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HANKEL TRANSFORMATION AND
HANKEL CONVOLUTION OF

TEMPERED BEURLING DISTRIBUTIONS

M. BELHADJ AND J.J. BETANCOR

ABSTRACT. In this paper we complete the distributional
theory of Hankel transformation developed in [5] and [18].
New Fréchet function spaces Hµ(w) are introduced. The
functions in Hµ(w) have a growth in infinity restricted by
the Beurling type function w. We study on Hµ(w) and its
dual the Hankel transformation and the Hankel convolution.

1. Introduction. The Hankel integral transformation is usually
defined by

hµ(φ)(x) =
∫ ∞

0

(xy)−µJµ(xy)φ(y)y2µ+1 dy, x ∈ (0,∞),

where Jµ represents the Bessel function of the first kind and order µ.
We will assume throughout this paper that µ > −1/2. Note that if φ
is a Lebesgue measurable function on (0,∞) and

∫ ∞

0

x2µ+1|φ(x)| dx < ∞,

then, since the function z−µJµ(z) is bounded on (0,∞), the Hankel
transform hµ(φ) is a bounded function on (0,∞). Moreover, hµ(φ) is
continuous on (0,∞) and, according to the Riemann-Lebesgue theorem
for Hankel transforms ([17]), limx→∞ hµ(φ)(x) = 0.

The study of the Hankel transformation in distribution spaces was
started by Zemanian ([18], [19]). In [18] the Hankel transform of
distribution of slow growth was defined. More recently, Betancor and
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Rodŕiguez-Mesa [5] have investigated the hµ transform of generalized
functions with exponential growth. Our objective in this paper that
is motivated by the studies of Björck [8] is to define the Hankel
transformation on new distribution spaces that are, in a certain sense,
between the spaces considered in [5] and [18]. Thus we complete the
investigations in [5] and [18].

Zemanian [18] introduced the space Hµ that consists of all those
complex valued and smooth functions φ defined on (0,∞) such that,
for every m,n ∈ N,

γµm,n(φ) = sup
x∈(0,∞)

(1 + x2)m
∣∣∣( 1

x
D

)n
(x−µ−1/2φ(x))

∣∣∣ < ∞.

On Hµ he considers the topology generated by the family {γµm,n}m,n∈N

of semi-norms. Then Hµ is a Fréchet space and the Hankel transfor-
mation Hµ defined by

Hµ(φ)(x) =
∫ ∞

0

(xy)1/2Jµ(xy)φ(y) dy, x ∈ (0,∞),

is an automorphism of Hµ ([18, Lemma 8]). Note that the two forms
hµ and Hµ of Hankel transforms are related through

Hµ(φ)(x) = xµ+1/2hµ(y−µ−1/2φ)(x), x ∈ (0,∞).

The Hankel transformation Hµ is defined on the dual H′
µ of Hµ by

transposition.

Altenburg [1] developed for the hµ transformation a theory similar to
that of Zemanian. Note that the space H−1/2 coincides with the space
H considered in [1].

In [5] the space χµ constituted by all the complex valued and smooth
functions φ defined on (0,∞) satisfying that

ηµm,n(φ) = sup
x∈(0,∞)

emx
∣∣∣( 1

x
D

)n
(x−µ−1/2φ(x))

∣∣∣ < ∞,

for each m,n ∈ N is considered. In [5, Theorem 2.1] a characterization
of the image by Hµ of the space χµ as a certain space of entire
functions with a restricted growth on horizontal strips is given. The
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Hankel transform Hµ is defined on the corresponding dual spaces by
transposition.

In this paper we analyze the behavior of Hankel transformations and
Hankel convolutions in the intermediate, in a suitable sense, spaces
between the spaces Hµ of functions with growth at infinity restricted by
polynomials in x and the spaces χµ of functions with growth at infinity
restricted by polynomials in ex. We introduce here the space Hµ(w)
constituted by functions whose growth is restricted by enw, n ∈ N,
where w is a function that we will define precisely later.

Hirschman [13], Haimo [12] and Cholewinski [9] investigated the
Hankel convolution operation.

The convolution associated with the hµ transformation is defined as
follows. The Hankel convolution f#µg of order µ of the measurable
functions f and g is given through

(f#µg)(x) =
∫ ∞

0

f(y)(µτxg)(y)
y2µ+1

2µΓ(µ+ 1)
dy,

where the Hankel translation operator µτxg, x ∈ (0,∞), of g is defined
by

(µτxg)(y) =
∫ ∞

0

g(z)Dµ(x, y, z)
z2µ+1

2µΓ(µ+ 1)
dz,

provided that the above integrals exist. Here Dµ is the following
function

Dµ(x, y, z) = (2µΓ(µ+ 1))2
∫ ∞

0

(xt)−µJµ(xt)(yt)µJµ(yt)(zt)−µ

· Jµ(zt)t2µ+1 dt, x, y, z ∈ (0,∞).

Moreover, we define µτ0g = g.

The study of the #µ-convolution on Lp-spaces was developed in [12]
and [13].

If we denote by L1,µ the space of complex valued and measurable
functions f on (0,∞) such that

∫ ∞
0

|f(x)|x2µ+1 dx < ∞, the following
interchange formula

hµ(f#µg) = hµ(f)hµ(g),
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holds for every f, g ∈ L1,µ.

A straightforward manipulation in #µ allows to define a convolution
operator for the transformation Hµ.

The investigation of the distributional Hankel convolution was started
by de Sousa-Pinto [15] who considered only µ = 0. Betancor and
Marrero ([3], [4] and [14]) studied the Hankel convolution on the
Zemanian spaces. In [5], Betancor and Rodŕiguez-Mesa analyzed the
#µ-convolution of distributions with exponential growth.

In the sequel, since we think any confusion is possible, to simplify we
will write #, τx, x ∈ [0,∞) and D instead of #µ, µτx, x ∈ [0,∞) and
Dµ, respectively.

As in [8] we consider continuous, increasing and nonnegative func-
tions w defined on [0,∞) such that w(0) = 0, w(1) > 0, and it satisfies
the following three properties

(α) w(x+ y) ≤ w(x) + w(y), x, y ∈ [0,∞),

(β)
∫ ∞
1

(w(x)/x2) dx < ∞, and

(γ) there exist a ∈ R and b > 0 such that w(x) ≥ a + b log(1 + x),
x ∈ [0,∞).

We say w ∈ M when w satisfies the above conditions. Note that if w
is extended to R as an even function, then w satisfies the subadditivity
property in (α) for every x, y ∈ R.

Beurling [7] developed a general theory of distributions that extends
the Schwartz theory. Some aspects of that theory were presented and
completed by Björck [8]. Inspired by the works of Beurling [7] and
Björck [8], we started in [2] the study of Beurling distributions for
Hankel transforms. We now collect some definitions and properties
presented in [2] and that will be useful in the sequel.

Let w ∈ M. For every a > 0 the space Baµ(w) is constituted by
all those complex-valued and smooth functions φ on (0,∞) such that
φ(x) = 0, x ≥ a, φ and hµ(φ) ∈ L1,µ and that

δµn(φ) =
∫ ∞

0

|hµ(φ)(x)|enw(x)x2µ+1 dx < ∞,

for every n ∈ N. Baµ(w) is a Fréchet space when we consider on it
the topology generated by the system {δµn}n∈N of semi-norms. It is
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clear that Baµ(w) is continuously contained in Bbµ(w) when 0 < a < b.
The union space Bµ(w) = ∪a>0Baµ(w) is endowed with the inductive
topology.

