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EXTENDED RIEMANN ZETA FUNCTIONS

M. ASLAM CHAUDHRY, ASGHAR QADIR, M.T. BOUDJELKHA,

M. RAFIQUE AND S.M. ZUBAIR

ABSTRACT. Analogous to recent useful generalizations of
the family of gamma functions and beta functions, extensions
of the Riemann zeta function are presented, for which the
usual properties and representations are naturally and simply
extended. In analogy to these extensions, the extended Hur-
witz functions are introduced. Hurwitz-type formulae are also
proved.

1. Introduction. The zeta function, though originally introduced
by Euler, was independently used by Riemann to attack a problem in
the theory of prime numbers [4], [8], [11], [13]. It was known that
prime numbers become progressively sparser for large values but no
explicit expression explaining how they become so was available until
the time of Legendre and Gauss. Writing the number of primes less
than or equal to n as

(1.1) π(n) =
∑
p≤n

1,

where the summation extends only over the primes. At age 15 Gauss,
in 1792, conjectured that as n → ∞,

(1.2) π(n) ∼ n/ log n.

In an attempt to prove the conjecture, Riemann used the zeta function
extended to complex variables. (It may be mentioned in passing that
though the Riemann proof was incomplete, there is now available an
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elementary proof of this result and it is commonly known as the prime
number theorem [4], [16]).

Studying the properties of the zeta function, Riemann conjectured
that the nontrivial zeros of ζ(α), α = σ + iτ , lie on the critical line
σ = 1/2 in the complex plane. Though it is proved that they are
restricted to the strip, 0 < σ < 1 (Hardy managed to show that there
are infinitely many zeros on the critical line), there is still no proof of
the Riemann hypothesis [4], [8], [13].

In this paper, we present two extensions of the Riemann zeta function
which are closely related to each other. There being infinitely many new
functions and infinitely many extensions or generalizations possible for
well-known functions, one needs some clear-cut criteria to determine
whether a given extension is worthwhile or not. If it arises in diverse
problems, or interesting new relations turn up between it and other
functions, or new insights are provided for the original functions, or
particularly elegant results can be found for the new function, it would
be worthwhile. In our case, we do find natural extensions of the
previous results, obtain new results for the extensions and expect that
there will be a wider applicability of these extended zeta functions.

Our extensions were motivated by the wide applications of the gener-
alization of the family of gamma functions [2], [3] and the beta function
[1]. We use integral representations of the zeta function to extend them
analogously to the generalized gamma function. We also apply our ex-
tension procedure to the Hurwitz zeta function, ζ(α, q), and obtain
the corresponding extensions for it. The asymptotic representations of
these functions for small values of the parameter are proved as well.
Hurwitz-type formulae for the corresponding loop integrals are also
proved.

For clarity of presentation, we state our results as theorems and take
α = σ + iτ .

2. The extended zeta function ζb(α). The original definition of
the zeta function by Euler [11], [13] was

(2.1) ζ(σ) =
∞∑

n=1

n−σ, σ > 1.

It was known that this function has the integral representation
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[13, p. 18]

(2.2) ζ(α) =
1

Γ(α)

∫ ∞

0

tα−1(1− e−t)−1e−t dt

The integral in (2.2) becomes singular for σ ≤ 1 because of the
singularity of the integrand at t = 0. This integrand is similar to
that appearing in the Euler gamma function [3] which was generalized
to

(2.3) Γb(α) :=
∫ ∞

0

tα−1e−t−b/t dt, b > 0; b = 0, σ > 0.

This function reduces to the usual gamma function for b = 0. The
corresponding extended zeta function is defined as

ζb(α) :=
1

Γ(α)

∫ ∞

0

tα−1(1− e−t)−1e−t−b/t dt

b > 0; b = 0, σ > 1.

It avoids the singularity of the integrand at t = 0 for b > 0 as it is
exponentially suppressed, see Figure 1 (given in Section 3). As such, it
allows us to continue this function into the domain σ < 1. Clearly, in
the limit b → 0 we recover the original zeta function for σ > 1.

Theorem 1.

(2.5) ζb(α) =
1

Γ(α)

∞∑
n=1

Γnb(α)n−α, b > 0; b = 0, σ > 1.

Proof. Expanding (1 − e−t)−1 in (2.4) as a power series in e−t, we
obtain

(2.6) ζb(α) =
1

Γ(α)

∞∑
n=1

∫ ∞

0

tα−1e−nt−b/t dt.

Rescaling the integration variable by n−1, we prove the theorem. To
justify the inversion of order of summation and integration, it may be
noted that the series ∞∑

n=1

tσ−1e−nt−b/t
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converges to a function which is integrable. But when b = 0, the
assumption σ > 1 is essential to secure convergence of the improper
integral ∫ ∞

0

tσ−1

et − 1
dt.

