BOCKY MOUNTAIN JOURNAL OF MATHEMATICS Volume 31, Number 3, Fall 2001

C*-ALGEBRAS OF DYNAMICAL SYSTEMS OF QUASI ROTATIONS ON TORI

CARLA FARSI AND NEIL WATLING

ABSTRACT. In this note we determine the isomorphism classes of the crossed product C^* -algebras of affine (n, λ) quasi rotations of \mathbf{T}^n .

Introduction. There have been considerable contributions 1. to the computation of K-theoretical and isomorphism invariants of C^* -algebras of dynamical systems on the *n*-torus \mathbf{T}^n , which include certain noncommutative tori [5], [3], [7]. Riedel [5] classified the crossed products of $C(\mathbf{T}^n)$ by minimal rotations of \mathbf{T}^n , i.e., minimal transformations of \mathbf{T}^n with degree matrix $D(\phi) = I_n$. He showed that the set of eigenvalues of ϕ is a complete isomorphism invariant. When ϕ is a minimal homeomorphism of \mathbf{T}^n with quasi discrete spectrum, Packer [3] computed the tracial range of $K_0(C(\mathbf{T}^n) \rtimes_{\alpha_{\phi}} \mathbf{Z})$. For n = 2, Rouhani [7] classified, by using K-theoretical invariants, the isomorphism classes of the crossed product C^* -algebras $C(\mathbf{T}^2) \rtimes_{\alpha_{\phi}} \mathbf{Z}$, where ϕ is an (affine) irrational quasi rotation of \mathbf{T}^2 . That is an (affine) transformation that has a unitary eigenvalue $\lambda = e^{2\pi i\theta}$ (θ irrational) with a unitary eigenfunction f having degree matrix $D(f) = [n, m] \neq 0$, where n, m are relatively prime and the degree matrix $D(\phi)$ satisfies $\operatorname{rank}_{\mathbf{Q}}(D(\phi) - I_2) = 1$. The concept of quasi rotation admits a natural generalization to an n quasi rotation for transformations $\phi : \mathbf{T}^n \to \mathbf{T}^n$. Roughly speaking, ϕ is now required to have n-1 eigenvalues while the degree matrix $D(\phi)$ still satisfies $\operatorname{rank}_{\mathbf{Q}}(D(\phi) - I_n) = 1$. (See Definition 2 and Lemma 3.)

Our main result, which generalizes the main theorem in [7] to \mathbf{T}^n , $n \geq 3$, is the characterization, using K-theoretical invariants, of the isomorphism classes of crossed products $C(\mathbf{T}^n) \rtimes_{\alpha_{\phi}} \mathbf{Z}$ of \mathbf{T}^n , where ϕ is an affine n quasi rotation, provided some additional conditions are

Received by the editors on September 4, 1997.

¹⁹⁹¹ AMS Mathematics Subject Classification. Primary 46L80, 46L40. Key words and phrases. Dynamical systems, tori, C^{*}-algebras, classification. First author partially supported by a University of Colorado Junior Faculty Award.

Copyright ©2001 Rocky Mountain Mathematics Consortium

also satisfied (cf. Theorem 12). More precisely, the K-theory groups $K_*(C(\mathbf{T}^n) \rtimes_{\alpha_{\phi}} \mathbf{Z}), * = 0, 1$, and the tracial range $\tau^{\phi}_*(K_0(C(\mathbf{T}^n) \rtimes_{\alpha_{\phi}} \mathbf{Z}))$ are shown to be complete isomorphism invariants.

Our results also generalize some of [3] to the broader contest of n quasi rotations (in fact every n quasi rotation has topologically quasi discrete spectrum [8]).

In detail, the contents of this note are as follows. In Section 2 we consider affine transformations $\phi = aA$, $a \in \mathbf{T}^n$, $A \in GL(n, \mathbf{Z})$, of \mathbf{T}^n satisfying rank_{**Q**} $(A - I_n) = 1$. By detailing the conjugacy classes in $GL(n, \mathbf{Z})$ of matrices A satisfying rank_{**Q**} $(A - I_n) = 1$, we are able to compute the K-theory of the crossed products $C(\mathbf{T}^n) \rtimes_{\alpha_{\phi}} \mathbf{Z}$, $\phi = aA$, rank_{**Q**} $(A - I_n) = 1$. The proof of the conjugacy classes lemma is rather technical and is given in an Appendix at the end of this note. In Section 3 we compute the tracial range of $C(\mathbf{T}^n) \rtimes_{\alpha_{\phi}} \mathbf{Z}$, $\phi = aA$, rank_{**Q**} $(A - I_n) = 1$, under the additional hypothesis that ϕ is an n quasi rotation. Section 4 details further properties of n quasi rotations, which are used in Section 5 where we state and prove our main result, Theorem 12. The main step in its proof establishes that K-theory and tracial range determine uniquely, up to isomorphism, a standard C^* -algebra isomorphic to $C(\mathbf{T}^n) \rtimes_{\alpha_{\phi}} \mathbf{Z}$.