For every x ∈ (0,∞), the Hankel translation τx defines a continuous
linear mapping from Bµ(w) into itself ([2, Proposition 2.13]). Then we
can define the Hankel convolution T#φ of T ∈ Bµ(w)′, the dual space
of Bµ(w) and φ ∈ Bµ(w) by

(T#φ)(x) = 〈T, τxφ〉, x ∈ [0,∞).

By Eµ(w) we denote the space of pointwise multipliers of Bµ(w).
Eµ(w) is endowed with the topology induced by the topology of point-
wise convergence of the space L(Bµ(w)) of continuous linear mapping
from Bµ(w) into itself. The space Eµ(w)′ dual of Eµ(w) is character-
ized as the subspace of Bµ(w)′ defining Hankel convolution operators
on Bµ(w) ([2, Proposition 3.9]).

This paper is organized as follows. In Section 2 we introduce the
space Hµ(w) of functions and we study its main properties. The dual
space Hµ(w)′ of Hµ(w) is considered in Section 3. Also we analyze the
Hankel transformation and the Hankel convolution on Hµ(w)′.

Throughout this paper we always denote by C a suitable positive
constant that can change from one line to another one.

2. The space Hµ(w). In the sequel w is a function in M. We now
introduce the function spaces Hµ(w). A function φ ∈ L1,µ is in Hµ(w)
when φ and hµ(φ) are smooth functions and, for every m,n ∈ N,

αm,n(φ) = sup
x∈(0,∞)

emw(x)
∣∣∣( 1

x
D

)n
φ(x)

∣∣∣ < ∞,

and

βµm,n(φ) = sup
x∈(0,∞)

emw(x)
∣∣∣( 1

x
D

)n
hµ(φ)(x)

∣∣∣ < ∞.

On Hµ(w) we consider the topology generated by the family {αm,n,
βµm,n}m,n∈N of semi-norms.

In the following we establish some properties of Hµ(w) that can be
proved by invoking well-known properties of the Hankel transformation
hµ and the conditions imposed on the function w.
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Proposition 2.1. (i) The space Hµ(w) is a Fréchet space and it
is continuously contained in H−1/2. Moreover, if w(x) = log(1 + x),
x ∈ [0,∞), then Hµ(w) = H−1/2, where the equality is algebraical and
topological.

(ii) The Hankel transformation hµ is an automorphism of Hµ(w).

(iii) The Bessel operator ∆µ = x−2µ−1Dx2µ+1D defines a continuous
linear mapping from Hµ(w) into itself.

(iv) If P is a polynomial, then the mapping φ → P (x2)φ is linear and
continuous from Hµ(w) into itself.

We now introduce a new family of semi-norms on Hµ(w) that is
equivalent to {αm,n, βµm,n}m,n∈N and that will be very useful in the
sequel.

Proposition 2.2. For every m,n ∈ N, we define

Aµm,n(φ) = sup
x∈(0,∞)

emw(x)|∆n
µφ(x)|, φ ∈ Hµ(w),

and

Bµ
m,n(φ) = sup

x∈(0,∞)

emw(x)|∆n
µhµ(φ)(x)|, φ ∈ Hµ(w),

where ∆µ represents the Bessel operator x−2µ−1Dx2µ+1D. The family
{Aµm,n, Bµ

m,n}m,n∈N of semi-norms generates the topology of Hµ(w).

Proof. Proposition 2.1 (ii) and (iii) imply that the topology defined
on Hµ(w) by {αm,n, βµm,n}m,n∈N is stronger than the one induced on
it by {Aµm,n, Bµ

m,n}m,n∈N.

We now are going to see that {Aµm,n, Bµ
m,n}m,n∈N generates onHµ(w)

a topology finer than the one defined on it by {αm,n, βµm,n}m,n∈N.

For every k ∈ N and φ ∈ Hµ(w), we have that

( 1
x
D

)k
φ(x) = x−2µ−2k

∫ x

0

xk

∫ xk

0

xk−1

· · ·
∫ x2

0

x2µ+1
1 ∆k

µφ(x1) dx1 . . . dxk, x ∈ (0,∞),(2.1)
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and( 1
x
D

)k
φ(x) = (−1)kx−2µ−2k

∫ ∞

x

xk

∫ ∞

xk

xk−1

· · ·
∫ ∞

x2

x2µ+1
1 ∆k

µφ(x1) dx1 . . . dxk, x ∈ (0,∞).(2.2)

To prove (2.1) and (2.2), we must proceed inductively. We are going
to show (2.1). To see (2.2), we can argue in a similar way.

Formula (2.1) holds when k = 1. Indeed, according to Proposition
2.1 (i) and by [1, Lemma 8 b)], it has, for every φ ∈ Hµ(w)

(2.3) hµ+1

(( 1
x
D

)
φ
)
= −hµ(φ).

Moreover, by partial integration and by [20 (7), Chapter 5], since the
function z1/2Jµ(z) is bounded on (0,∞), it has, for every y ∈ (0,∞)
and φ ∈ Hµ(w),

(2.4) hµ+1

(
x−2µ−2

∫ x

0

x2µ+1
1 ∆µφ(x1) dx1

)
(y)

= −y−2

∫ ∞

0

d

dx
((xy)−µJµ(xy))

∫ x

0

x2µ+1
1 ∆µφ(x1) dx1 dx

= y−2hµ(∆µφ)(y)
= −hµ(φ)(y).

From (2.3) and (2.4) we deduce that (2.1) is true for every φ ∈ Hµ(w)
when k = 1.

We now suppose that l ∈ N and that, for every φ ∈ Hµ(w), we have

(2.5)
( 1
x
D

)l
φ(x) = x−2µ−2l

∫ x

0

xl

∫ xl

0

xl−1

· · ·
∫ x2

0

x2µ+1
1 ∆l

µφ(x1)dxl . . . dx1, x ∈ (0,∞).

We have to see that (2.5) holds when l is replaced by l + 1 for every
φ ∈ Hµ(w). Let φ ∈ Hµ(w). According to [1, Lemma 8], we can write

( 1
x
D

)l+1

φ = (−1)l+1hµ+l+1(hµφ).
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On the other hand, it is easy to see that from the induction hypothesis
(2.5) it deduces that, since ∆µφ ∈ Hµ(w), Proposition 2.1,

(2.6)

x−2µ−2(l+1)

∫ x

0

xl+1

∫ xl+1

0

xl · · ·
∫ x2

0

x2µ+1
1 ∆l+1

µ φ(x1) dx1 . . . dxl+1

= Λµ+l

(( 1
x
D

)l
∆µφ

)
(x), x ∈ (0,∞),

where Λµ denotes the operator defined by

(Λµψ)(x) = x−2µ−2

∫ x

0

t2µ+1ψ(t) dt, x ∈ (0,∞),

for every ψ ∈ Hµ(w).

Moreover, from (2.3), it follows that

(2.7)
( 1
x
D

)l
∆µφ = ∆µ+l

( 1
x
D

)l
φ.

On the other hand, by partial integration and by [1, Lemma 8 b)],
we obtain that, for every ψ ∈ H−1/2,

hµ+l+1(Λµ+l∆µ+lψ)(y)

= −y−2

∫ ∞

0

d

dx
((xy)−µ−lJµ+l(xy))

∫ x

0

t2µ+2l+1∆µ+lψ(t) dt dx

= −hµ+l(ψ)(y), y ∈ (0,∞).

Hence,

(2.8) Λµ+l∆µ+lψ =
( 1
x
D

)
ψ, ψ ∈ H−1/2.

From (2.6), (2.7) and (2.8), according to Proposition 2.1 (i), it implies
that
( 1
x
D

)l+1

φ(x) = x−2µ−2(l+1)

∫ x

0

xl+1

∫ xl+1

0

x

· · ·
∫ x2

0

x2µ+1
1 ∆l+1

µ φ(x1) dx1 . . . dxl+1, x ∈ (0,∞).
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Thus (2.1) is proved.

