C^{*}-ALGEBRAS OF DYNAMICAL SYSTEMS OF QUASI ROTATIONS ON TORI

CARLA FARSI AND NEIL WATLING

Abstract

In this note we determine the isomorphism classes of the crossed product C^{*}-algebras of affine (n, λ) quasi rotations of \mathbf{T}^{n}.

1. Introduction. There have been considerable contributions to the computation of K-theoretical and isomorphism invariants of C^{*}-algebras of dynamical systems on the n-torus \mathbf{T}^{n}, which include certain noncommutative tori [5], [3], [7]. Riedel [5] classified the crossed products of $C\left(\mathbf{T}^{n}\right)$ by minimal rotations of \mathbf{T}^{n}, i.e., minimal transformations of \mathbf{T}^{n} with degree matrix $D(\phi)=I_{n}$. He showed that the set of eigenvalues of ϕ is a complete isomorphism invariant. When ϕ is a minimal homeomorphism of \mathbf{T}^{n} with quasi discrete spectrum, Packer [3] computed the tracial range of $K_{0}\left(C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}\right)$. For $n=2$, Rouhani [7] classified, by using K-theoretical invariants, the isomorphism classes of the crossed product C^{*}-algebras $C\left(\mathbf{T}^{2}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}$, where ϕ is an (affine) irrational quasi rotation of \mathbf{T}^{2}. That is an (affine) transformation that has a unitary eigenvalue $\lambda=e^{2 \pi i \theta}$ (θ irrational) with a unitary eigenfunction f having degree matrix $D(f)=[n, m] \neq 0$, where n, m are relatively prime and the degree matrix $D(\phi)$ satisfies $\operatorname{rank}_{\mathbf{Q}}\left(D(\phi)-I_{2}\right)=1$. The concept of quasi rotation admits a natural generalization to an n quasi rotation for transformations $\phi: \mathbf{T}^{n} \rightarrow \mathbf{T}^{n}$. Roughly speaking, ϕ is now required to have $n-1$ eigenvalues while the degree matrix $D(\phi)$ still satisfies $\operatorname{rank}_{\mathbf{Q}}\left(D(\phi)-I_{n}\right)=1$. (See Definition 2 and Lemma 3.)
Our main result, which generalizes the main theorem in $[\mathbf{7}]$ to \mathbf{T}^{n}, $n \geq 3$, is the characterization, using K-theoretical invariants, of the isomorphism classes of crossed products $C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}$ of \mathbf{T}^{n}, where ϕ is an affine n quasi rotation, provided some additional conditions are

[^0] Award.
also satisfied (cf. Theorem 12). More precisely, the K-theory groups $K_{*}\left(C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}\right), *=0,1$, and the tracial range $\tau_{*}^{\phi}\left(K_{0}\left(C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}\right)\right)$ are shown to be complete isomorphism invariants.

Our results also generalize some of $[\mathbf{3}]$ to the broader contest of n quasi rotations (in fact every n quasi rotation has topologically quasi discrete spectrum [8]).
In detail, the contents of this note are as follows. In Section 2 we consider affine transformations $\phi=a A, a \in \mathbf{T}^{n}, A \in G L(n, \mathbf{Z})$, of \mathbf{T}^{n} satisfying $\operatorname{rank}_{\mathbf{Q}}\left(A-I_{n}\right)=1$. By detailing the conjugacy classes in $G L(n, \mathbf{Z})$ of matrices A satisfying $\operatorname{rank}_{\mathbf{Q}}\left(A-I_{n}\right)=1$, we are able to compute the K-theory of the crossed products $C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}, \phi=a A$, $\operatorname{rank}_{\mathbf{Q}}\left(A-I_{n}\right)=1$. The proof of the conjugacy classes lemma is rather technical and is given in an Appendix at the end of this note. In Section 3 we compute the tracial range of $C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}, \phi=a A$, $\operatorname{rank}_{\mathbf{Q}}\left(A-I_{n}\right)=1$, under the additional hypothesis that ϕ is an n quasi rotation. Section 4 details further properties of n quasi rotations, which are used in Section 5 where we state and prove our main result, Theorem 12. The main step in its proof establishes that K-theory and tracial range determine uniquely, up to isomorphism, a standard C^{*}-algebra isomorphic to $C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}$.
2. K-theory of $C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}}$ Z. In this section we compute the K theory of the crossed products $C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}$, where $\alpha_{\phi}(f)=f \circ \phi^{-1}$. Here $\phi(z)=a A(z), a \in \mathbf{T}^{n}, A \in G L(n, \mathbf{Z}), z \in \mathbf{T}^{n}$, is an affine transformation of \mathbf{T}^{n} satisfying $\operatorname{rank}_{\mathbf{Q}}\left(A-I_{n}\right)=1$. Note that A is acting on \mathbf{T}^{n} by a group automorphism and that A has a topological interpretation as the degree matrix, $D(\phi)$, of ϕ.