2. *K*-theory of $C(\mathbf{T}^n) \rtimes_{\alpha_{\phi}} \mathbf{Z}$. In this section we compute the *K*theory of the crossed products $C(\mathbf{T}^n) \rtimes_{\alpha_{\phi}} \mathbf{Z}$, where $\alpha_{\phi}(f) = f \circ \phi^{-1}$. Here $\phi(z) = aA(z), a \in \mathbf{T}^n, A \in GL(n, \mathbf{Z}), z \in \mathbf{T}^n$, is an affine transformation of \mathbf{T}^n satisfying rank_{**Q**} $(A - I_n) = 1$. Note that *A* is acting on \mathbf{T}^n by a group automorphism and that *A* has a topological interpretation as the degree matrix, $D(\phi)$, of ϕ .

The K-theory of $C(\mathbf{T}^n) \rtimes_{\alpha_{\phi}} \mathbf{Z}$ only depends on the conjugacy class of A in $GL(n, \mathbf{Z})$. The structure of the conjugacy classes of elements A in $GL(n, \mathbf{Z})$ having rank $\mathbf{Q}(A - I_n) = 1$ is given in the following lemma, the proof of which is given in the Appendix. See also [7] for a proof when n = 2.

Lemma 1 (Conjugacy classes lemma). Let $A \in GL(n, \mathbb{Z})$ with rank_Q $(A - I_n) = 1$. Then,

(1) If det
$$(A) = 1$$
, then A is conjugate in $GL(n, \mathbb{Z})$ to

Γ1]	
	•••			
		1	0	,
L		M	1	

where $M \in \mathbf{Z} \setminus \{0\}$.

(2) If det (A) = -1, then A is conjugate in $GL(n, \mathbf{Z})$ to

[1	••.	1	0	0	r	[1	۰.	0	1	
		0	_1					1		
L		0	_T]			L		T	01	

We will refer to

$$\begin{bmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & 0 \\ & & M & 1 \end{bmatrix}, \begin{bmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & 0 \\ & & 0 & -1 \end{bmatrix} \text{ and } \begin{bmatrix} 1 & & & \\ & \ddots & & \\ & & 0 & 1 \\ & & 1 & 0 \end{bmatrix}$$

as the standard form for A and write S_1^M, S_2 and S_3 , respectively.

Now we can compute the K-theory of $C(\mathbf{T}^n) \rtimes_{\alpha_{\phi}} \mathbf{Z}, \phi = aA, a \in \mathbf{T}^n, A \in GL(n, \mathbf{Z}), \operatorname{rank}_{\mathbf{Q}}(A - I_n) = 1.$

By applying the Pimsner-Voiculescu sequence [1], we get

$$0 \longrightarrow \mathbf{Z}^{2n-1} / \operatorname{Im} (1-\phi_0) \longrightarrow K_0(C(\mathbf{T}^n) \rtimes_{\alpha_{\phi}} \mathbf{Z}) \longrightarrow \operatorname{Ker} (1-\phi_1) \longrightarrow 0,$$

$$0 \longrightarrow \mathbf{Z}^{2^{n-1}} / \operatorname{Im} (1-\phi_1) \longrightarrow K_1(C(\mathbf{T}^n) \rtimes_{\alpha_{\phi}} \mathbf{Z}) \longrightarrow \operatorname{Ker} (1-\phi_0) \longrightarrow 0,$$

where $\phi_* : K^*(\mathbf{T}^n) \to K^*(\mathbf{T}^n), * = 0, 1$, is induced by α_{ϕ} .

When det (A) = 1, $A = S_1^M$ and thus ϕ_* , * = 0, 1, can be written as

$$\begin{bmatrix} 1 & 0 \\ -M & 1 \end{bmatrix} \bigotimes I_{2^{n-3}} & 0 \\ 0 & I_{2^{n-2}} \end{bmatrix},$$

for $n \geq 3$, so that

$$K_*(C(\mathbf{T}^n)\rtimes_{\alpha_{\phi}} \mathbf{Z}) \cong \mathbf{Z}^{3\cdot 2^{n-2}} \oplus \mathbf{Z}_M^{2^{n-3}}, \quad *=0,1, \quad n \ge 3.$$

When det (A) = -1, if $A = S_2$, then $\phi_* = \begin{bmatrix} I_{2^{n-2}} & 0\\ 0 & -I_{2^{n-2}} \end{bmatrix}$ and therefore,

$$K_*(C(\mathbf{T}^n)\rtimes_{\alpha_{\phi}} \mathbf{Z})\cong \mathbf{Z}^{2^{n-1}}\oplus \mathbf{Z}^{2^{n-2}}_2, \quad *=0,1, \quad n\geq 2.$$

If $A = S_3$, then

$$\phi_* = \begin{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \bigotimes I_{2^{n-3}} & 0 & 0 \\ & 0 & -I_{2^{n-3}} & 0 \\ & 0 & 0 & I_{2^{n-3}} \end{bmatrix}$$

and so,

$$K_*(C(\mathbf{T}^n) \rtimes_{\alpha_{\phi}} \mathbf{Z} \cong \mathbf{Z}^{2^{n-1}} \oplus \mathbf{Z}^{2^{n-3}}_2, \quad * = 0, 1, \quad n \ge 3.$$

3. The tracial range of $K_0(C(\mathbf{T}^n) \rtimes_{\alpha_{\phi}} \mathbf{Z})$. As shown in [5] and [7], K-theory groups isomorphism does not necessarily imply crossed product C^* -algebra isomorphism. Indeed, Riedel showed in [5] that the set of eigenvalues is a complete isomorphism invariant for crossed products by minimal rotations. Moreover, for affine transformations of \mathbf{T}^2 , Rouhani [7] required the existence of a unitary eigenvalue $\lambda = e^{2\pi i \theta}$ (θ irrational) associated to a unitary eigenfunction f with degree matrix $D(f) = [n, m] \neq 0$, n, m relatively prime. (In this case, rank $_{\mathbf{Q}}(A - I_2) = 1$). He was thus able to compute the tracial range of $K_0(C(\mathbf{T}^2) \rtimes_{\alpha_{\phi}} \mathbf{Z})$ and show that the tracial range together with the K-theory groups are complete isomorphism invariants.