Now let m,n ∈ N. Assume that φ ∈ Hµ(w). From (2.1) it follows
that

emw(x)
∣∣∣( 1

x
D

)n
φ(x)

∣∣∣
≤ C sup

z∈(0,∞)

|∆n
µφ(z)|x−2µ−2n

∫ x

0

xn

∫ xn

0

xn−1 · · ·
∫ x2

0

x2µ+1
1 dx1 . . . dxn

≤ C sup
z∈(0,∞)

|∆n
µφ(z)|, x ∈ (0, 1).

Also, by using (2.2), since w is increasing and it satisfies the (γ)-
property, we obtain for l ∈ N large enough,

emw(x)
∣∣∣( 1

x
D

)n
φ(x)

∣∣∣ ≤ x−2µ−2n

∫ ∞

x

xn

∫ ∞

xn

xn−1

. . .

∫ ∞

x2

x2µ+1
1 emw(x1)|∆n

µφ(x1)| dx1 . . . dxn

≤ C sup
z∈(0,∞)

e(m+l)w(z)|∆n
µφ(z)|, x ≥ 1.

Hence, it concludes that, for a certain l ∈ N,

αm,n(φ) ≤ CAµm+l,n(φ).

According to Proposition 2.1 (ii) hµ(φ) is also in Hµ(w) and then the
following inequality also holds

βµm,n(φ) ≤ CBµ
m+l,n(φ).

Thus we prove that the topology generated by {Aµm,n, Bµ
m,n}m,n∈N

on Hµ(w) is finer than the one induced on it by {αm,n, βµm,n}m,n∈N

and the proof is completed.

Through the proof of Proposition 2.2 we also show the following
characterizations of the space Hµ(w).

Proposition 2.3. A function φ ∈ Hµ(w) if and only if φ ∈ H−1/2

and φ satisfies one of the three following conditions:
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(i) For every m,n ∈ N, Aµm,n(φ) < ∞ and Bµ
m,n(φ) < ∞,

(ii) For every m,n ∈ N, Aµm,n(φ) < ∞ and βµm,n(φ) < ∞,

(iii) For every m,n ∈ N, αm,n(φ) < ∞ and Bµ
m,n(φ) < ∞.

Moreover, the families of semi-norms {Aµm,n, Bµ
m,n}m,n∈N, {Aµm,n,

βµm,n}m,n∈N and {αm,n, Bµ
m,n}m,n∈N generates the topology of Hµ(w).

We now analyze the behavior of Hankel translation operator on
Hµ(w).

Proposition 2.4. (i) Let x ∈ (0,∞). The Hankel translation
operator τx defines a continuous linear mapping from Hµ(w) into itself.

(ii) Let φ ∈ Hµ(w). The (nonlinear) mapping Fφ defined by Fφ(x) =
τxφ, x ∈ [0,∞), is continuous from [0,∞) into Hµ(w).

Proof. (i) Let φ ∈ Hµ(w) and m,n ∈ N. Since ∆µτxφ = τx∆µφ
([14, Proposition 2.1]) and since w is increasing and it satisfies the
(α)-property, we can write

emw(y)|∆n
µ(τxφ)(y)|

≤ emw(y)τx(|∆n
µφ|)(y)

≤ em(w(y)−w(|x−y|))
∫ x+y

|x−y|
D(x, y, z)emw(z)|∆n

µφ(z)|
z2µ+1

2µΓ(µ+1)
dz

≤ emw(x) sup
z∈(0,∞)

emw(z)|∆n
µφ(z)|

∫ ∞

0

D(x, y, z)
z2µ+1

2µΓ(µ+1)
dz,

for each y ∈ (0,∞).

Hence, by [13, (2)], it concludes

(2.9) Aµm,n(τxφ) ≤ emw(x)Aµm,n(φ).

On the other hand, by [3, (3.1)] and [20 (7), Chapter 5], since the
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function z−µJµ(z) is bounded on (0,∞), it follows

emw(y)
∣∣∣(1

y
D

)n
hµ(τxφ)(y)

∣∣∣
= emw(y)

∣∣∣(1
y
D

)n
(2µΓ(µ+1)(xy)−µJµ(xy)hµ(φ)(y))

∣∣∣
≤ C

n∑
j=0

emw(y)
∣∣∣(1

y
D

)n−j
hµ(φ)(y)

∣∣∣x2j , y ∈ (0,∞).

Then

(2.10) βµm,n(τxφ) ≤ C(1 + x2n)
n∑
j=0

βµm,j(φ).

From (2.9) and (2.10) we deduce that τx is continuous from Hµ(w)
into itself.

(ii) Let φ ∈ Hµ(w). Assume that x0 ∈ (0,∞) and m,n ∈ N. We can
write for every x ∈ [(x0/2), (3x0/2)] and y ≥ 2x0,

emw(y)|∆n
µ((τxφ)− (τx0φ))(y)|
≤ e(m+1)[w(y)−w(y−(3x0/2))]−w(y) sup

z∈(0,∞)

e(m+1)w(z)|∆n
µφ(z)|

·
∫ y+(3x0/2)

y−(3x0/2)

|D(x, y, z)−D(x0, y, z)| z2µ+1

2µΓ(µ+ 1)
dz

≤ 2e(m+1)w(3x0/2)−w(y) sup
z∈(0,∞)

e(m+1)w(z)|∆n
µφ(z)|.

Hence, if ε > 0, then there exists y1 ≥ 2x0 such that, for every
x ∈ [(x0/2), (3x0/2)] and y ≥ y1,

emw(y)|∆n
µ((τxφ)− (τx0φ))(y)| < ε.

On the other hand, since w is increasing on [0,∞), it has

sup
y∈(0,y1)

emw(y)|∆n
µ((τxφ)− (τx0φ))(y)|

≤ emw(y1) sup
y∈(0,y1)

|∆n
µ((τxφ)− (τx0φ))(y)|.
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Therefore, according to [14, p. 359], since ∆µ is a continuous operator
from H−1/2 into itself, we deduce that if ε > 0, then

sup
y∈(0,y1)

emw(y)|∆n
µ((τxφ)− (τx0φ))(y)| < ε,

provided that x ∈ (0,∞) and |x− x0| < δ, for some δ > 0.

Thus we conclude that, for every ε > 0, there exists δ > 0 for which

Aµm,n(τxφ− τx0φ) < ε,

when x ∈ (0,∞) and |x− x0| < δ.

Moreover, the Leibniz rule and again [3, (3.1)] and [20 (7), Chapter
5] lead to

(1
y

d

dy

)n
(hµ(τxφ− τx0φ)(y))

= 2µΓ(µ+ 1)
n∑
j=0

(
n

j

)
(−1)j

(1
y

d

dy

)n−j
hµ(φ)(y)

· (x2j(xy)−µ−jJµ+j(xy)− x2j
0 (x0y)−µ−jJµ+j(x0y)),

x, y ∈ (0,∞).

Hence, the boundedness of the function z−µJµ(z), z ∈ (0,∞), implies
that if ε > 0,

emw(y)
∣∣∣(1

y

d

dy

)n
(hµ(τxφ− τx0φ)(y))

∣∣∣
≤ Ce−w(y)

n∑
j=0

(x2j + x2j
0 )βµm+1,n−j(φ)

< ε,

for each x ∈ (0, 2x0) and y ≥ y1, where y1 is a large enough positive
number.