Clearly, as Γ0(α) = Γ(α), setting b = 0 in (2.5) yields (2.1).

Corollary. Using the reflection property of the generalized gamma
function [3]

(2.7) Γb(−α) = b−αΓb(α), b > 0,

we immediately obtain the relationship

(2.8)
∞∑

n=1

Γnb(α) = bαΓ(−α)ζb(−α), b > 0.

Exploiting the representation ([7, p. 696])

(2.9) Γb(α) = 2bα/2Kα(2
√
b), b > 0,

we can relate the extended zeta function to the Macdonald function by

(2.10) ζb(α) =
2bα/2

Γ(α)

∞∑
n=1

n−α/2Kα(2
√
nb), b > 0.

Theorem 2.

(2.11)
ζb(α)Γ(α) = 2α−1

∫ ∞

0

tα−1e−t−b/2tcsch (t) dt

b > 0; b = 0, σ > 1.

Proof. This result follows by changing t to 2t in (2.4) and using the
fact that

(e2t − 1)−1 = e−tcsch (t)/2.
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Putting b = 0 gives

(2.12) ζ(α)Γ(α) = 2α−1

∫ ∞

0

tα−1e−tcsch (t) dt,

which is a standard result for the Riemann zeta function [5, p. 32(4)].

Theorem 3.

(2.13)
ζb(α)− 2−αζ2b(α) =

1
Γ(α)

∞∑
n=1

Γ(2n−1)b(α)
(2n− 1)α

b > 0; b = 0, σ > 1.

Proof. Expanding the left-hand side as a summation of the general-
ized gamma function, we have

(2.14) LHS =
1

Γ(α)

[ ∞∑
n=1

Γnb(α)
nα

− 1
2α

∞∑
n=1

Γn(2b)(α)
nα

]
.

We can combine 2α with nα to obtain (2n)α and express Γ2(nb) as Γ(2n)b.
Thus the right-hand side of (2.14) becomes the difference between the
sum over all natural numbers and even natural numbers, which is
simply the sum over all odd natural numbers, namely, the right-hand
side of (2.13). This proves the result.

Corollary (see [11, p. 36]).

(2.15)
∞∑

n=1

(2n− 1)−α = (1− 2−α)ζ(α), σ > 1.

Proof. This standard result for the zeta function [5, p. 32(3)] is
directly obtained by setting b = 0 in (2.13).

Theorem 4.

(2.16)
ζb(α)− 21−αζ2b(α) =

1
Γ(α)

∞∑
n=1

(−1)n−1Γnb(α)
nα

b > 0; b = 0, σ > 0.
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Proof. Expanding the right-hand side of (2.16), we get a summation
over odd natural numbers minus that over even natural numbers. Thus,

(2.17) RHS =
1

Γ(α)

∞∑
n=1

Γ(2n−1)b(α)
(2n− 1)α

− 2−α

Γ(α)

∞∑
n=1

Γn(2b)(α)
nα

.

Now using (2.5), with b replaced by 2b and (2.13), we see that

(2.18) RHS = ζb(α)− 2−αζ2b(α)− 2−αζ2b(α).

Simplifying the right-hand side in (2.18), we get the left-hand side of
(2.16), thus proving the result.

Corollary.

(2.19)
∞∑

n=1

(−1)n−1n−α = (1− 21−α)ζ(α), σ > 0.

Proof. This standard result, [13, p. 21], is directly obtained by setting
b = 0 in (2.16).

Theorem 5.

(2.20)
ζb(α)− 21−αζ2b(α) =

1
Γ(α)

∫ ∞

0

tα−1(1 + e−t)−1e−t−b/t dt

b > 0; b = 0, σ > 0.

Proof. Using the definition of the generalized gamma function, given
by (2.4), and rescaling the variable of integration t by n, we get

(2.21) n−αΓnb(α) =
∫ ∞

0

tα−1e−nt−b/t dt.

Whence, multiplying by (−1)n−1 and summing both sides over positive
natural numbers n, we obtain

(2.22)
∞∑

n=1

(−1)n−1Γnb(α)n−α =
∫ ∞

0

tα−1(1 + e−t)−1e−t−b/t dt.



EXTENDED RIEMANN ZETA FUNCTIONS 1243

Using (2.22) and the previous theorem, we arrive at (2.20).

Corollary.

ζb(α)− 21−αζ2b(α) =
2α−1

Γ(α)

∫ ∞

0

tα−1e−t−b/2tsech (t) dt

b > 0; b = 0, σ > 0.