The K-theory of $C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}$ only depends on the conjugacy class of A in $G L(n, \mathbf{Z})$. The structure of the conjugacy classes of elements A in $G L(n, \mathbf{Z})$ having $\operatorname{rank}_{\mathbf{Q}}\left(A-I_{n}\right)=1$ is given in the following lemma, the proof of which is given in the Appendix. See also [7] for a proof when $n=2$.

Lemma 1 (Conjugacy classes lemma). Let $A \in G L(n, \mathbf{Z})$ with $\operatorname{rank}_{\mathbf{Q}}\left(A-I_{n}\right)=1$. Then,
(1) If $\operatorname{det}(A)=1$, then A is conjugate in $G L(n, \mathbf{Z})$ to

$$
\left[\begin{array}{llll}
1 & & & \\
& \ddots & & \\
& & 1 & 0 \\
& & M & 1
\end{array}\right],
$$

where $M \in \mathbf{Z} \backslash\{0\}$.
(2) If $\operatorname{det}(A)=-1$, then A is conjugate in $G L(n, \mathbf{Z})$ to

$$
\left[\begin{array}{cccc}
1 & & & \\
& \ddots & & \\
& & 1 & 0 \\
& & 0 & -1
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{llll}
1 & & & \\
& \ddots & & \\
& & 0 & 1 \\
& & 1 & 0
\end{array}\right]
$$

We will refer to

$$
\left[\begin{array}{cccc}
1 & & & \\
& \ddots & & \\
& & 1 & 0 \\
& & M & 1
\end{array}\right], \quad\left[\begin{array}{cccc}
1 & & & \\
& \ddots & & \\
& & 1 & 0 \\
& & 0 & -1
\end{array}\right] \quad \text { and }\left[\begin{array}{cccc}
1 & & & \\
& \ddots & & \\
& & 0 & 1 \\
& & 1 & 0
\end{array}\right]
$$

as the standard form for A and write S_{1}^{M}, S_{2} and S_{3}, respectively.
Now we can compute the K-theory of $C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}, \phi=a A, a \in \mathbf{T}^{n}$, $A \in G L(n, \mathbf{Z}), \operatorname{rank}_{\mathbf{Q}}\left(A-I_{n}\right)=1$.
By applying the Pimsner-Voiculescu sequence [1], we get
$0 \longrightarrow \mathbf{Z}^{2 n-1} / \operatorname{Im}\left(1-\phi_{0}\right) \longrightarrow K_{0}\left(C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}\right) \longrightarrow \operatorname{Ker}\left(1-\phi_{1}\right) \longrightarrow 0$, $0 \longrightarrow \mathbf{Z}^{2^{n-1}} / \operatorname{Im}\left(1-\phi_{1}\right) \longrightarrow K_{1}\left(C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}\right) \longrightarrow \operatorname{Ker}\left(1-\phi_{0}\right) \longrightarrow 0$,
where $\phi_{*}: K^{*}\left(\mathbf{T}^{n}\right) \rightarrow K^{*}\left(\mathbf{T}^{n}\right), *=0,1$, is induced by α_{ϕ}.
When $\operatorname{det}(A)=1, A=S_{1}^{M}$ and thus $\phi_{*}, *=0,1$, can be written as
for $n \geq 3$, so that

$$
K_{*}\left(C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}\right) \cong \mathbf{Z}^{3.2^{n-2}} \oplus \mathbf{Z}_{M}^{2^{n-3}}, \quad *=0,1, \quad n \geq 3
$$