On the other hand, since the function fj(x, y) = x2j(xy)−µ−jJµ+j(xy),
x, y ∈ [0,∞), is continuous (and hence uniformly continuous in each
compact subset of [0,∞) × [0,∞)), for every j ∈ N, if ε > 0 we can
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find δ > 0 such that |fj(x, y) − fj(x0, y)| < ε, for every y ∈ [0, y1],
x ∈ [0,∞), |x− x0| < δ and j = 0, . . . , n. Then

sup
y∈(0,y1)

emw(y)
∣∣∣(1

y

d

dy

)n
(hµ(τxφ− τx0φ)(y))

∣∣∣ ≤ Cε

n∑
j=0

αµm,j(φ),

for every x ∈ (0,∞) and |x− x0| < δ.

Thus, it is concluded that, for every ε>0, there exists δ>0 such that

αµm,n(τxφ− τx0φ) < ε,

provided that x ∈ (0,∞) and |x− x0| < δ.

Hence Fφ is a continuous function on x0.

To see that Fφ is continuous in x = 0, we can proceed in a similar
way.

Next we study the pointwise multiplication and the Hankel convolu-
tion on Hµ(w).

Proposition 2.5. The bilinear mappings defined by

(φ, ψ) −→ φψ

and
(φ, ψ) −→ φ#ψ

are continuous from Hµ(w)×Hµ(w) into Hµ(w).

Proof. By virtue of the interchange formula [14, Theorem 2.d]

hµ(φ#ψ) = hµ(φ)hµ(ψ), φ, ψ ∈ Hµ(w),

the continuity of the pointwise multiplication mapping is equivalent to
the one of the Hankel convolution mapping.

Let m,n ∈ N. Assume that φ, ψ ∈ Hµ(w). We can write, from the
Leibniz rule, that

αm,n(φψ) ≤ C
n∑
j=0

αm,n−j(φ)α0,j(ψ).
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On the other hand, since ∆µ(φ#ψ) = (∆µφ)#ψ [14, Proposition 2.2]
and since w is increasing on [0,∞) and it satisfies the (α)-property, it
has

emw(x)|∆n
µhµ(φψ)(x)|

= emw(x)|((∆n
µhµ(φ))#hµ(ψ))(x)|

≤ emw(x)

∫ ∞

0

|∆n
µ(hµφ)(y)|e−mw(|x−y|)

·
∫ x+y

|x−y|
D(x, y, z)|hµ(ψ)(z)|emw(z) z2µ+1

2µΓ(µ+ 1)
dz

y2µ+1

2µΓ(µ+ 1)
dy

≤
∫ ∞

0

|∆n
µ(hµφ)(y)|emw(y)

∫ x+y

|x−y|
D(x, y, z)|hµ(ψ)(z)|emw(z)

· z2µ+1

2µΓ(µ+ 1)
dz

y2µ+1

2µΓ(µ+ 1)
dy, x ∈ (0,∞).

Hence, since w verifies the (γ)-property and by taking into account
[13], we can conclude

Bµ
m,n(φψ) ≤ CBµ

m+l,n(φ)B
µ
m,0(ψ),

for some l ∈ N.

By virtue of Proposition 2.3, we have proved that the pointwise
multiplication defines a continuous mapping from Hµ(w)×Hµ(w) into
Hµ(w).

Thus the proof of this proposition is complete.

Remark 1. The last proposition shows that each function in Hµ(w)
defines a multiplier in Hµ(w). Also, in the proof of Proposition 2.4, it
was established that for every x ∈ (0,∞) the function fx defined by

fx(y) = (xy)−µJµ(xy), y ∈ (0,∞),

is a multiplier of Hµ(w). It is an open problem to give a complete
description of the space of multipliers of Hµ(w).

In [2] we introduced the space Bµ(w) (see Section 1 for definitions).
Bµ(w) can be considered a Beurling type function space for the Hankel
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hµ transformation. In the following we establish that Bµ(w) is a dense
subset of Hµ(w).

Proposition 2.6. The space Bµ(w) is continuously contained in
Hµ(w). Moreover, Bµ(w) is a dense subspace of Hµ(w).

Proof. Let φ ∈ Baµ(w), where a > 0. Since φ and hµ(φ) ∈ Lµ,1,
according to [13, Corollary 2], it has

φ(x) =
∫ ∞

0

(xy)−µJµ(xy)hµ(φ)(y)y2µ+1 dy, x ∈ (0,∞).

Hence, by invoking [20 (7), Chapter 5], since z−µJµ(z) is a bounded
function on (0,∞) and w satisfies the (γ)-property for every m,n ∈ N,
we can find l ∈ N for which
(2.11)

αm,n(φ) ≤ C sup
x∈(0,a)

emw(x)

∫ ∞

0

y2n+2µ+1|hµ(φ)(y)| dy ≤ Cδµl (φ).

Here C is a positive constant that is not dependent on φ.

By virtue of the Paley-Wiener type theorem for the Hankel transform
on Baµ(w) ([2, Proposition 2.6]), hµ(φ) is an even entire function and,
for every m ∈ N, there exists Cm > 0 for which

(2.12) |hµ(φ)(x+ iy)| ≤ Cme−mw(x)+(a+1)|y|, x, y ∈ R.

According to the well-known Cauchy integral formula, we can write

(2.13)
dl

dxl
hµ(φ)(x) =

l!
2πi

∫
Cx

hµ(φ)(z)
(z − x)l+1

dz, l ∈ N and x ∈ R,

where Cx represents the circled path having by parametric representa-
tion z = x+ eiθ, θ ∈ [0, 2π).

Let m,n ∈ N. From (2.12) and (2.13), it follows, since w satisfies the
(α)-property, that

∣∣∣ dn

dxn
hµ(φ)(x)

∣∣∣ ≤ C

∫ 2π

0

e−mw(x+cos θ)+(a+1)| sin θ| dθ ≤ Ce−mw(x),

x ≥ 1.
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Hence it follows
∣∣∣( 1

x

d

dx

)n
hµ(φ)(x)

∣∣∣ ≤ Ce−mw(x), x ≥ 1.

Moreover, by using again the above-mentioned properties of the
Bessel functions, we have

∣∣∣( 1
x

d

dx

)n
hµ(φ)(x)

∣∣∣ ≤ C

∫ a

0

y2n+2µ+1|φ(y)| dy ≤ Cα0,0(φ), x∈(0, 1).

Thus we conclude that βµm,n(φ) < ∞.

We have proved that Baµ(w) is contained in Hµ(w).

To see that Baµ(w) is continuously contained in Hµ(w) we will use the
closed graph theorem. Assume that {φν}ν∈N is a sequence in Baµ(w)
such that φν → φ as ν → ∞, in Baµ(w) and φν → ψ as ν → ∞ in
Hµ(w). It is clear that φν(x) → ψ(x) as ν → ∞ for every x ∈ (0,∞).
Moreover, from (2.11) we deduce that φν(x) → φ(x) as ν → ∞ for each
x ∈ (0,∞). Hence φ = ψ. Thus we show that Baµ(w) is continuously
contained inHµ(w) for every a > 0. Then the inclusion Bµ(w) ⊂ Hµ(w)
is continuous.

We now see that Bµ(w) is a dense subset of Hµ(w). According to
[2, Proposition 2.18] we choose ψ ∈ B2

µ(w) such that 0 ≤ ψ ≤ 1 and
ψ(x) = 1, x ∈ (0, 1). Assume that φ ∈ Hµ(w). We define for every
l ∈ N \ {0}, ψl(x) = ψ(x/l), x ∈ (0,∞) and φl = ψlφ.