Proof. Scaling the variable of integration in (2.20) by 2, directly gives
the above result as

(1 + e−2t)−1 =
1
2
etsech (t).

Corollary.

(2.23) (1− 21−α)ζ(α) =
2α−1

Γ(α)

∫ ∞

0

tα−1e−tsech (t) dt, σ > 0.

Proof. Obtained directly from (2.23), with b = 0, is a standard result
for the zeta function, see [5, p. 32].

Corollary.

(2.24) ζ(α) =
1

Γ(α)(1− 21−α)

∫ ∞

0

tα−1

1 + et
dt, σ > 0,

is another form of (2.24), see [5, p. 32]).

3. Transforms and the extended zeta function. It is of particu-
lar interest to find relationships between our extended zeta function and
transforms of various functions. This may, alternatively, be thought of
as the representation of this function in terms of transforms. In par-
ticular, the extended zeta function (2.4) can be written as the Mellin
transform representation to give

(3.1) ζb(α) =
1

Γ(α)
M

{
e−t−bt−1

1− e−t
;α

}
, b > 0; b = 0, σ > 1.
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The transformation t = e−x in (2.4) yields

(3.2) ζb(α) =
1

Γ(α)

∫ ∞

−∞

exp(−bex)
exp(e−x)− 1

e−αx dx

which is the bilateral Laplace transform representation. The substitu-
tion α = σ + iτ in (3.2) yields

(3.3) ζb(α) =
1

Γ(α)

∫ ∞

−∞

exp(−σx− bex)
exp(e−x)− 1

e−iτx dx.

It can be written in the operational form to give

(3.4) ζb(α) =
1

Γ(α)
F

{
exp(−σx− bex)
exp(e−x)− 1

; τ
}
,

where F is the Fourier transform operator given by

(3.5) F{f(x); τ} =
∫ ∞

−∞
f(x)e−iτx dx

Theorem 3.1.

(3.6)
∫ ∞

0

ζb(α)bs−1 db =
Γ(s)Γ(α+ s)

Γ(α)
ζ(α+ s), σ > 0, Re(s) > 0.

Proof. For two functions f(t) and g(t) [6, p. 308], we have

(3.7) M
{∫ ∞

0

tα−1f(t)g(τ/t) dt; s
}
= M{f(t); s+ α}M{g(t); s}.

If f(t) = (et − 1)−1 and g(t) = e−t, then, M{g(t); s} = Γ(s) and, in
view of (3.1), M{f(t); s+α} = Γ(α+ s)ζ(α+ s). On using (2.4), (3.7)
gives

(3.8) Γ(α)
∫ ∞

0

ζτ (α)τ s−1 dτ = Γ(s)Γ(α+ s)ζ(α+ s).
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Rearranging and replacing τ by b, we get (3.6).

Remark. The substitution s = 1 in (3.6) yields an interesting relation

(3.9)
∫ ∞

0

ζb(α) db = αζ(α+ 1), σ > 0,

between the extended and classical zeta function. It shows that there
does not exist any α, σ > 0, where the function ζb(α) vanishes
identically for all b ≥ 0. If we have ζb(α0) ≡ 0 for all b ≥ 0, σ0 > 0,
then it will contradict (3.9) as ζ(α + 1) does not vanish in the region
σ > 0, [13, p. 30]. However, it will be interesting to seek the values of
b and α for which ζb(α) = 0, σ > 0.

Theorem 3.2 (Asymptotic representation as b → 0+).

(3.10)

Γ(α)ζb(α) ∼
∞∑

n=0

Γ(α− n)ζ(α− n)
(−b)n

n!
+ Γ(1− α)bα−1

− 1
2
Γ(−α)bα + bα

∞∑
n=0

Γ(−α−2n−1)
(2n+ 2)!

B2n+2b
2n+1

0 < σ < 1, b → 0+,

where B2n are the Bernoulli numbers [4, p. 14].

Proof. The inverse Mellin transform of (3.6) yields

(3.11)
Γ(α)ζb(α) =

1
2πi

∫ C+i∞

C−i∞
Γ(z)Γ(z − α)ζ(z)bα−z dz

0 < C < 1.

The integrand

(3.12) F (z) := Γ(z)Γ(z − α)ζ(z)bα−z

in (3.11) has three sets of poles, {0, 1}, {−2n−1}∞n=0, and {α−n}∞n=0,
as the poles of F at −2n are canceled by the trivial zeros of the zeta
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function. The residues at these poles are given by

Res {F ; 0} = −1
2
Γ(−α)bα,(3.13)

Res {F ; 1} = Γ(1− α)bα−1,(3.14)

Res {F ;−2n− 1} = (−1)2n+1

(2n+ 1)!
Γ(−2n− α− 1)

· ζ(−2n− 1)bα+2n+1,(3.15)

Res {F ;α− n} = (−1)n
n!