When $\operatorname{det}(A)=-1$, if $A=S_{2}$, then $\phi_{*}=\left[\begin{array}{cc}I_{2^{n-2}} & 0 \\ 0 & -I_{2^{n-2}}\end{array}\right]$ and therefore,

$$
K_{*}\left(C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}\right) \cong \mathbf{Z}^{2^{n-1}} \oplus \mathbf{Z}_{2}^{2^{n-2}}, \quad *=0,1, \quad n \geq 2
$$

If $A=S_{3}$, then

$$
\phi_{*}=\left[\begin{array}{ccc}
{\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \otimes I_{2^{n-3}}} & 0 & 0 \\
0 & -I_{2^{n-3}} & 0 \\
0 & 0 & I_{2^{n-3}}
\end{array}\right]
$$

and so,

$$
K_{*}\left(C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z} \cong \mathbf{Z}^{2^{n-1}} \oplus \mathbf{Z}_{2}^{2^{n-3}}, \quad *=0,1, \quad n \geq 3\right.
$$

3. The tracial range of $K_{0}\left(C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}\right)$. As shown in [5] and [7], K-theory groups isomorphism does not necessarily imply crossed product C^{*}-algebra isomorphism. Indeed, Riedel showed in [5] that the set of eigenvalues is a complete isomorphism invariant for crossed products by minimal rotations. Moreover, for affine transformations of \mathbf{T}^{2}, Rouhani $[\mathbf{7}]$ required the existence of a unitary eigenvalue $\lambda=e^{2 \pi i \theta}$ (θ irrational) associated to a unitary eigenfunction f with degree matrix $D(f)=[n, m] \neq 0, n, m$ relatively prime. (In this case, $\left.\operatorname{rank}_{\mathbf{Q}}\left(A-I_{2}\right)=1\right)$. He was thus able to compute the tracial range of $K_{0}\left(C\left(\mathbf{T}^{2}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}\right)$ and show that the tracial range together with the K-theory groups are complete isomorphism invariants.

Generalizing Rouhani's work to higher dimensions we will assume the existence of $n-1$ eigenvalues and thus complete the tracial range of $K_{0}\left(C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}\right)$.

Definition 2. Let $\phi=\left(\phi_{1}, \ldots, \phi_{n}\right): \mathbf{T}^{n} \rightarrow \mathbf{T}^{n}$ be a homeomorphism of \mathbf{T}^{n}. Then $\phi_{i}\left(z_{1}, \ldots, z_{n}\right)=z_{1}^{a_{i, 1}} \cdots z_{n}^{a_{i, n}} e^{2 \pi \sqrt{-1} F_{i}\left(z_{1}, \ldots, z_{n}\right)}$, where $a_{i, j} \in \mathbf{Z}$ and $F_{i}\left(z_{1}, \ldots, z_{n}\right)$ is continuous and real valued. We
say that ϕ is an n quasi rotation if there exist unitaries $f_{1}, \ldots, f_{n-1} \in$ $C\left(\mathbf{T}^{n}\right), \lambda_{1}, \ldots, \lambda_{n-1} \in \mathbf{T} \backslash\{1\}$ such that
(1) $D(\phi)=\left[a_{i, j}\right]_{i, j=1, \ldots, n} \neq I_{n}$,
(2) $f_{i} \circ \phi=\lambda_{i} f_{i}$,
(3) $\operatorname{gcd}\left\{\right.$ all minors of size $(n-1) \times(n-1)$ of $\left.\left[D\left(f_{i}\right)\right]_{i=1, \ldots, n-1}\right\}=1$.

Note that condition (3) above is equivalent to requiring that the matrix $\left[D\left(f_{i}\right)\right]$ be completable (by adding another row) to a matrix in $S L(n, \mathbf{Z})$, thus generalizing Rouhani's condition for $n=2$ that $D\left(f_{1}\right)=[n, m] \neq 0, n, m$ relatively prime.

Affine transformations $\phi=a A: \mathbf{T}^{n} \rightarrow \mathbf{T}^{n}, a \in \mathbf{T}^{n}$ and $A \in$ $G L(n, \mathbf{Z})$, with $A=S_{1}^{M}, S_{2}, S_{3}$ are n quasi rotations. In fact, the ordered sets z_{1}, \ldots, z_{n-1}, respectively $z_{1}, \ldots, z_{n-2}, z_{n-1} z_{n}$, and a_{1}, \ldots, a_{n-1}, respectively $a_{1}, \ldots, a_{n-2}, a_{n-1} a_{n}$, are a set of eigenfunctions and eigenvalues for ϕ.