Let m,n ∈ N. The Leibniz rule leads to, for every l ∈ N \ {0},

emw(x)
∣∣∣( 1

x
D

)n
(φl(x)− φ(x))

∣∣∣ ≤ S1
l (x) + S2

l (x), x ∈ (0,∞),

where

S1
l (x) =

n−1∑
j=0

(
n

j

)
emw(x)

∣∣∣( 1
x
D

)j
φ(x)

∣∣∣ ∣∣∣( 1
x
D

)n−j
ψ

(x

l

)∣∣∣, x∈(0,∞),

and

S2
l (x) = emw(x)

∣∣∣( 1
x
D

)l
φ(x)

∣∣∣
∣∣∣ψ(x

l

)
− 1

∣∣∣, x ∈ (0,∞).
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Standard arguments allow us now to conclude that

αm,n(φl − φ) −→ 0, as l → ∞.

On the other hand, by [13, Theorem 2d], since ψl(0) = 1, l ∈ N \ {0},
we can write
∆n
µhµ(φl − φ)(x)

= (hµ(ψl)#∆n
µhµ(φ))(x)−∆n

µhµ(φ)(x)

=
∫ ∞

0

hµ(ψl)(y)(τx(∆n
µhµ(φ))(y)−∆n

µhµ(φ)(x))
y2µ+1

2µΓ(µ+1)
dy,

for each x ∈ (0,∞) and l ∈ N \ {0}.
Fix l ∈ N \ {0}. To simplify we denote by Φ = ∆n

µhµ(φ). It is not
hard to see that hµ(ψl)(y) = l2(µ+1)hµ(ψ)(yl), y ∈ (0,∞). Then

∆n
µhµ(φl − φ)(x)

=
∫ ∞

0

hµ(ψ)(y)
(
τx(Φ)

(y

l

)
− Φ(x)

) y2µ+1

2µΓ(µ+ 1)
dy, x ∈ (0,∞).

We now consider α ∈ (0, 1) that will be specified later. We divide the
last integral into two parts.

According to [13, (2)], since w is an increasing function on [0,∞), we
have that∣∣∣
∫ ∞

x+lα
hµ(ψ)(y)

∫ x+y/l

|x−y/l|
D

(
x,

y

l
, z

)

· (Φ(z)−Φ(x))
z2µ+1

2µΓ(µ+1)
dz

y2µ+1

2µΓ(µ+1)
dy

∣∣∣
≤ C sup

z∈(0,∞)

|Φ(z)|
∫ ∞

x+lα
|hµ(ψ)(y)|y2µ+1 dy

≤ C

∫ ∞

x+lα
e−(m+k)w(y)y2µ+1 dy

· sup
z∈(0,∞)

|Φ(z)| sup
z∈(0,∞)

|hµ(ψ)(z)|e(m+k)w(z)

≤ Ce−mw(x)

∫ ∞

lα
e−kw(y)y2µ+1 dy

· sup
z∈(0,∞)

|Φ(z)| sup
z∈(0,∞)

|hµ(ψ)(z)|e(m+k)w(z),
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for every x ∈ (0,∞) and k ∈ N.

Hence, since w satisfies the (γ)-property, by choosing k ∈ N large
enough it follows that

sup
x∈(0,∞)

∣∣∣emw(x)

∫ ∞

x+lα
hµ(ψ)(y)

∫ x+y/l

|x−y/l|
D

(
x,

y

l
, z

)
(Φ(z)− Φ(x))

· z2µ+1

2µΓ(µ+ 1)
dz

y2µ+1

2µΓ(µ+ 1)
dy

∣∣∣
≤ C

∫ ∞

lα
e−kw(y)y2µ+1 dy sup

z∈(0,∞)

|Φ(z)| sup
z∈(0,∞)

|hµ(ψ)(z)|e(m+k)w(z)

→ 0, as l → ∞.

On the other hand, by again using [13, (2)], one obtains, for every
x ∈ (0,∞),

∣∣∣emw(x)

∫ x+lα

0

hµ(ψ)(y)
∫ x+y/l

|x−y/l|
D

(
x,

y

l
, z

)
(Φ(z)− Φ(x))

· z2µ+1

2µΓ(µ+ 1)
dz

y2µ+1

2µΓ(µ+ 1)
dy

∣∣∣
≤ C sup

z∈(0,∞)

|hµ(φ)(z)|emw(x)(x+ lα)2µ+2 sup
|x−y/l|≤z≤x+y/l

0<y<x+lα

|Φ(z)−Φ(x)|.

Moreover, we have that, for each η ∈ (0, x+ lα) and x ∈ (0,∞),

∣∣∣Φ(
x+

η

l

)
− Φ(x)

∣∣∣ ≤
∫ x+(η/l)

x

∣∣∣ d
dt

Φ(t)
∣∣∣ dt

≤ 1
l
(x+ lα) sup

−x−lα≤ξ≤x+lα

∣∣∣( d

dt
Φ

)(
x+

ξ

l

)∣∣∣.

Also, we can write

∣∣∣Φ(
x+

η

l

)
− Φ(x)

∣∣∣ ≤ 1
l
(x+ lα) sup

−x−lα≤ξ≤x+lα

∣∣∣( d

dt
Φ

)(
x+

ξ

l

)∣∣∣,

for each x ∈ (0,∞) and η ∈ (−x− lα, 0).
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If it is necessary above we consider the even and smooth extension of
Φ to R. Hence, it has∣∣∣emw(x)

∫ x+lα

0

hµ(ψ)(y)
∫ x+y/l

|x−y/l|
D

(
x,

y

l
, z

)
(Φ(z)− Φ(x))

· z2µ+1

2µΓ(µ+ 1)
dz

y2µ+1

2µΓ(µ+ 1)
dy

∣∣∣
≤ C sup

z∈(0,∞)

|hµ(ψ)(z)|emw(x) 1
l
(x+ lα)2µ+4

· sup
−x−lα≤ξ≤x+lα

∣∣∣(1
t

d

dt
Φ

)(
x+

ξ

l

)∣∣∣
≤ C sup

z∈(0,∞)

|hµ(ψ)(z)|emw(x)−kw(x−(x/l)−lα−1) 1
l
(x+ lα)2µ+4

· sup
z∈(0,∞)

∣∣∣1
z

d

dz
Φ(z)

∣∣∣ekw(z),

provided that x ≥ 2, k, l ∈ N and l ≥ 2. Note that if x, l ≥ 2,
x ≥ (lα/(l − 1)). Then

∣∣∣emw(x)

∫ x+lα

0

hµ(ψ)(y)
∫ x+y/l

|x−y/l|
D

(
x,

y

l
, z

)
(Φ(z)− Φ(x))

· z2µ+1

2µΓ(µ+ 1)
dz

y2µ+1

2µΓ(µ+ 1)
dy

∣∣∣
≤ Clα(2µ+4)−1(x+ 1)2µ+4emw(x)−kw[x−(x/l)−lα−1],

when x ≥ 2, l, k ∈ N and l ≥ 2.

Since w is increasing on [0,∞) and w verifies the (α)-property, we
have that

w
(
x− x

l
− lα−1

)
≥ 1

2
w(x)− w(1), x ≥ 2, l, k ∈ N and l ≥ 2.

hence, by choosing k large enough, since w satisfies the (γ)-property, it
follows∣∣∣emw(x)

∫ x+lα

0

hµ(ψ)(y)
∫ x+y/l

|x−y/l|
D

(
x,

y

l
, z

)
(Φ(z)− Φ(x))

· z2µ+1

2µΓ(µ+ 1)
dz

y2µ+1

2µΓ(µ+ 1)
dy

∣∣∣
≤ Clα(2µ+4)−1, x ≥ 2, l, k ∈ N and l ≥ 2.
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Assume now that 0 < α < 1/(2µ+ 4). Then we conclude that

sup
x≥2

∣∣∣emw(x)

∫ x+lα

0

hµ(ψ)(y)
∫ x+y/l

|x−y/l|
D

(
x,

y

l
, z

)
(Φ(z)− Φ(x))

· z2µ+1

2µΓ(µ+ 1)
dz

y2µ+1

2µΓ(µ+ 1)
dy

∣∣∣ → 0,

as l → ∞.