Γ(α− n)ζ(α− n)bn.(3.16)

Summing over all these residues yields the asymptotic representation
as b → 0+, see [15, pp. 147 148],
(3.17)

Γ(α)ζb(α) ∼
[
Γ(1− α)bα−1 − 1

2
Γ(−α)bα

]

+
∞∑

n=0

Γ(α− n)ζ(α− n)
(−b)n

n!

+ bα
∞∑

n=0

(−1)2n+1

(2n+ 1)!
Γ(−2n− α− 1)ζ(−2n− 1)b2n+1 .

However, see [4, p. 14],

(3.18) ζ(−2n− 1) =
(−1)2n+1

2n+ 2
B2n+2.

From (3.17) and (3.18) we arrive at (3.10).

Remark. It follows from (3.10) that as b → 0+

(3.19) ζb(α) = ζ(α) + C1b
α−1 + o(1), 0 < σ < 1.

It seems disappointing that the function ζb(α) does not approximate
the zeta function in the critical strip as b → 0+. However, we have
resolved this situation in the second extension of the zeta function.
Using the IMSL FORTRAN subroutines for mathematical functions
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FIGURE 1. Representation of the extended zeta function ζb(α).

([12], [10]), a graphical representation of the function for b = 0.00,
0.25, 0.50, 0.75, 1.00 is given in Figure 1.

4. The second extended zeta function ζ∗b (α). The Riemann
functional equation [13, p. 13]

(4.1) ζ(α) = 2απα−1 sin
(
1
2
απ

)
Γ(1− α)ζ(1− α),

and the fact that the zeta function has no zeros in the region σ > 1
implies that all the nontrivial zeros of the zeta function lie in the
critical strip, 0 < σ < 1. The function has simple zeros at α =
−2, −4, −6, . . . . Therefore, it is desirable to have an extension of the
Riemann zeta function over the region that includes the critical strip
as well. Although the function ζb(α) extends naturally and simply, the
usual properties of the Riemann zeta function for σ > 1, it fails to
extend these properties in the critical strip, 0 < σ < 1. Therefore, it is
natural to seek a second extension of the zeta function that carries all
the useful properties up to the critical strip.
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In view of (2.20) and (2.26), it seems natural to define the second
extended zeta function by

(4.2) ζ∗b (α) :=
1

C(α)

∫ ∞

0

tα−1e−b/t

et + 1
dt, b > 0; b = 0, σ > 0,

where

(4.3) C(α) := Γ(α)(1− 21−α).

It can be seen from (2.26) and (4.2) that

(4.4) ζ∗0 (α) = ζ(α), σ > 0.

Moreover, in view of (2.20) and (4.2), we have an interesting relation

(4.5) ζ∗b (α) =
ζb(α)− 21−αζ2b(α)

1− 21−α

between the two extended zeta functions. The relation (4.5) is in fact
valid over the whole complex plane by the principle of analytic con-
tinuation. Using the IMSL FORTRAN subroutines for mathematical
functions ([12], [10]), a graphical representation of the function for
b = 0.00, 0.25, 0.50, 0.75, 1.00 is given in Figures 2 and 3 in the inter-
vals 0 < σ < 1 and 1 < σ < 10, respectively.

Theorem (4.1).

(4.6)

∫ ∞

0

ζ∗b (α)b
s−1 db =

Γ(s)C(α+ s)ζ(α+ s)
C(α)

s

Re (s) > 0, Re (α) > 0.

Proof. Multiplying both sides in (4.2) by bs−1 and integrating from
b = 0 to b = ∞, we obtain

(4.7)
∫ ∞

0

ζ∗b (α)b
s−1 db =

1
C(α)

∫ ∞

0

tα−1

et + 1

( ∫ ∞

0

bs−1e−b/tdb

)
dt.
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FIGURE 2. Representation of the extended zeta function ζ∗b (α), 0 < α < 1.

The integral ∫ ∞

0

bs−1e−b/t db,

in (4.7) is expressible in terms of the gamma function to give

(4.8)
∫ ∞

0

bs−1e−b/t db = tsΓ(s), Re (s) > 0.

From (4.7) and (4.8) we get

(4.9)
∫ ∞

0

ζ∗b (α)b
s−1 db =

Γ(s)
C(α)

∫ ∞

0

tα+s−1

et + 1
dt,

which by (2.25) reduces to (4.6).

Corollary.