The following lemmas are an easy consequence of Definition 2.

Lemma 3. Let ϕ be an n quasi rotation with associated degree matrices $D(\phi)$ and $\left[D\left(f_{i}\right)\right]$. Then,
(1) $D\left(f_{i}\right) \neq[0, \ldots, 0]$ for all $i=1, \ldots, n-1$,
(2) $D\left(f_{i}\right)\left(D(\phi)-I_{n}\right)=0$ for all $i=1, \ldots, n-1$,
(3) $\operatorname{rank}_{\mathbf{Q}}\left(D(\phi)-I_{n}\right)=1$.

Lemma 4. Let ϕ be an n quasi rotation with associated degree matrices $D(\phi)$ and $\left[D\left(f_{i}\right)\right]$. Then, for any matrix $Y \in M((n-1) \times n, \mathbf{Z})$ such that $Y\left(D(\phi)-I_{n}\right)=0$, there exists a matrix $\Lambda \in M(n-1, \mathbf{Z})$ such that $Y=\Lambda\left[D\left(f_{i}\right)\right]$.

Proof. First notice that for all $K \in G L(n, \mathbf{Z}),\left[D\left(f_{i}\right)\right] K$ satisfies (3) of Definition 2. This follows since, by (3), we can choose a matrix $R \in M(1 \times n, \mathbf{Z})$ such that

$$
\operatorname{det}\left[\begin{array}{c}
{\left[D\left(f_{i}\right)\right]} \\
R
\end{array}\right]=1
$$

So

$$
\operatorname{det}\left[\begin{array}{c}
{\left[D\left(f_{i}\right)\right]} \\
R
\end{array}\right] K=\operatorname{det}\left[\begin{array}{c}
{\left[D\left(f_{i}\right)\right] K} \\
R K
\end{array}\right]= \pm 1
$$

If we write $D(\phi)=K S K^{-1}$, with S the standard form for $D(\phi)$, then both $Y K$ and $\left[D\left(f_{i}\right)\right] K$ are solutions of $X\left(S-I_{n}\right)=0$. Since $\left[D\left(f_{i}\right)\right] K$ also satisfies (3) of Definition 2 its rows span the left null space of $S-I_{n}$, which implies $Y K=\Lambda\left[D\left(f_{i}\right)\right] K$ for some $\Lambda \in M(n-1, \mathbf{Z})$, and hence $Y=\Lambda\left[D\left(f_{i}\right)\right]$.

Now, to compute the tracial range of $C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}$, where ϕ is an n quasi rotation, let $\left[D\left(f_{i}\right)\right]$ be the degree matrix relative to the eigenfunctions f_{i} associated to the eigenvalues $\lambda_{i}=e^{2 \pi \sqrt{-1} \theta i}, 0<\theta_{i}<$ 1 , of ϕ. For a fixed i, define $\rho_{i}: C(\mathbf{T}) \rightarrow C\left(\mathbf{T}^{n}\right)$ by $\rho_{i}(g)=g \circ f_{i}$. ρ_{i} induces a homomorphism between the rotation algebra $A_{\lambda_{i}}$ and $C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}$. By the naturality of the Pimsner-Voiculescu sequence, it follows that the image of the exponential of the Rieffel projection [6] in $K_{1}\left(C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}\right)$ is $f_{i},[\mathbf{7}]$. By Lemma $4,\left[D\left(f_{i}\right)\right]$ generates the kernel of $\left(\iota-\alpha_{\phi}^{*}\right)$ in $H^{1}\left(\mathbf{T}^{n}, \mathbf{Z}\right)$. Therefore, for any trace τ^{ϕ} on $C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}$ ([1, pp. 99-100], [4]),

$$
\tau_{*}^{\phi}\left(K_{0}\left(C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}\right)\right)=\mathbf{Z}+\theta_{1} \mathbf{Z}+\cdots+\theta_{n-1} \mathbf{Z}
$$

4. Some properties of n quasi rotations. In this section we will derive some additional properties of n quasi rotations, which we will use in Section 5 in the proof of our main result.