By proceeding in a similar way we obtain that

sup
0≤x≤2

∣∣∣emw(x)

∫ x+lα

0

hµ(ψ)(y)
∫ x+y/l

|x−y/l|
D

(
x,

y

l
, z

)
(Φ(z)− Φ(x))

· z2µ+1

2µΓ(µ+ 1)
dz

y2µ+1

2µΓ(µ+ 1)
dy

∣∣∣
≤ C sup

z∈(0,∞)

|hµ(ψ)(z)|1
l
(2+lα)2µ+4 sup

z∈(0,∞)

∣∣∣1
z

d

dz
Φ(z)

∣∣∣ → 0, as l→∞,

provided that 0 < α < 1/(2µ + 4).

Thus, we deduce that

Bµ
m,n(φl − φ) −→ 0, as l → ∞.

By taking into account Proposition 2.3, the proof is now complete.

Remark 2. According to [2, Corollary 2.8], the (β)-property (for w)
is essential to establish the nontriviality of the space Bµ(w). However
the space Hµ(w) is nontrivial although w does not verify (β). Indeed,
the function φ(x) = e−x

2/2, x ∈ [0,∞), is in Hµ(w) (see [10, (10)])
provided that w(x) ≤ Cxl, when x is large for some l < 2.

Next we establish a result concerning approximated identity inHµ(w)
involving Hankel convolution. This property, whose proof will be omit-
ted, can be proved following a procedure similar to the one employed
to prove [3, Proposition 3.5] and [6, Proposition 2.3].

Proposition 2.7. Assume that ψ ∈ Bµ(w) and that
∫ ∞
0

ψ(x)x2µ+1 dx
= 2µΓ(µ+1). Then, for every φ ∈ Hµ(w), φ#ψm → φ, as m → ∞, in
Hµ(w) where, for each m ∈ N, ψm(x) = m2µ+2ψ(mx), x ∈ (0,∞).
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3. Hankel transformation and Hankel convolution on the
space Hµ(w)′ dual of Hµ(w). In this section we study the Hankel
transformation and the Hankel convolution on Hµ(w)′, the dual space
of Hµ(w). Our results can be seen as an extension of the ones presented
in [5] and [14].

Suppose that f is a measurable function on (0,∞) such that, for some
k ∈ N, ∫ ∞

0

e−kw(x)|f(x)|x2µ+1 dx < ∞,

then f defines an element Tf ∈ Hµ(w)′ by

〈Tf , φ〉 =
∫ ∞

0

f(x)φ(x)
x2µ+1

2µΓ(µ+ 1)
dx, φ ∈ Hµ(w).

Indeed, for every φ ∈ Hµ(w), it has

|〈Tf , φ〉| ≤ C

∫ ∞

0

e−kw(x)|f(x)|x2µ+1 dxαk,0(φ).

In particular the space Hµ(w) can be identified with a subspace of
Hµ(w)′.

On the other hand, if φ ∈ Hµ(w) then φ ∈ Eµ(w), the space of
pointwise multipliers of Bµ(w). Indeed, let φ ∈ Hµ(w). Assume that
ψ ∈ Baµ(w) with a > 0. Then φ(x)ψ(x) = 0, x ≥ a. Moreover, for every
n ∈ N,

δµn(φψ) =
∫ ∞

0

enw(x)|hµ(φψ)(x)|x2µ+1 dx ≤ Cδµn(ψ)β
µ
l,0(φ),

where l ∈ N is chosen large enough and it is not depending on φ.

Note that we also have proved that Hµ(w) is continuously contained
in Eµ(w). Hence, the dual space Eµ(w)′ of Eµ(w) is contained inHµ(w)′.

We define the Hankel transformation on Hµ(w)′ by transposition.
That is, if T ∈ Hµ(w)′, the Hankel transform h′

µT of T is the element
of Hµ(w)′ given through

〈h′
µT, φ〉 = 〈T, hµφ〉, φ ∈ Hµ(w).
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The generalized Hankel transformation h′
µ can be seen as an extension

of the Hankel transformation hµ. Let ψ ∈ Hµ(w). Since hµ(ψ) ∈
Hµ(w), hµ(ψ) defines an element Thµ(φ) of Hµ(w)′ by

〈Thµ(ψ), φ〉 =
∫ ∞

0

hµ(ψ)(x)φ(x)
x2µ+1

2µΓ(µ+ 1)
dx, φ ∈ Hµ(w).

Moreover, Parseval equality for Hankel transformations leads to

〈Thµ
(ψ), φ〉 =

∫ ∞

0

ψ(x)hµ(φ)(x)
x2µ+1

2µΓ(µ+ 1)
dx

= 〈Tψ, hµ(φ)〉, φ ∈ Hµ(w).

Thus we have shown that Thµ(ψ) = h′
µ(Tψ).

We now determine the Hankel transform of the distributions in
Eµ(w)′.

Proposition 3.1. If T ∈ Eµ(w)′, the Hankel transform h′
µT coin-

cides with the functional defined by the function

F (x) = 2µΓ(µ+ 1)〈T (y), (xy)−µJµ(xy)〉, x ∈ (0,∞).

Then h′
µT is a continuous function on [0,∞) and there exist C > 0

and r ∈ N for which

|h′
µ(T )(x)| ≤ Cerw(x), x ∈ (0,∞).

Proof. Let T = Eµ(w)′. We have to see that

(3.1)

〈h′
µ(T ), φ〉 = 〈T, hµ(φ)〉 =

∫ ∞

0

〈T (y), (xy)−µJµ(xy)〉φ(x)x2µ+1 dx,

for every φ ∈ Hµ(w).

In [2, Proposition 3.4] we proved that, for every x ∈ (0,∞), the
function fx defined by fx(y) = (xy)−µJµ(xy), y ∈ (0,∞) is in Eµ(w).
Hence, we can define the function

F (x) = 〈T (y), (xy)−µJµ(xy)〉, x ∈ [0,∞).
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Thus F is a continuous function on [0,∞). Indeed, let x0 ∈ [0,∞). To
see that F is continuous in x0, it is sufficient to show that, for every
n ∈ N and φ ∈ Bµ(w),

δµn(φ(y)((xy)
−µJµ(xy)− (x0y)−µJµ(x0y))) −→ 0, as x → x0.

Assume that n ∈ N and φ ∈ Bµ(w). By virtue of [3, (3.4)], it follows
for every x, z ∈ [0,∞),

hµ(φ(y)((xy)−µJµ(xy)− (x0y)−µJµ(x0y)))(z)

=
1

2µΓ(µ+ 1)
(τx(hµφ)(z)− τx0(hµφ)(z)).

According to Proposition 2.4 (ii) and Proposition 2.6, the mapping
G defined by

G(x) = τx(hµφ), x ∈ [0,∞),

is continuous from [0,∞) into Hµ(w). Moreover, since w satisfies the
(γ)-property, there exists l ∈ N such that

δµn(φ((x.)
−µJµ(x.)− (x0.)−µJµ(x0.)))

=
1

2µΓ(µ+ 1)

∫ ∞

0

enw(z)|τx(hµφ)(z)− τx0(hµφ)(z)|z2µ+1 dz

≤ Cαn+l,0(τx(hµφ)− τx0(hµφ)), x ∈ [0,∞).

Hence,

δµn(φ(y)((xy)
−µJµ(xy)− (x0y)−µJµ(x0y))) −→ 0, as x → x0.

Moreover, since T ∈ Eµ(w)′, there exist C > 0, r ∈ N and φ1, . . . , φr ∈
Bµ(w),

|〈T,Φ〉| ≤ C max
j=1,... ,r

δµr (φjΦ), Φ ∈ Eµ(w).