Generalizing Rouhani's work to higher dimensions we will assume the existence of n-1 eigenvalues and thus complete the tracial range of $K_0(C(\mathbf{T}^n) \rtimes_{\alpha_{\phi}} \mathbf{Z})$.

Definition 2. Let $\phi = (\phi_1, \ldots, \phi_n) : \mathbf{T}^n \to \mathbf{T}^n$ be a homeomorphism of \mathbf{T}^n . Then $\phi_i(z_1, \ldots, z_n) = z_1^{a_{i,1}} \cdots z_n^{a_{i,n}} e^{2\pi \sqrt{-1}F_i(z_1, \ldots, z_n)}$, where $a_{i,j} \in \mathbf{Z}$ and $F_i(z_1, \ldots, z_n)$ is continuous and real valued. We

say that ϕ is an *n* quasi rotation if there exist unitaries $f_1, \ldots, f_{n-1} \in C(\mathbf{T}^n), \lambda_1, \ldots, \lambda_{n-1} \in \mathbf{T} \setminus \{1\}$ such that

- (1) $D(\phi) = [a_{i,j}]_{i,j=1,\dots,n} \neq I_n,$
- (2) $f_i \circ \phi = \lambda_i f_i$,
- (3) gcd {all minors of size $(n-1) \times (n-1)$ of $[D(f_i)]_{i=1,...,n-1}$ } = 1.

Note that condition (3) above is equivalent to requiring that the matrix $[D(f_i)]$ be completable (by adding another row) to a matrix in $SL(n, \mathbb{Z})$, thus generalizing Rouhani's condition for n = 2 that $D(f_1) = [n, m] \neq 0, n, m$ relatively prime.

Affine transformations $\phi = aA : \mathbf{T}^n \to \mathbf{T}^n$, $a \in \mathbf{T}^n$ and $A \in GL(n, \mathbf{Z})$, with $A = S_1^M, S_2, S_3$ are *n* quasi rotations. In fact, the ordered sets z_1, \ldots, z_{n-1} , respectively $z_1, \ldots, z_{n-2}, z_{n-1}z_n$, and a_1, \ldots, a_{n-1} , respectively $a_1, \ldots, a_{n-2}, a_{n-1}a_n$, are a set of eigenfunctions and eigenvalues for ϕ .

The following lemmas are an easy consequence of Definition 2.

Lemma 3. Let ϕ be an *n* quasi rotation with associated degree matrices $D(\phi)$ and $[D(f_i)]$. Then,

- (1) $D(f_i) \neq [0, \dots, 0]$ for all $i = 1, \dots, n-1$,
- (2) $D(f_i)(D(\phi) I_n) = 0$ for all i = 1, ..., n 1,
- (3) $\operatorname{rank}_{\mathbf{Q}}(D(\phi) I_n) = 1.$

Lemma 4. Let ϕ be an n quasi rotation with associated degree matrices $D(\phi)$ and $[D(f_i)]$. Then, for any matrix $Y \in M((n-1) \times n, \mathbb{Z})$ such that $Y(D(\phi) - I_n) = 0$, there exists a matrix $\Lambda \in M(n-1, \mathbb{Z})$ such that $Y = \Lambda[D(f_i)]$.

Proof. First notice that for all $K \in GL(n, \mathbb{Z})$, $[D(f_i)]K$ satisfies (3) of Definition 2. This follows since, by (3), we can choose a matrix $R \in M(1 \times n, \mathbb{Z})$ such that

$$\det \begin{bmatrix} [D(f_i)] \\ R \end{bmatrix} = 1$$

$$\det \begin{bmatrix} [D(f_i)] \\ R \end{bmatrix} K = \det \begin{bmatrix} [D(f_i)]K \\ RK \end{bmatrix} = \pm 1.$$

If we write $D(\phi) = KSK^{-1}$, with S the standard form for $D(\phi)$, then both YK and $[D(f_i)]K$ are solutions of $X(S-I_n) = 0$. Since $[D(f_i)]K$ also satisfies (3) of Definition 2 its rows span the left null space of $S-I_n$, which implies $YK = \Lambda[D(f_i)]K$ for some $\Lambda \in M(n-1, \mathbb{Z})$, and hence $Y = \Lambda[D(f_i)]$. \Box