Proposition 5. Let ϕ be an n quasi rotation with associated degree matrices $D(\phi)$ and $\left[D\left(f_{i}\right)\right]$ (relative to the eigenvalues λ_{i} and to the eigenfunctions f_{i}). Let μ_{i} and g_{i} (with degree matrix $\left[D\left(g_{i}\right)\right]$) be another system of eigenvalues and eigenfunctions for ϕ satisfying (1), (2) and (3) of Definition 2. Then $\mu_{i}=\prod_{j=1}^{n-1} \lambda_{j}^{\alpha_{i, j}}$ for some $\Lambda=\left[\alpha_{i, j}\right] \in G L(n-1, \mathbf{Z})$.

Proof. Since $\left[D\left(g_{i}\right)\right]=\Lambda\left[D\left(f_{i}\right)\right], \Lambda=\left[\alpha_{i, j}\right] \in M(n-1, \mathbf{Z})$ with [$\left.D\left(f_{i}\right)\right]$ and $\left[D\left(g_{i}\right)\right]$ both satisfying (3) of Definition 2, it follows that $\operatorname{det}(\Lambda)= \pm 1$ since $\operatorname{det}(\Lambda)$ is a factor of all the $(n-1) \times(n-1)$ minors of
[$\left.D\left(g_{i}\right)\right]$. By using the eigenvalue equations $f_{i} \circ \phi=\lambda_{i} f_{i}$ and $g_{i} \circ \phi=\mu_{i} g_{i}$, we get $h_{i} \circ \phi=\nu_{i} h_{i}$, with $h_{i}=\prod_{j=1}^{n-1} f_{j}^{\alpha_{i, j}} \overline{g_{i}}$ and $\nu_{i}=\prod_{j=1}^{n-1} \lambda_{j}^{\alpha_{i, j}} \overline{\mu_{i}}$ for $i=1, \ldots, n-1$. Note that $D\left(h_{i}\right)=0$ and therefore $h_{i}(z)=$ $e^{2 \pi \sqrt{-1} H_{i}(z)}$. So $h_{i} \circ \phi=\nu_{i} h_{i}$ becomes $e^{2 \pi \sqrt{-1}\left[H_{i}(\phi(z))-H_{i}(z)\right]}=\nu_{i}$ or $H_{i}(\phi(z))-H_{i}(z)=c_{i}$ for some constant c_{i} and for all $z \in \mathbf{T}^{n}$. Thus, $H_{i}\left(\phi^{k}(z)\right)-H_{i}(z)=k c_{i}$ for all $k \in \mathbf{Z}$ and for all $z \in \mathbf{T}^{n}$. Hence, as the lefthand side is bounded, $c_{i}=0$, that is, $\nu_{i}=1$ for $i=1, \ldots, n-1$. So we must have $\mu_{i}=\prod_{j=1}^{n-1} \lambda_{j}^{\alpha_{i, j}}$.

Proposition 6. Let ϕ be an n quasi rotation with associated degree matrices $D(\phi)$ and $\left[D\left(f_{i}\right)\right]$.

Let

$$
\hat{\lambda}=\left[\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{n-1}
\end{array}\right] \quad \text { and } \quad \hat{f}=\left[\begin{array}{c}
f_{1} \\
\vdots \\
f_{n-1}
\end{array}\right]
$$

Then, for any $\Lambda \in G L(n-1, \mathbf{Z})$ with

$$
\Lambda=\left[\begin{array}{c}
\Lambda_{1} \\
\vdots \\
\Lambda_{n-1}
\end{array}\right]
$$

$$
\Lambda_{i} \hat{f} \circ \phi=\Lambda_{i} \hat{\lambda} \Lambda_{i} \hat{f}, \quad i=1, \ldots, n-1
$$

Proof. Straightforward using $f_{i} \circ \phi=\lambda_{i} f_{i}$.

Lemma 7. If $\phi=a A$ is an affine n quasi rotation with associated degree matrices $D(\phi)=A$ and $\left[D\left(f_{i}\right)\right]$, then $\lambda_{i}=D\left(f_{i}\right)(a)$.