In particular, since w has the (γ)-property for every x ∈ (0,∞),

|〈T (y), (xy)−µJµ(xy)〉| ≤ C max
j=1,... ,r

∫ ∞

0

erw(x)|τx(hµφj)(y)|y2µ+1 dy

≤ C max
j=1,... ,r

αr+l,0(τx(hµφj)),
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for some l ∈ N. Then by (2.9), it follows that

(3.2) |〈T (y), (xy)−µJµ(xy)〉|
≤ Ce(r+l)w(x) max

j=1,... ,r
βµr+l,0(φj), x ∈ [0,∞).

From (3.2) we infer that the integral in (3.1) is absolutely convergent
for every φ ∈ Hµ(w).

Assume that φ ∈ Hµ(w). It is clear that

lim
b→∞

∫ ∞

b

〈T (y), (xy)−µJµ(xy)〉φ(x)x2µ+1 dx = 0.

Let b > 0. We can write

(3.3)
∫ b

0

〈T (y), (xy)−µJµ(xy)〉φ(x)x2µ+1 dx

= lim
n→∞

〈
T (y),

b

n

n∑
j=1

(jb

n
y
)−µ

Jµ

(jb

n
y
)
φ
(jb

n

)(jb

n

)2µ+1〉
.

We are going to see that

(3.4)
∫ b

0

(xy)−µJµ(xy)φ(x)x2µ+1 dx

= lim
n→∞

b

n

n∑
j=1

(jb

n
y
)−µ

Jµ

(jb

n
y
)
φ
(jb

n

)(jb

n

)2µ+1

,

in the sense of convergence of Eµ(w).
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Indeed, let ψ ∈ Bµ(w) and m ∈ N. It has, for some l ∈ N,

δµm

(
ψ(y)

(∫ b

0

(xy)−µJµ(xy)φ(x)x2µ+1 dx

− b

n

n∑
j=1

(jb

n
y
)−µ

Jµ

( jb

n
y
)
φ
(jb

n

)( jb

n

)2µ+1))

≤ Cαl,0

(
hµ

(
ψ(y)

(∫ b

0

(xy)−µJµ(xy)φ(x)x2µ+1 dx

− b

n

n∑
j=1

(jb

n
y
)−µ

Jµ

( jb

n
y
)
φ
(jb

n

)( jb

n

)2µ+1)))

≤ Cαl,0

( ∫ b

0

φ(x)x2µ+1τx(hµψ)(z) dx

− b

n

n∑
j=1

φ
(jb

n

)(jb

n

)2µ+1

τjb/n(hµψ)(z)
)
.

Note that from (2.9), it follows that

elw(z)
∣∣∣
∫ b

0

φ(x)x2µ+1τx(hµψ)(z) dx

− b

n

n∑
j=1

φ
(jb

n

)(jb

n

)2µ+1

τjb/n(hµψ)(z)
∣∣∣

≤ Ce−w(z)
( ∫ b

0

|φ(x)|x2µ+1e(l+1)w(x) dx

+
b

n

n∑
j=1

∣∣∣φ(jb

n

)∣∣∣(jb

n

)2µ+1

e(l+1)w(jb/n)
)

≤ Ce−w(z), z ∈ (0,∞).

Hence, if ε > 0 then there exists z0 ∈ (0,∞) such that

sup
z≥z0

elw(z)
∣∣∣
∫ b

0

φ(x)x2µ+1τx(hµψ)(z) dx

− b

n

n∑
j=1

φ
(jb

n

)(jb

n

)2µ+1

τjb/n(hµψ)(z)
∣∣∣ < ε.
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On the other hand, since the function H defined by

H(x, z) = φ(x)x2µ+1τx(hµψ)(z), x, z ∈ [0,∞),

is uniformly continuous in (x, z) ∈ [0, b]× [0, z0], it has

lim
n→∞

b

n

n∑
j=1

φ
(jb

n

)(jb

n

)2µ+1

τz(hµψ)
(jb

n

)

=
∫ b

0

φ(x)x2µ+1τz(hµψ)(x) dx,

uniformly in [0, x0].

From the above arguments we conclude (3.4) in the sense of conver-
gence in Eµ(w). Hence it has that

∫ b

0

〈T (y), (xy)−µJµ(xy)〉φ(x)x2µ+1 dx

=
〈
T (y),

∫ b

0

(xy)−µJµ(xy)φ(x)x2µ+1 dx
〉
.

Also,

lim
b→∞

∫ ∞

b

(xy)−µJµ(xy)φ(x)x2µ+1 dx = 0

in the sense of convergence in Eµ(w).

Indeed, assume that b > 0, ψ ∈ Bµ(w) and m ∈ N. For a certain
l ∈ N we have that

δµm

(
ψ(y)

∫ ∞

b

(xy)−µJµ(xy)φ(x)x2µ+1 dx
)

≤ Cαl,0

(
hµ

(
ψ(y)

∫ ∞

b

(xy)−µJµ(xy)φ(x)x2µ+1 dx
))

≤ C sup
z∈(0,∞)

elw(z)
∣∣∣
∫ ∞

b

φ(x)τz(hµψ)(x)x2µ+1 dx
∣∣∣

≤ C

∫ ∞

b

|φ(x)|elw(x)x2µ+1 dxβµl,0(ψ).
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Hence,

lim
b→∞

δµm

(
ψ(y)

∫ ∞

b

(xy)−µJµ(xy)φ(x)x2µ+1 dx
)
= 0.

Standard arguments allow us now to show that (3.1) holds.

Proposition 2.4 (i) allows us to define the Hankel convolution T#φ
of T ∈ Hµ(w)′ and φ ∈ Hµ(w) as follows

(T#φ)(x) = 〈T, τxφ〉, x ∈ [0,∞).

Note that the last definition extends the Hankel convolution from
Hµ(w)×Hµ(w) to Hµ(w)′×Hµ(w). Indeed, let φ, ψ ∈ Hµ(w). We can
write

(Tφ#ψ)(x) = 〈Tφ, τxψ〉 =
∫ ∞

0

φ(y)(τxψ)(y)
y2µ+1

2µΓ(µ+ 1)
dy

= (φ#ψ)(x), x ∈ [0,∞).

We now prove that T#φ ∈ Hµ(w)′ for every T ∈ Hµ(w)′ and
φ ∈ Hµ(w).

Proposition 3.2. Let T ∈ Hµ(w)′ and φ ∈ Hµ(w). Then T#φ is a
continuous function on [0,∞). Moreover, there exist C > 0 and r ∈ N
such that

|(T#φ)(x)| ≤ Cerw(x), x ∈ [0,∞).

Hence, T#φ defines an element of Hµ(w)′.

Proof. According to Proposition 2.4 (ii), T#φ is a continuous function
on [0,∞). Moreover, since T ∈ Hµ(w)′, from Proposition 2.3 it implies
that there exist C > 0 and r ∈ N such that

|〈T, ψ〉| ≤ C max
0≤n≤r

{Aµr,n(ψ), βµr,n(ψ)}, ψ ∈ Hµ(w).

In particular, we have that

|(T#φ)(x)| ≤ C max
0≤n≤r

{Aµr,n(τxφ), βµr,n(τxφ)}, x ∈ [0,∞).
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From (2.9), it is deduced that

Aµr,n(τxφ) ≤ erw(x)Aµr,n(φ), x ∈ [0,∞) and n ∈ N.

Also (2.10) implies, since w satisfies the (γ)-property, that

βµr,n(τxφ) ≤ C(1 + x2n)
n∑
j=0

βµr,j(φ)

≤ Celw(x)
n∑
j=0

βµr,j(φ), x ∈ [0,∞) and n ∈ N,

for some l ∈ N.