Now, to compute the tracial range of $C(\mathbf{T}^n) \rtimes_{\alpha_{\phi}} \mathbf{Z}$, where ϕ is an *n* quasi rotation, let $[D(f_i)]$ be the degree matrix relative to the eigenfunctions f_i associated to the eigenvalues $\lambda_i = e^{2\pi\sqrt{-1}\theta i}, 0 < \theta_i < 1$, of ϕ . For a fixed *i*, define $\rho_i : C(\mathbf{T}) \to C(\mathbf{T}^n)$ by $\rho_i(g) = g \circ f_i$. ρ_i induces a homomorphism between the rotation algebra A_{λ_i} and $C(\mathbf{T}^n) \rtimes_{\alpha_{\phi}} \mathbf{Z}$. By the naturality of the Pimsner-Voiculescu sequence, it follows that the image of the exponential of the Rieffel projection [**6**] in $K_1(C(\mathbf{T}^n) \rtimes_{\alpha_{\phi}} \mathbf{Z})$ is f_i , [**7**]. By Lemma 4, $[D(f_i)]$ generates the kernel of $(\iota - \alpha_{\phi}^*)$ in $H^1(\mathbf{T}^n, \mathbf{Z})$. Therefore, for any trace τ^{ϕ} on $C(\mathbf{T}^n) \rtimes_{\alpha_{\phi}} \mathbf{Z}$ $([\mathbf{1}, \text{ pp. 99-100}], [\mathbf{4}]),$

$$\tau^{\phi}_*(K_0(C(\mathbf{T}^n)\rtimes_{\alpha_{\phi}}\mathbf{Z})) = \mathbf{Z} + \theta_1 \mathbf{Z} + \dots + \theta_{n-1} \mathbf{Z}.$$

4. Some properties of n quasi rotations. In this section we will derive some additional properties of n quasi rotations, which we will use in Section 5 in the proof of our main result.

Proposition 5. Let ϕ be an n quasi rotation with associated degree matrices $D(\phi)$ and $[D(f_i)]$ (relative to the eigenvalues λ_i and to the eigenfunctions f_i). Let μ_i and g_i (with degree matrix $[D(g_i)]$) be another system of eigenvalues and eigenfunctions for ϕ satisfying (1), (2) and (3) of Definition 2. Then $\mu_i = \prod_{j=1}^{n-1} \lambda_j^{\alpha_{i,j}}$ for some $\Lambda = [\alpha_{i,j}] \in GL(n-1, \mathbb{Z}).$

Proof. Since $[D(g_i)] = \Lambda[D(f_i)], \Lambda = [\alpha_{i,j}] \in M(n-1, \mathbb{Z})$ with $[D(f_i)]$ and $[D(g_i)]$ both satisfying (3) of Definition 2, it follows that det $(\Lambda) = \pm 1$ since det (Λ) is a factor of all the $(n-1) \times (n-1)$ minors of

944

So

 C^* -ALGEBRAS

 $\begin{array}{l} [D(g_i)]. \text{ By using the eigenvalue equations } f_i \circ \phi = \lambda_i f_i \text{ and } g_i \circ \phi = \mu_i g_i, \\ \text{we get } h_i \circ \phi = \nu_i h_i, \text{ with } h_i = \prod_{j=1}^{n-1} f_j^{\alpha_{i,j}} \overline{g_i} \text{ and } \nu_i = \prod_{j=1}^{n-1} \lambda_j^{\alpha_{i,j}} \overline{\mu_i} \\ \text{for } i = 1, \ldots, n-1. \text{ Note that } D(h_i) = 0 \text{ and therefore } h_i(z) = \\ e^{2\pi \sqrt{-1}H_i(z)}. \text{ So } h_i \circ \phi = \nu_i h_i \text{ becomes } e^{2\pi \sqrt{-1}[H_i(\phi(z)) - H_i(z)]} = \nu_i \text{ or } \\ H_i(\phi(z)) - H_i(z) = c_i \text{ for some constant } c_i \text{ and for all } z \in \mathbf{T}^n. \text{ Thus,} \\ H_i(\phi^k(z)) - H_i(z) = kc_i \text{ for all } k \in \mathbf{Z} \text{ and for all } z \in \mathbf{T}^n. \text{ Hence, as the lefthand side is bounded, } c_i = 0, \text{ that is, } \nu_i = 1 \text{ for } i = 1, \ldots, n-1. \text{ So we must have } \mu_i = \prod_{j=1}^{n-1} \lambda_j^{\alpha_{i,j}}. \end{array}$

Proposition 6. Let ϕ be an *n* quasi rotation with associated degree matrices $D(\phi)$ and $[D(f_i)]$.

Let

$$\hat{\lambda} = \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_{n-1} \end{bmatrix} \quad and \quad \hat{f} = \begin{bmatrix} f_1 \\ \vdots \\ f_{n-1} \end{bmatrix}$$

Then, for any $\Lambda \in GL(n-1, \mathbf{Z})$ with

$$\Lambda = \begin{bmatrix} \Lambda_1 \\ \vdots \\ \Lambda_{n-1} \end{bmatrix},$$

$$\Lambda_i \hat{f} \circ \phi = \Lambda_i \hat{\lambda} \Lambda_i \hat{f}, \quad i = 1, \dots, n-1.$$

Proof. Straightforward using $f_i \circ \phi = \lambda_i f_i$.

Lemma 7. If $\phi = aA$ is an affine *n* quasi rotation with associated degree matrices $D(\phi) = A$ and $[D(f_i)]$, then $\lambda_i = D(f_i)(a)$.