Proof. We can write $f_{i}(z)=D\left(f_{i}\right)(z) e^{2 \pi \sqrt{-1} F_{i}(z)}$, and using $f_{i} \circ \phi=$ $\lambda_{i} f_{i}$ obtain

$$
D\left(f_{i}\right)(a) D\left(f_{i}\right) A(z) e^{2 \pi \sqrt{-1} F_{i}(\phi(z))}=\lambda_{i} D\left(f_{i}\right)(z) e^{2 \pi \sqrt{-1} F_{i}(z)}
$$

Now we observe that $D\left(f_{i}\right)=D\left(f_{i}\right) A$ so $e^{2 \pi \sqrt{-1}\left[F_{i}(\phi(z))-F_{i}(z)\right]}=$ $\lambda_{i} \overline{D\left(f_{i}\right)(a)}$. Repeating the same argument as that in the proof of Proposition 5, we get $\lambda_{i}=D\left(f_{i}\right)(a)$.
5. Complete isomorphism invariants of $C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}}$ Z. Now we consider affine n quasi rotations, i.e., affine transformations $\phi=a A$: $\mathbf{T}^{n} \rightarrow \mathbf{T}^{n}, a \in \mathbf{T}^{n}$, and $A \in G L(n, \mathbf{Z})$, which are also n quasi rotations.

As mentioned in Section 3, in the particular case $A=S_{1}^{M}, S_{2}$, respectively S_{3}, the ordered sets z_{1}, \ldots, z_{n-1}, respectively $z_{1}, \ldots, z_{n-2}, z_{n-1}$ z_{n}, and a_{1}, \ldots, a_{n-1}, respectively $a_{1}, \ldots, a_{n-2}, a_{n-1} a_{n}$, are a set of eigenfunctions and eigenvalues for ϕ. The tracial range of $C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}$ is completely determined by the eigenvalues λ_{i} of ϕ. To recover information on crossed product C^{*}-algebra isomorphism classes from information on the tracial range, we now restrict to quasi rotations with IRRI eigenvalues, that is,

Definition 8. An affine n quasi rotation with IRRI eigenvalues is an affine n quasi rotation ϕ with eigenvalues $\lambda_{i}=e^{2 \pi \sqrt{-1} \theta_{i}}, i=$ $1, \ldots, n-1$, such that $\theta_{1}, \ldots, \theta_{n-1}$, are irrational and rationally independent $(\bmod (1))$.

In the particular case $A=S_{1}^{M}, S_{2}$, respectively S_{3}, ϕ has IRRI eigenvalues if q_{1}, \ldots, q_{n-1}, respectively $q_{1}, \ldots, q_{n-2}, q_{n-1}+q_{n}$, are irrational and rationally independent. (Where $a_{j}=e^{2 \pi \sqrt{-1} q_{j}}, q_{j} \in \mathbf{R}$, $j=1, \ldots, n$.)

Our main result, Theorem 12, characterizes crossed products of affine n quasi rotations with IRRI eigenvalues, provided λ_{n-1} is fixed. We will now state and prove some additional results needed in the proof of Theorem 12.

Proposition 9. Let $\phi=a A$ be an affine n quasi rotation with IRRI eigenvalues and $K A K^{-1}=S$ be the standard form for A.
(i) ϕ is topologically conjugate to the affine n quasi rotation with IRRI eigenvalues $\psi=s S$, where

$$
s=K(a)=\left[\begin{array}{c}
K(a)_{1} \\
\vdots \\
K(a)_{n}
\end{array}\right]
$$

(ii) $\psi=s S, s=\left[\begin{array}{c}s_{1} \\ \vdots \\ s_{n}\end{array}\right]$, is topologically conjugate to $\omega=r S$, with

$$
r=\left[\begin{array}{c}
s_{1} \\
\vdots \\
s_{n-1} \\
1
\end{array}\right] \quad \text { if } S=S_{1}^{M}, S_{2}
$$

or

$$
r=\left[\begin{array}{c}
s_{1} \\
\vdots \\
s_{n-2} \\
s_{n-1} s_{n} \\
1
\end{array}\right] \quad \text { if } S=S_{3}
$$

(iii) $\omega=r S$ is topologically conjugate to $\eta=t S$ where $t=L(r)$ for any $L \in G L(n, \mathbf{Z})$ commuting with S.