(4.10)
∫ ∞

0

ζ∗b (α) db = C(α+ 1)ζ(α+ 1).
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FIGURE 3. Representation of the extended zeta function ζ∗b (α), 1 < α < 10.

Remark. It is to be noted that the extended zeta function (4.2)
satisfies the inequality

(4.11) |ζ∗b (α)| ≤
∣∣∣∣C(σ)C(α)

∣∣∣∣ |ζ(σ)|, b > 0, σ > 0.

One would be interested to seek a constant K > 0 such that

(4.12) |ζ∗b (α)| ≤ K|ζ(α)|, 0 < σ < 1, b ≥ 0.

The relation (4.10) excludes the existence of such K > 0 for which
(4.12) is true. To prove this we consider the nontrivial zero α0 =
σ0 + iτ0 of the zeta function. If (4.12) were true then ζ∗b (α0) must
vanish identically for all b ≥ 0. But then (4.10) would imply that
C(α0 + 1)ζ(α0 + 1) should be zero which is not possible as both C(α)
and ζ(α) are different from zero in the region σ > 1 [13, p. 2].
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Theorem 4.2. For b → 0+

(4.13)

C(α)ζ∗b (α) ∼
∞∑

n=0

C(α− n)ζ(α− n)
(−b)n

n!
− 1

2
Γ(−α)bα

+ bα
∞∑

n=0

(1− 22n+2)
(2n+ 2)!

Γ(−α− 2n− 1)B2n+2b
2n+1,

0 < σ < 1,

where the Bk’s are the Bernoulli numbers.

Proof. This is similar to that of (4.6).

Corollary.

(4.14) ζ∗b (α) = ζ(α)− Γ(−α)
2C(α)

bα +O(b), b → 0+, 0 < σ < 1.

Proof. Since the factor C(α) is different from zero in the critical strip,
we can divide both sides of (4.13) by C(α) to get (4.14).

Theorem 4.3.

(4.15) ζ∗b (α) =
1

C(α)

∞∑
n=1

(−1)n−1

nα
Γnb(α), b > 0; b = 0, σ > 0.

Proof. According to (4.2)

(4.16) ζ∗b (α) =
1

C(α)

∫ ∞

0

tα−1(1 + e−t)−1e−t−b/t dt.

Replacing the factor (1+ e−t)−1 in (4.16) by its geometric series in e−t

and then rescaling the variable by n−1, we prove (4.15).

Corollary.

(5.1) ζ(α) =
1

(1− 21−α)

∞∑
n=1

(−1)n−1

nα
, σ > 0.
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Proof. This result [13, p. 21] for the zeta function follows from (4.15)
when we substitute b = 0.

5. Extended Hurwitz zeta functions. The Hurwitz zeta function
ζ(α, q) is initially defined for σ > 1 by the series

(5.1) ζ(α, q) :=
∞∑

n=0

1
(n+ q)α

, 0 < q ≤ 1.

It reduces to ζ(α) when q = 1, and to (2α − 1)ζ(α) when q = (1/2),
and has the integral representation ([13, p. 37], [14, p. 265])

(5.2) ζ(α, q) :=
1

Γ(α)

∫ ∞

0

tα−1e−qt

1− e−t
dt, σ > 1, 0 < q ≤ 1.

In analogy to (2.4) and (4.2), the extended Hurwitz zeta functions
ζb(α, q) and ζ∗b (α, q) are defined by

(5.3)
ζb(α, q) :=

1
Γ(α)

∫ ∞

0

tα−1e−qt−b/t

1− e−t
dt,

σ > 1, 0 < q ≤ 1, b ≥ 0,

and

(5.4)
ζ∗b (α, q) :=

1
C(α)

∫ ∞

0

tα−1e−qt−b/t

1 + e−t
dt

σ > 0, 0 < q ≤ 1, b ≥ 0,

where C(α) is as in (4.3).

It is to be noted that

(5.5) ζ0(α, q) = ζ(α, q), σ > 1,

and

(5.6) ζ∗0 (α, q) =
21−αζ(α, q/2)− ζ(α, q)

1− 21−α
, σ > 0.

The relation (5.6) can be extended to an arbitrary b with b ≥ 0 as
follows.
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Theorem 5.1.

(5.7) ζ∗b (α, q) =
21−αζ2b(α, q/2)− ζb(α, q)

1− 21−α
.

Proof. Replacing q by q/2 in (5.3) and changing the variable of
integration from t to 2t, we get an expression for ζ2b(α, q/2), i.e.,

(5.8) ζ2b(α, q/2) =
2α

Γ(α)

∫ ∞

0

tα−1e−qt−b/t

1− e−2t
dt.