Proof. We can write $f_i(z) = D(f_i)(z)e^{2\pi\sqrt{-1}F_i(z)}$, and using $f_i \circ \phi = \lambda_i f_i$ obtain

$$D(f_i)(a)D(f_i)A(z)e^{2\pi\sqrt{-1}F_i(\phi(z))} = \lambda_i D(f_i)(z)e^{2\pi\sqrt{-1}F_i(z)}.$$

Now we observe that $D(f_i) = D(f_i)A$ so $e^{2\pi\sqrt{-1}[F_i(\phi(z)) - F_i(z)]} = \lambda_i \overline{D(f_i)(a)}$. Repeating the same argument as that in the proof of Proposition 5, we get $\lambda_i = D(f_i)(a)$.

5. Complete isomorphism invariants of $C(\mathbf{T}^n) \rtimes_{\alpha_{\phi}} \mathbf{Z}$. Now we consider affine *n* quasi rotations, i.e., affine transformations $\phi = aA$: $\mathbf{T}^n \to \mathbf{T}^n$, $a \in \mathbf{T}^n$, and $A \in GL(n, \mathbf{Z})$, which are also *n* quasi rotations.

As mentioned in Section 3, in the particular case $A = S_1^M, S_2$, respectively S_3 , the ordered sets z_1, \ldots, z_{n-1} , respectively $z_1, \ldots, z_{n-2}, z_{n-1}$ z_n , and a_1, \ldots, a_{n-1} , respectively $a_1, \ldots, a_{n-2}, a_{n-1}a_n$, are a set of eigenfunctions and eigenvalues for ϕ . The tracial range of $C(\mathbf{T}^n) \rtimes_{\alpha_{\phi}} \mathbf{Z}$ is completely determined by the eigenvalues λ_i of ϕ . To recover information on crossed product C^* -algebra isomorphism classes from information on the tracial range, we now restrict to quasi rotations with IRRI eigenvalues, that is,

Definition 8. An affine *n* quasi rotation with IRRI eigenvalues is an affine *n* quasi rotation ϕ with eigenvalues $\lambda_i = e^{2\pi\sqrt{-1}\theta_i}$, $i = 1, \ldots, n-1$, such that $\theta_1, \ldots, \theta_{n-1}$, are irrational and rationally independent (mod (1)).

In the particular case $A = S_1^M, S_2$, respectively S_3 , ϕ has IRRI eigenvalues if q_1, \ldots, q_{n-1} , respectively $q_1, \ldots, q_{n-2}, q_{n-1} + q_n$, are irrational and rationally independent. (Where $a_j = e^{2\pi\sqrt{-1}q_j}, q_j \in \mathbf{R}, j = 1, \ldots, n$.)

Our main result, Theorem 12, characterizes crossed products of affine n quasi rotations with IRRI eigenvalues, provided λ_{n-1} is fixed. We will now state and prove some additional results needed in the proof of Theorem 12.

Proposition 9. Let $\phi = aA$ be an affine *n* quasi rotation with IRRI eigenvalues and $KAK^{-1} = S$ be the standard form for *A*.

(i) ϕ is topologically conjugate to the affine *n* quasi rotation with IRRI eigenvalues $\psi = sS$, where

$$s = K(a) = \begin{bmatrix} K(a)_1 \\ \vdots \\ K(a)_n \end{bmatrix}.$$

(ii)
$$\psi = sS$$
, $s = \begin{bmatrix} s_1 \\ \vdots \\ s_n \end{bmatrix}$, is topologically conjugate to $\omega = rS$, with

$$r = \begin{bmatrix} s_1 \\ \vdots \\ s_{n-1} \\ 1 \end{bmatrix} \quad if S = S_1^M, S_2$$

or

$$r = \begin{bmatrix} s_1 \\ \vdots \\ s_{n-2} \\ s_{n-1}s_n \\ 1 \end{bmatrix} \quad if \ S = S_3.$$

(iii) $\omega = rS$ is topologically conjugate to $\eta = tS$ where t = L(r) for any $L \in GL(n, \mathbb{Z})$ commuting with S.

Proof. (i) If we define $\delta(z) = K(z)$, ϕ and ψ are topologically conjugate via δ . It remains to show that ψ is an n quasi rotation with IRRI eigenvalues. Put

$$X = \begin{bmatrix} 1 & & 0 \\ & \ddots & & \vdots \\ & & 1 & 0 \end{bmatrix} \quad \text{or} \quad X = \begin{bmatrix} 1 & & 0 \\ & \ddots & & \vdots \\ & & 1 & 1 \end{bmatrix}$$

according to $S = S_1^M, S_2$ or S_3 . Now XS = X and hence XKA = XKso by Lemma 4, there exists $\Lambda \in GL(n-1, \mathbb{Z})$ such that $\Lambda[D(f_i)] = XK$. Moreover, by Proposition 6 and Lemma 7, $XK(a) = \Lambda[D(f_i)](a)$ is an IRRI system of eigenvalues for ϕ . It is now straightforward to show that XK(a) is an IRRI system of eigenvalues for ψ with eigenfunctions z_1, \ldots, z_{n-1} or $z_1, \ldots, z_{n-2}, z_{n-1}z_n$.