Proof. (i) If we define $\delta(z)=K(z), \phi$ and ψ are topologically conjugate via δ. It remains to show that ψ is an n quasi rotation with IRRI eigenvalues. Put

$$
X=\left[\begin{array}{cccc}
1 & & & 0 \\
& \ddots & & \vdots \\
& & 1 & 0
\end{array}\right] \quad \text { or } \quad X=\left[\begin{array}{cccc}
1 & & & 0 \\
& \ddots & & \vdots \\
& & 1 & 1
\end{array}\right]
$$

according to $S=S_{1}^{M}, S_{2}$ or S_{3}. Now $X S=X$ and hence $X K A=X K$ so by Lemma 4 , there exists $\Lambda \in G L(n-1, \mathbf{Z})$ such that $\Lambda\left[D\left(f_{i}\right)\right]=$ $X K$. Moreover, by Proposition 6 and Lemma 7, XK $(a)=\Lambda\left[D\left(f_{i}\right)\right](a)$ is an IRRI system of eigenvalues for ϕ. It is now straightforward to show that $X K(a)$ is an IRRI system of eigenvalues for ψ with eigenfunctions z_{1}, \ldots, z_{n-1} or $z_{1}, \ldots, z_{n-2}, z_{n-1} z_{n}$.
(ii) $\delta(z)=d I_{n}(z)$ with

$$
d=\left[\begin{array}{c}
1 \\
\vdots \\
d_{n-1} \\
1
\end{array}\right]
$$

$d_{n-1}=s_{n}^{-1 / M}, s_{n}^{-1}$ if $S=S_{1}^{M}, S_{3}$ respectively, or

$$
d=\left[\begin{array}{c}
1 \\
\vdots \\
1 \\
s_{n}^{1 / 2}
\end{array}\right]
$$

if $S=S_{2}$ intertwines ψ and ω.
(iii) $\delta(z)=L(z)$ intertwines ω and η.

The previous proposition's proof motivates the following definition (cf. also [3]).

Definition 10. Let $\phi=a A$ and $K A K^{-1}=S$ be the standard form of A. If $S=S_{1}^{M}, S_{2}$, respectively S_{3}, we will call the ordered sets z_{1}, \ldots, z_{n-1}, respectively $z_{1}, \ldots, z_{n-2}, z_{n-1} z_{n}$, and $K(a)_{1}, \ldots, K(a)_{n-1}$, respectively $K(a)_{1}, \ldots, K(a)_{n-2}, K(a)_{n-1} K(a)_{n}$, a standard set of eigenfunctions and eigenvalues for ϕ.

Definition 11. Let $\lambda \in \mathbf{T} \backslash\{1\}$. We say ϕ is an affine (n, λ) quasi rotation if ϕ is an affine n quasi rotation and there exists a standard set of eigenvalues $\lambda_{1}, \ldots, \lambda_{n-1}$ for ϕ such that $\lambda_{n-1}=\lambda^{ \pm 1}$.

Theorem 12. Let $\phi=a A$ and $\psi=b B$ be affine (n, λ) quasi rotations with IRRI eigenvalues. Then the following are equivalent:
(i) $C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z} \cong C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\psi}} \mathbf{Z}$.
(ii) $K_{*}\left(C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}\right) \cong K_{*}\left(C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\psi}} \mathbf{Z}\right)$, $*=0,1$, and for any tracial state τ^{ϕ} on $C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}$, respectively τ^{ψ} on $C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\psi}} \mathbf{Z}$, we have

$$
\tau_{*}^{\phi}\left(K_{0}\left(C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}\right)\right) \cong \tau_{*}^{\psi}\left(K_{0}\left(C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\psi}} \mathbf{Z}\right)\right)
$$

(iii) ϕ and ψ are topologically conjugate via an affine transformation.