However,

(5.9) 2(1− e−2t)−1 = (1− e−t)−1 + (1 + e−t)−1.

From (5.8) and (5.9) we get

(5.10) 21−αζ2b(α, q/2)− ζb(α, q) = (1− 21−α)ζ∗b (α, q).

Dividing by the factor 1− 21−α we obtain (5.7).

Remark. It is important to note that the continuous analogue to the
classical relation, see [13, p. 37],

ζ

(
α,

1
2

)
= (2α − 1)ζ(α),(5.11)

is

ζb

(
α,

1
2

)
= 2αζb/2(α)− ζb(α).(5.12)

Moreover, substituting q = 1 in (5.7) and using (5.2) we arrive at (4.5).

Besides the fact that the substitution b = 0 in (5.3) yields the Hurwitz
zeta function, it is important to see that these functions are related via
the Mellin transform.
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Theorem 5.2.

(5.13)

∫ ∞

0

ζb(α, q)bs−1 db =
Γ(s)Γ(α+ s)ζ(α+ s, q)

Γ(α)
,

Re (s) > 0, Re (α+ s) > 1.

Proof. Multiplying both sides in (5.3) with bs−1 and integrating with
respect to b from b = 0 to b = ∞, and using the Fubini theorem we get

(5.14)
∫ ∞

0

ζb(α, q)bs−1 db

=
1

Γ(α)

∫ ∞

0

tα−1e−qt

1− e−t

( ∫ ∞

0

bs−1e−b/t db

)
dt.

The integral in (5.14) is solvable in terms of the gamma function to
give

(5.15)
∫ ∞

0

bs−1e−b/t db = ts−1Γ(s), Re (s) > 0.

From (5.14) and (5.15) we obtain

(5.16)
∫ ∞

0

ζb(α, q)bs−1 db =
Γ(s)
Γ(α)

∫ ∞

0

tα+s−1e−qt

1− e−t
dt,

which is exactly (5.13) when Re (α+ s) > 1.

Corollary.

(5.17)
∫ ∞

0

ζb(α, q) db = αζ(α+ 1, q).

Proof. Follows from (5.13) when we substitute s = 1.

Corollary.

(5.18)
Γ(α)ζb(α, q) =

1
2πi

∫ C+i∞

C−i∞
Γ(z)Γ(z − α)ζ(z, q)bα−z dz,

0 < C < 1.
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Proof. This follows from (5.13) by inverting the Mellin transform. In
particular, the substitution q = 1 in (5.18) yields (3.6).

Remark. In analogy to (5.13), we note that

(5.19)

∫ ∞

0

ζ∗b (α, q)b
s−1 db =

Γ(s)C(α+ s)ζ∗0 (α+ s, q)
C(α)

,

Re (s) > 0, Re (α+ s) > 0,

which yields (4.6) when we substitute q = 1.

Inverting (5.19) we obtain

(5.20)
C(α)ζ∗b (α, q) =

1
2πi

∫ C+i∞

C−i∞
C(z)Γ(z − α)ζ∗0 (z, q)b

α−z dz,

0 < C < 1,

where C(α) is as defined in (4.3).

6. Extended Hurwitz formula. For the generalized zeta function,
the Hurwitz formula [13, p. 37],

(6.1)

ζ(α, q) =
2Γ(1− α)
(2π)1−α

{
sin

(
1
2
απ

) ∞∑
n=1

cos 2πqn
n1−α

+ cos
(
1
2
απ

) ∞∑
n=1

sin 2πqn
n1−α

}

σ < 0, 0 < q ≤ 1,

applies; and the Riemann functional equation

(6.2) ζ(α) = 2
Γ(1− α)
(2π)1−α

sin
(
1
2
απ

)
ζ(1− α),

is obtained by putting q = 1. It seems natural to seek Hurwitz type
formulae for the extended zeta functions which would include, as a
special case, the classical Hurwitz formula when b = 0. For this
purpose, a review of the analysis by which this formula was obtained,
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see [14, p. 226], shows that ζ(α, q) can be expressed as a Hankel contour
integral

(6.3) ζ(α, q) = −Γ(1− α)
2πi

∫ (0+)

∞
(−z)α−1 e−qz

1− e−z
dz,

and that the contribution of the integral along the small circle γρ =
{z : |z| = ρ} tends to zero as the radius ρ → 0.

By analogy, we consider the loop integral
∫ (0+)

∞
(−z)α−1 e

−qz−b/z

1− e−z
dz,

which can be written as the sum
∫ (0+)

∞
(−z)α−1 e

−qz−b/z

1− e−z
dz

=
∫

γρ

(−z)α−1 e
−qz−b/z

1− e−z
dz + (eπi(α−1) − e−πi(α−1))

·
∫ ∞

ρ

xα−1 e
−qx−b/x

1− e−x
dx.