(ii)
$$\delta(z) = dI_n(z)$$
 with

$$d = \begin{bmatrix} 1\\ \vdots\\ d_{n-1}\\ 1 \end{bmatrix},$$

947

$$d_{n-1} = s_n^{-1/M}, s_n^{-1}$$
 if $S = S_1^M, S_3$ respectively, or

$$d = \begin{bmatrix} 1\\ \vdots\\ 1\\ s_n^{1/2} \end{bmatrix}$$

if $S = S_2$ intertwines ψ and ω .

(iii) $\delta(z) = L(z)$ intertwines ω and η .

The previous proposition's proof motivates the following definition (cf. also [3]).

Definition 10. Let $\phi = aA$ and $KAK^{-1} = S$ be the standard form of A. If $S = S_1^M, S_2$, respectively S_3 , we will call the ordered sets z_1, \ldots, z_{n-1} , respectively $z_1, \ldots, z_{n-2}, z_{n-1}z_n$, and $K(a)_1, \ldots, K(a)_{n-1}$, respectively $K(a)_1, \ldots, K(a)_{n-2}, K(a)_{n-1}K(a)_n$, a standard set of eigenfunctions and eigenvalues for ϕ .

Definition 11. Let $\lambda \in \mathbf{T} \setminus \{1\}$. We say ϕ is an affine (n, λ) quasi rotation if ϕ is an affine n quasi rotation and there exists a standard set of eigenvalues $\lambda_1, \ldots, \lambda_{n-1}$ for ϕ such that $\lambda_{n-1} = \lambda^{\pm 1}$.

Theorem 12. Let $\phi = aA$ and $\psi = bB$ be affine (n, λ) quasi rotations with IRRI eigenvalues. Then the following are equivalent:

(i) $C(\mathbf{T}^n) \rtimes_{\alpha_{\phi}} \mathbf{Z} \cong C(\mathbf{T}^n) \rtimes_{\alpha_{\psi}} \mathbf{Z}.$

(ii) $K_*(C(\mathbf{T}^n) \rtimes_{\alpha_{\phi}} \mathbf{Z}) \cong K_*(C(\mathbf{T}^n) \rtimes_{\alpha_{\psi}} \mathbf{Z}), * = 0, 1, and for any tracial state <math>\tau^{\phi}$ on $C(\mathbf{T}^n) \rtimes_{\alpha_{\phi}} \mathbf{Z}$, respectively τ^{ψ} on $C(\mathbf{T}^n) \rtimes_{\alpha_{\psi}} \mathbf{Z}$, we have

$$\tau^{\phi}_*(K_0(C(\mathbf{T}^n)\rtimes_{\alpha_{\phi}}\mathbf{Z}))\cong \tau^{\psi}_*(K_0(C(\mathbf{T}^n)\rtimes_{\alpha_{\psi}}\mathbf{Z}))$$

(iii) ϕ and ψ are topologically conjugate via an affine transformation.

Proof. As $(3) \Rightarrow (1)$ and $(1) \Rightarrow (2)$ are trivial, we only need to show $(2) \Rightarrow (3)$. Since $C(\mathbf{T}^n) \rtimes_{\alpha_{\phi}} \mathbf{Z}$ and $C(\mathbf{T}^n) \rtimes_{\alpha_{\psi}} \mathbf{Z}$ have the same K-theory, A

 C^* -ALGEBRAS

and *B* are both conjugate to the same standard form *S* (see Section 2). That is, there exist $K_1, K_2 \in GL(n, \mathbb{Z})$ such that $K_1AK_1^{-1} = S$ and $K_2BK_2^{-1} = S$. Thus, by Proposition 9, ϕ is topologically conjugate to $\omega_1 = r_1S$, where

$$r_1 = \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_{n-1} \\ 1 \end{bmatrix},$$

and ψ is topologically conjugate to $\omega_2 = r_2 S$, where

$$r_2 = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_{n-1} \\ 1 \end{bmatrix},$$

with $\lambda_1, \ldots, \lambda_{n-1}$, respectively μ_1, \ldots, μ_{n-1} , a standard set of eigenvalues for ϕ , respectively ψ . Note that ϕ and ψ are affine (n, λ) quasi rotations so we can assume $\lambda_{n-1} = \lambda^{\pm 1} = \mu_{n-1}^{\pm 1}$. As

$$\tau^{\phi}_{*}(K_{0}(C(\mathbf{T}^{n})\rtimes_{\alpha_{\psi}}\mathbf{Z}))\cong\tau^{\psi}_{*}(K_{0}(C(\mathbf{T}^{n})\rtimes_{\alpha_{\psi}}\mathbf{Z})),$$

there exists $\Lambda = [\alpha_{i,j}] \in GL(n-1, \mathbf{Z})$ such that

$$\Lambda \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_{n-1} \end{bmatrix} = \begin{bmatrix} \mu_1 \\ \vdots \\ \mu_{n-1} \end{bmatrix}.$$

Moreover, $\alpha_{n-1,j} = 0$ for $j = 1, \ldots, n-2$, $\alpha_{n-1,n-1} = \pm 1$ because $\lambda_{n-1} = \mu_{n-1}^{\pm 1}$ and the λ_i 's are IRRI. Thus,

$$\begin{bmatrix} \mu_1 \\ \vdots \\ \mu_{n-1} \\ 1 \end{bmatrix} = \begin{bmatrix} \alpha_{1,1} & \cdots & \cdots & \alpha_{1,n-1} & \beta_1 \\ \vdots & & \vdots & \vdots \\ \alpha_{n-2,1} & \cdots & \cdots & \alpha_{n-2,n-1} & \beta_{n-2} \\ 0 & \cdots & \cdots & \pm 1 & 0 \\ 0 & \cdots & \cdots & 0 & \pm 1 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \vdots \\ \lambda_{n-1} \\ 1 \end{bmatrix},$$
$$\beta_1, \dots, \beta_{n-2} \in \mathbf{Z}.$$