Hence, for a certain m ∈ N,

|(T#φ)(x)| ≤ Cemw(x), x ∈ [0,∞).

We now introduce, for every m ∈ N, the space Am(w) constituted
by all those functions f defined on (0,∞) such that

sup
x∈(0,∞)

e−mw(x)|f(x)| < ∞.

A careful reading of the proof of Proposition 3.2 allows us to deduce
that if T ∈ Hµ(w)′, there exists r ∈ N such that T#φ ∈ Ar(w) for
every φ ∈ Hµ(w).

Next we establish an associative property for the distributional con-
volution.

Proposition 3.3. Let T ∈ Hµ(w)′ and φ, ψ ∈ Hµ(w). Then

(3.5) (T#φ)#ψ = T#(φ#ψ).

Proof. As it was shown in Proposition 3.2, T#φ defines an element
of Hµ(w)′ and we have

((T#φ)#ψ)(x) =
∫ ∞

0

(T#φ)(y)(τxψ)(y)
y2µ+1

2µΓ(µ+1)
dy

=
∫ ∞

0

〈T, τyφ〉(τxψ)(y) y2µ+1

2µΓ(µ+1)
dy, x ∈ (0,∞).
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Equality (3.5) will be proved when we see that, for every x ∈ (0,∞),

(3.6)
∫ ∞

0

〈T, τyφ〉(τxψ)(y) y2µ+1

2µΓ(µ+ 1)
dy

=
〈
T (z),

∫ ∞

0

(τyφ)(z)(τxψ)(y)
y2µ+1

2µΓ(µ+ 1)
dy

〉
.

Indeed, we have∫ ∞

0

(τyφ)(z)(τxψ)(y)
y2µ+1

2µΓ(µ+ 1)
dy

=
∫ ∞

0

(τzφ)(y)(τxψ)(y)
y2µ+1

2µΓ(µ+ 1)
dy

= (τzφ#ψ)(x) = τx(φ#ψ)(z), x, z ∈ [0,∞).

Our objective is to prove (3.6). We will use a procedure similar to
the one employed in the proof of Proposition 3.1.

Let x ∈ [0,∞). By virtue of Proposition 3.2, it follows that

(3.7) lim
b→∞

∫ ∞

b

〈T, τyφ〉(τxψ)(y) y2µ+1

2µΓ(µ+ 1)
dy = 0.

Assume that m,n ∈ N. According to (2.9), we can write

Aµm,n

( ∫ ∞

b

(τzφ)(y)(τxψ)(y)
y2µ+1

2µΓ(µ+ 1)
dy

)

≤
∫ ∞

b

emw(y)|(τxψ)(y)| y2µ+1

2µΓ(µ+ 1)
dyAµm,n(φ), b > 0.

Hence, from Proposition 2.4 (i) it is inferred that

lim
b→∞

Aµm,n

( ∫ ∞

b

(τzφ)(y)(τxψ)(y)
y2µ+1

2µΓ(µ+ 1)
dy

)
= 0.

On the other hand, for every b > 0,
(1
t
D

)n
hµ

( ∫ ∞

b

(τzφ)(y)(τxψ)(y)
y2µ+1

2µΓ(µ+ 1)
dy

)
(t)

=
n∑
j=0

(−1)j
(
n

j

) ∫ ∞

b

(τxψ)(y)y2j(yt)−µ−jJµ+j(yt)y2µ+1 dy

·
(1
t
D

)n−j
hµ(φ)(t), t ∈ (0,∞).
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Therefore, by Proposition 2.4 (i) and taking into account the bound-
edness of the function z−µJµ(z) on (0,∞), we have

βµm,n

(∫ ∞

b

(τzφ)(y)(τxψ)(y)
y2µ+1

2µΓ(µ+ 1)
dy

)

≤ C

n∑
j=0

βµm,n−j(φ)
∫ ∞

b

|(τxψ)(y)|y2j+2µ+1 dy −→ 0, as b → ∞.

Thus we see that

(3.8)
∫ ∞

b

(τzφ)(y)(τxψ)(y)
y2µ+1

2µΓ(µ+ 1)
dy −→ 0, as b → ∞,

in the sense of convergence in Hµ(w).

Now let b > 0. By using, as in the proof of Proposition 3.1, Riemann
sums, we can prove that

(3.9)
∫ b

0

〈T, τyφ〉(τxψ)(y)y2µ+1 dy

=
〈
T (z),

∫ b

0

(τyφ)(z)(τxψ)(y)y2µ+1 dy
〉
.

By combining (3.7), (3.8) and (3.9) we deduce (3.6) and thus the
proof of (3.5) is complete.

A useful special case of Proposition 3.3 follows.

Corollary 3.4. Let T ∈ Hµ(w)′ and φ, ψ ∈ Hµ(w). Then

(3.10) 〈T#φ, ψ〉 = 〈T, φ#ψ〉.

Proof. To see (3.10), it is sufficient to take x = 0 in (3.5).

Remark 3. Note that the property in Corollary 3.4 is equivalent to
the one in Proposition 3.3. Indeed, let T ∈ Hµ(w)′ and φ, ψ ∈ Hµ(w).
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If x ∈ [0,∞), τxψ ∈ Hµ(w) (Proposition 2.4 (i)). Then from Corollary
3.4 we deduce

((T#φ)#ψ)(x) = 〈T, φ#(τxψ)〉
= 〈T, τx(φ#ψ)〉
= (T#(φ#ψ))(x), x ∈ [0,∞).

Thus Proposition 3.3 is established.

We now obtain a distributional version of the interchange formula.

Proposition 3.5. Let T ∈ Hµ(w)′ and φ ∈ Hµ(w). Then

h′
µ(T#φ) = h′

µ(T )hµ(φ).

Proof. Assume that ψ ∈ Hµ(w). According to Corollary 3.4, we can
write

〈h′
µ(T#φ), ψ〉 = 〈T#φ, hµ(ψ)〉 = 〈T, φ#hµ(ψ)〉

= 〈T, hµ(hµ(φ)ψ)〉 = 〈h′
µ(T )hµ(φ), ψ〉.

Another consequence of Corollary 3.4 is the following.

Proposition 3.6. The space A(w) = ∪m∈NAm(w) is a weak ∗ dense
subspace of Hµ(w)′.

Proof. To see this property it is sufficient to take into account the
remark after Proposition 3.2 and to use Proposition 2.7 and Corol-
lary 3.4.

We now introduce the space Fµ(w) that consists of all those T ∈
Bµ(w)′ for which there exists a function GT belonging to Am(w) for
some m ∈ N, such that

(3.11) 〈T, φ〉 =
∫ ∞

0

GT (y)hµ(φ)(y)
y2µ+1

2µΓ(µ+ 1)
dy, φ ∈ Bµ(w).
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Note that the righthand side of (3.11) defines a continuous functional
on Hµ(w). Hence, T can be extended to Hµ(w) as an element of
Hµ(w)′. We continue denoting by T that extension to Hµ(w). More-
over, for every φ ∈ Hµ(w), it has

〈h′
µT, φ〉 = 〈T, hµ(φ)〉

=
∫ ∞

0

GT (y)hµ(hµ(φ))(y)
y2µ+1

2µΓ(µ+ 1)
dy

=
∫ ∞

0

GT (y)φ(y)
y2µ+1

2µΓ(µ+ 1)
dy.

Hence, h′
µT coincides with the functional generated by GT on Hµ(w)′.

We also can prove that if T ∈ Fµ(w) and φ ∈ Hµ(w), then T#φ and
T.φ are in Fµ(w).

Remark 4. In a forthcoming paper we will continue the study of the
tempered Beurling-type distributions and the Hankel transformation
following the ideas of von Grudzinski [11].
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