It is to be noted that, if b > 0, the contribution from the integral
over the small circle will not vanish as ρ → 0. In fact, this integral
diverges, as ρ → 0. In view of the above considerations, we introduce
the following two related functions

(6.4) Ib(α, q) := −Γ(1− α)
2πi

∫ (0+)

∞
(−z)α−1 e

−qz−b/z

1− e−z
dz,

and

(6.5)
I∗b (α, q) := −Γ(1− α)

2πi

∫ (0+)

∞
(−z)α−1 e

−qz−b/z

1 + e−z
dz

0 < q ≤ 1, b ≥ 0,

where ∫ (0+)

∞
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denotes a Hankel contour not containing any of the poles of the
integrand, and obtain their corresponding Hurwitz type formulae.

Theorem 6.1.

(6.6)
Ib(α, q) = 2Γ(1− α)

∞∑
k=1

(2kπ)α−1 sin
(
2kπq +

απ

2
− b

2kπ

)

σ < 0, 0 < q ≤ 1, b ≥ 0.

Proof. Let

f(z) = (−z)α−1 e
−qz−b/z

1− e−z
, Reα = σ < 0, 0 < q ≤ 1, b ≥ 0

and consider the contour integral

1
2πi

∫
Cn

f(z) dz

where
Cn = Ln ∪ Γn.

Γn consists of a large circle:

z = Rne
iθ, Rn = (2n+ 1)π, −π ≤ θ ≤ π.

It starts at the point z = −(2n + 1)πeiπ, encircles the origin in
the clockwise direction and ends at the point z = −(2n + 1)πe−iπ.
The contour Ln is a loop around the positive real axis. It starts at
z = −(2n + 1)πe−iπ, goes inward on the upper edge of the “cut” to
the point z = ρ < π, encircles the origin once in the counterclockwise
direction and returns along the lower edge of the “cut” to the point
z = −(2n+ 1)πeiπ.

Between Ln and Γn, the function f has simple poles at z = ±2kπi for
nonzero natural numbers k. The sum of the residues for the symmetric
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kth poles is

(6.7)

Res {f ; 2kπi}+Res {f ;−2kπi}
= (2kπ)α−1

{
ei[2kπq+(α−1)(π/2)−(b/2kπ)]

+ e−i[2kπq+(α−1)(π/2)−(b/2kπ)]
}

= 2(2kπ)α−1 sin
(
2kπq + α

π

2
− b

2kπ

)
.

By the residue theorem,

(6.8) − 1
2πi

∫
Cn

f(z) dz = 2
n∑

k=1

(2kπ)α−1 sin
(
2kπq + α

π

2
− b

2kπ

)
.

To show that the contribution from the large circle tends to zero as
n → ∞, we first note that

∣∣∣∣ e−qz

1− e−z

∣∣∣∣ ≤ K

on the circle z = Rne
iθ, −π ≤ θ ≤ π and |zα−1| = |Rσ−1

n e−τarg (z)| ≤
Rσ−1

n e|τ |π . Therefore, when σ < 0, see [7, p. 968],

(6.9)

∣∣∣∣ 1
2πi

∫
Γn

(−z)α−1 e
−qz−b/z

1− e−z
dz

∣∣∣∣
≤ K

2π

∫ π

−π

Rσ
ne

|τ |πe−(b/Rn) cos θ dθ

= Ke|τ |πRσ
nI0

(
b

Rn

)
−→ 0 (as n → ∞).

where I0(x) is the modified Bessel function of order zero, having limit
one as x → 0. Thus, letting n → ∞ in (6.8) and using (6.9), we arrive
at (6.6).

Remark. The substitution b = 0 in (6.6) yields the Hurwitz formula
(6.1).
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Theorem 6.2.

(6.10)

I∗b (α, q) = 2Γ(1− α)
∞∑

k=0

((2k + 1)π)α−1

· sin
(
(2k + 1)πq + α

π

2
− b

(2k + 1)π

)

σ < 0, 0 < q ≤ 1, b ≥ 0.