Finally, by Proposition 9(iii), ω_1 is topologically conjugate to ω_2 with L the matrix above where we choose $\beta_i = 0$, respectively $\beta_i = \alpha_{i,n-1}$ for $i = 1, \ldots, n-2$ if $S = S_1^M$ or S_2 , respectively S_3 .

Remark 13. If $\phi = aA$ is an affine *n* quasi rotation with *A* having standard form S_2 , the three conditions of Theorem 12 are equivalent since $\begin{bmatrix} \Lambda & 0\\ 0 & \pm 1 \end{bmatrix}$ commutes with S_2 for any $\Lambda \in GL(n-1, \mathbb{Z})$.

Appendix

Proof of Lemma 1. We will prove Lemma 1 using induction on the size of A. For n = 2, the result was proved by Rouhani:

Lemma 14 [7]. Let $A \in GL(2, \mathbb{Z})$ with $\operatorname{rank}_{\mathbb{Q}}(A - I_2) = 1$. (i) If det (A) = 1, then A is conjugate in $GL(2, \mathbb{Z})$ to $\begin{bmatrix} 1 & 0 \\ M & 1 \end{bmatrix}$, $M \in \mathbb{Z} \setminus \{0\}$. (ii) If det (A) = -1, then A is conjugate in $GL(2, \mathbb{Z})$ to $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$ or $\begin{bmatrix} 0 & 1 \end{bmatrix}$

 $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$

Now suppose that for every matrix $A \in GL(k, \mathbf{Z}), k < n$, Lemma 1 holds, and consider $A = [a_{i,j}] \in GL(n, \mathbf{Z})$. Firstly, since det $(A) = \pm 1$, rank_Q $(A - I_n) = 1$, there is at least one nonzero off diagonal element. By conjugating A with elementary matrices, we can assume that $a_{n,1} \neq 0$. Let $E_1 = \gcd(a_{n,1}, a_{n,2}) \neq 0$, choose t_1, r_1 such that $t_1(a_{n,1}/E_1) - r_1(a_{n,2}/E_1) = 1$, and put $B = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$, with $\alpha = (\alpha_{n,1}/E_1)$, $\beta = (\alpha_{n,2}/E_1), \gamma = r_1$ and $\delta = t_1$. Define the matrix $K \in GL(n, \mathbf{Z})$ by $K = \begin{bmatrix} B & 0 \\ 0 & I_{n-2} \end{bmatrix}$. Now KAK^{-1} is a matrix whose last row is $[E_1, 0, a_{n,3}, a_{n,4}, \dots, a_{n,n}]$. Conjugating again by the elementary matrix $e_{2,3}$ (which switches rows 2 and 3), we get that A is similar to a matrix having as last row $[E_1, a_{n,3}, 0, a_{n,4}, \dots, a_{n,n}]$ so that by proceeding as before and then conjugating by $e_{2,4}$ etc., A is similar to a matrix having as last row $[E, 0, \dots, 0, a_{n,n}]$, where $E = \gcd(a_{n,1}, \dots, a_{n,n-1}) \neq 0$.

Now, by using the fact that $\operatorname{rank}_{\mathbf{Q}}(A - I_n) = 1$, we see that

$$A \sim \begin{bmatrix} a_{1,1}' & 0 & \cdots & 0 & a_{1,n}' \\ a_{2,1}' & 1 & \ddots & \vdots & a_{2,n}' \\ \vdots & \ddots & 0 & \vdots \\ a_{n-1,1}' & 0 & \cdots & 1 & a_{n-1,n}' \\ E & 0 & \cdots & 0 & a_{n,n}' \end{bmatrix} \sim \begin{bmatrix} 1 & a_{2,1}' & 0 & \cdots & 0 & a_{2,n}' \\ 0 & a_{1,1}' & 0 & \cdots & 0 & a_{1,n}' \\ 0 & 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & a_{n-1,1}' & 0 & \cdots & 1 & a_{n-1,n}' \\ 0 & E & 0 & \cdots & 0 & a_{n,n} \end{bmatrix}$$

Since det $(A) = \pm 1$, it follows that det $(\tilde{A}) = \pm 1$, where

$$\tilde{A} = \begin{bmatrix} a'_{1,1} & 0 & \cdots & 0 & a'_{1,n} \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ a'_{n-1,1} & 0 & \cdots & 1 & a'_{n-1,n} \\ E & 0 & \cdots & 0 & a_{n,n} \end{bmatrix}.$$

