonctions harmoniques, Bull. Soc. Math.
France 109 (1981), 259 268.
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