Proof. Let

f(z) := (−z)α−1 e
−qz−b/z

1 + e−z
, Reα = σ < 0, 0 < q ≤ 1, β ≥ 0,

and consider the contour integral

1
2πi

∫
Cn

f(z) dz

where Cn = Ln∪Γn. Γn consists of a large circle: z = Rne
iθ, Rn = 2nπ,

−π ≤ θ ≤ π, and Ln is a similar loop around the positive real axis
starting at z = −2nπe−iπ and ending on the lower edge of the “cut” at
the point z = −2nπeiπ. Inside Cn, the function f has simple poles at
z = ±(2k + 1)πi. The sum of the residues of the symmetric kth poles
is:

(6.11)

Res {f ; (2k + 1)πi}+Res {f ;−(2k + 1)πi}
= [(2k + 1)π]α−1

{
ei[(2k+1)πq+(α−1)(π/2)−(b/(2k+1)π)]

+e−i[(2k+1)πq+(α−1)(π/2)−b/((2k+1)π)]
}

= 2[(2k + 1)π]α−1 sin
(
(2k + 1)πq + α

π

2
− b

(2k + 1)π

)
.

By the residue theorem,

(6.12)

− 1
2πi

∫
Cn

f(z) dz

= 2
n−1∑
k=0

[(2k+1)π]α−1 sin
(
(2k+1)πq + α

π

2
− b

(2k+1)π

)
.
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In the contour integral, we now show that the contribution from the
large circle tends to zero as n → ∞. On the circle, z = Rne

iθ,
Rn = 2nπ, −π ≤ θ ≤ π,

∣∣∣∣ e−qz

1 + e−z

∣∣∣∣ ≤ M,

a positive constant, and |zα−1| ≤ Rσ−1
n e|τ |π . Since σ < 0, we have as

n → ∞,

∣∣∣∣ 1
2πi

∫
Γn

(−z)α−1 e−qz−b/z

1 + e−z
dz

∣∣∣∣
≤ M

2π

∫ π

−π

Rσ
ne

|τ |πe−(b/Rn) cos θ dθ −→ 0.

By letting n → ∞ in (6.12) and using (6.9), we arrive at (6.10).

7. The functions Fb(α) and F ∗
b (α). In this section we define two

functions

Fb(α) :=
ζb(α)ζ2b(1− α)
ζb(1− α)ζ2b(α)

, 0 < σ < 1, b > 0,(7.1)

and

F ∗
b (α) :=

ζ∗b (α)ζ
∗
2b(1− α)

ζ∗b (1− α)ζ∗2b(α)
, 0 < σ < 1, b > 0.(7.2)

The asymptotic representation (3.19) yields

(7.3) Fb(α) = 21−2σ [1 +O(bmin(σ,1−σ))], 0 < σ < 1, b → 0+,

and this tends to 21−2σ uniformly as b → 0+.

The asymptotic representation (4.14) yields

(7.4) lim
b→0+

F ∗
b (α) =

{
1 if ζ(α) �= 0,
21−2σ if ζ(α) = 0.
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To prove (7.4), we note that ζ∗b (α) converges uniformly to ζ(α) in
0 < σ0 ≤ σ ≤ σ1 < 1, as b → 0+. Thus, if ζ(α) does not vanish
at α, the right-hand side in (7.2) would converge to one when b → 0+.
When α is a zero of the zeta function we use (4.14) to evaluate the
limit in (7.4) that yields 21−2σ.

The limit in (7.4) is important. If an alternate evaluation of the limit
shows that

(7.5) lim
b→0+

F ∗
b (α) = 1, 0 < σ < 1,

then (7.5) would imply

(7.6) 21−2σ = 1 when ζ(α) = 0, 0 < σ < 1,

i.e., the nontrivial zeros of the zeta function lie on the critical line
σ = 1/2. This would prove the Riemann hypothesis and become one
of the most important applications of these extended zeta functions.

8. Discussion and conclusion. We have seen that the general-
ization of the incomplete and complete gamma functions [2], [3] and
the beta function [1] is useful for extending the zeta function. How-
ever, the extension does not continue to match the zeta function for all
ranges of the real part of the argument. The first extension carries on
beyond the singularity (at σ = 1) on the positive side, while the zeta
function is negative for 0 < σ < 1. Since the extension was designed to
be nonsingular at σ = 1 it could not match the zeta function beyond
that value.

To extend into the range 0 < σ < 1, which is of special interest
on account of the Riemann hypothesis (that the nontrivial zeros of
his zeta function lie on the line σ = 1/2, we started with an integral
representation of the zeta function valid for 0 < σ < ∞ and used
the “regularizer” to extend it. The singularity at σ = 0 (for a
real argument) was retained by a factor outside the integral. This
second extension carries many of the previous properties into the strip
0 < σ < 1 and has elegant relations to the zeta function itself and its
first extension.

There are infinitely many possible extensions of the zeta function.
Of course some results analogous to those for the zeta and generalized
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zeta functions would hold for any extension. What we require is that
the results be naturally and simply extended. This criterion is met by
these extensions. It is expected that such natural extensions would be
found useful in answering some of the classical problems.
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