Suppose now that det $(A) = \det(\tilde{A}) = 1$. Either rank_{**Q**} $(\tilde{A} - I_{n-1}) = 1$, so by the induction hypothesis there exists $K \in GL(n-1, \mathbb{Z})$ such that $K\tilde{A}K^{-1}$ is in standard form or rank_{**Q**} $(\tilde{A}-I_{n-1}) = 0$ and $\tilde{A} = I_{n-1}$. Therefore,

$$\begin{bmatrix} 1 & 0 \\ 0 & K \end{bmatrix} A \begin{bmatrix} 1 & 0 \\ 0 & K \end{bmatrix}^{-1} = \begin{bmatrix} 1 & a_{1,2}'' & \cdots & a_{1,n}'' \\ 0 & & & \\ \vdots & & K\tilde{A}K^{-1} \\ 0 & & & & \end{bmatrix}.$$

Conjugating by

$$\begin{bmatrix} 0 & 0 & 0 & \cdots & 0 & 1 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & & \ddots & 1 & 0 & 0 \\ 0 & 1 & 0 & \cdots & 0 & 0 & 0 \\ 0 & 0 & 0 & \cdots & 0 & 0 & 1 \\ 1 & 0 & 0 & \cdots & 0 & 0 & 0 \end{bmatrix},$$

we have

$$A \sim \begin{bmatrix} 1 & 0 & \cdots & \cdots & 0 \\ 0 & 1 & \ddots & & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ M & \cdots & 0 & 1 & 0 \\ a_{1,n-1}'' & \cdots & \cdots & a_{1,n}'' & 1 \end{bmatrix}, \quad M \in \mathbf{Z}.$$

If $M \neq 0$, then $a_{1,j}' = 0$ for j = 2, ..., n-2, n. Now choose t and r such that $t(M/F) - r(a_{1,n-1}'/F) = 1$, where $F = \gcd(M, a_{1,n-1}')$ and put $B = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix}$ with $\alpha = (a_{1,n-1}')/F$, $\beta = -M/F$, $\gamma = t$ and $\delta = -r$. Conjugating by

$$\begin{bmatrix} I_{n-2} & 0\\ 0 & B \end{bmatrix},$$

we have

$$A \sim \begin{bmatrix} 1 & & \\ & \ddots & \\ F & & 1 \end{bmatrix} \sim S_1^F.$$

If M = 0, without loss of generality, we can assume that $a_{1,n-1}' \neq 0$. We can then proceed as in the first part of the proof to obtain

$$A \sim \begin{bmatrix} 1 & & \\ & \ddots & \\ F & & 1 \end{bmatrix} \sim S_1^F,$$

with $F = \text{gcd}(a''_{1,j}), j = 2, ..., n.$

Finally, suppose that $\det(A) = \det(\tilde{A}) = -1$. By the induction hypothesis, there exists $K \in GL(n-1, \mathbb{Z})$ such that $K\tilde{A}K^{-1}$ is in standard form. Therefore,

$$A \sim \begin{bmatrix} 1 & a_{1,2}'' & \cdots & a_{1,n}'' \\ 0 & 1 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & X \end{bmatrix},$$

 C^* -ALGEBRAS

where

$$X = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Since rank_Q $(A - I_n) = 1$, we have $a''_{1,j} = 0$ for j = 2, ..., n - 2 and $a''_{1,n-1} = 0$ or $-a''_{1,n}$, respectively. In the first case, conjugation by $e_{1,n-1}$ gives

$$A \sim \begin{bmatrix} 1 & & & \\ & \ddots & & \\ & & 1 & a_{1,n}'' \\ & & 0 & -1 \end{bmatrix}.$$

But, by Lemma 14,

$$\begin{bmatrix} 1 & a_{1,n}'' \\ 0 & -1 \end{bmatrix}$$

is conjugate to

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \quad \text{or} \quad \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}.$$

Thus A is conjugate to S_2 or S_3 . In the second case, conjugation by

$$\begin{bmatrix} 1 & a_{1,n}'' \\ & \ddots & \\ & & 1 \end{bmatrix}$$

gives $A \sim S_3$.

REFERENCES

B. Blackadar, K-theory for operator algebras, Math. Sci. Res. Inst. Publ., vol. 5, Springer, New York, 1986.

2. R. Ji, On the crossed product C^* -algebra associated with Furstenberg transformations on tori, Ph.D. Dissertation, SUNY at Stony Brook, New York, 1986.

3. J. Packer, K-theoretical invariants for C^* -algebras associated to transformations and induced flows, J. Funct. Anal. **67** (1986), 25–59.

4. M. Pimsner, Ranges of traces on K_0 of reduced crossed products by free groups, Lecture Notes in Math., vol. 1132, Springer-Verlag, New York, 1985.

5. N. Riedel, Classification of the C^{*}-algebras associated with minimal rotations, Pacific J. Math. **101** (1982), 153–161.

6. M. Rieffel, $C^{\ast}\mbox{-algebras}$ associated with irrational rotations, Pacific J. Math. 93 (1981), 415–429.

7. H. Rouhani, Quasi rotation C*-algebras, Pacific J. Math. 148 (1991), 131–151.
8. —, A Furstenberg transformation of the 2-torus without quasi-discrete spectrum, Canad. Math. Bull. 33 (1990), 316–322.

Department of Mathematics, University of Colorado, Campus Box 395, Boulder, CO 80309 $E\text{-}mail\ address: \texttt{farsi@euclid.colorado.edu}$

Department of Mathematics, Widener University, Chester, PA 19013 $E\text{-}mail\ address:\ \texttt{watling@kuratowski.math.widener.edu}$