Proof. As (3) $\Rightarrow(1)$ and $(1) \Rightarrow(2)$ are trivial, we only need to show (2) $\Rightarrow(3)$. Since $C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}$ and $C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\psi}} \mathbf{Z}$ have the same K-theory, A
and B are both conjugate to the same standard form S (see Section 2). That is, there exist $K_{1}, K_{2} \in G L(n, \mathbf{Z})$ such that $K_{1} A K_{1}^{-1}=S$ and $K_{2} B K_{2}^{-1}=S$. Thus, by Proposition $9, \phi$ is topologically conjugate to $\omega_{1}=r_{1} S$, where

$$
r_{1}=\left[\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{n-1} \\
1
\end{array}\right]
$$

and ψ is topologically conjugate to $\omega_{2}=r_{2} S$, where

$$
r_{2}=\left[\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{n-1} \\
1
\end{array}\right]
$$

with $\lambda_{1}, \ldots, \lambda_{n-1}$, respectively $\mu_{1}, \ldots, \mu_{n-1}$, a standard set of eigenvalues for ϕ, respectively ψ. Note that ϕ and ψ are affine (n, λ) quasi rotations so we can assume $\lambda_{n-1}=\lambda^{ \pm 1}=\mu_{n-1}^{ \pm 1}$. As

$$
\tau_{*}^{\phi}\left(K_{0}\left(C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\phi}} \mathbf{Z}\right)\right) \cong \tau_{*}^{\psi}\left(K_{0}\left(C\left(\mathbf{T}^{n}\right) \rtimes_{\alpha_{\psi}} \mathbf{Z}\right)\right)
$$

there exists $\Lambda=\left[\alpha_{i, j}\right] \in G L(n-1, \mathbf{Z})$ such that

$$
\Lambda\left[\begin{array}{c}
\lambda_{1} \\
\vdots \\
\lambda_{n-1}
\end{array}\right]=\left[\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{n-1}
\end{array}\right]
$$

Moreover, $\alpha_{n-1, j}=0$ for $j=1, \ldots, n-2, \alpha_{n-1, n-1}= \pm 1$ because $\lambda_{n-1}=\mu_{n-1}^{ \pm 1}$ and the λ_{i} 's are IRRI. Thus,

$$
\left[\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{n-1} \\
1
\end{array}\right]=\left[\begin{array}{ccccc}
\alpha_{1,1} & \cdots & \cdots & \alpha_{1, n-1} & \beta_{1} \\
\vdots & & & \vdots & \vdots \\
\alpha_{n-2,1} & \cdots & \cdots & \alpha_{n-2, n-1} & \beta_{n-2} \\
0 & \cdots & \cdots & \pm 1 & 0 \\
0 & \cdots & \cdots & 0 & \pm 1
\end{array}\right]\left[\begin{array}{c}
\lambda_{1} \\
\vdots \\
\beta_{1}, \ldots, \beta_{n-2} \in \mathbf{Z} .
\end{array}\right.
$$

Finally, by Proposition 9 (iii), ω_{1} is topologically conjugate to ω_{2} with L the matrix above where we choose $\beta_{i}=0$, respectively $\beta_{i}=\alpha_{i, n-1}$ for $i=1, \ldots, n-2$ if $S=S_{1}^{M}$ or S_{2}, respectively S_{3}. $\quad \square$

Remark 13. If $\phi=a A$ is an affine n quasi rotation with A having standard form S_{2}, the three conditions of Theorem 12 are equivalent since $\left[\begin{array}{cc}\Lambda & 0 \\ 0 & \pm 1\end{array}\right]$ commutes with S_{2} for any $\Lambda \in G L(n-1, \mathbf{Z})$.

Appendix

Proof of Lemma 1. We will prove Lemma 1 using induction on the size of A. For $n=2$, the result was proved by Rouhani:

Lemma $14[\mathbf{7}]$. Let $A \in G L(2, \mathbf{Z})$ with $\operatorname{rank}_{\mathbf{Q}}\left(A-I_{2}\right)=1$.
(i) If $\operatorname{det}(A)=1$, then A is conjugate in $G L(2, \mathbf{Z})$ to $\left[\begin{array}{cc}1 & 0 \\ M & 1\end{array}\right]$, $M \in \mathbf{Z} \backslash\{0\}$.
(ii) If $\operatorname{det}(A)=-1$, then A is conjugate in $G L(2, \mathbf{Z})$ to $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$ or $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
Now suppose that for every matrix $\tilde{A} \in G L(k, \mathbf{Z}), k<n$, Lemma 1 holds, and consider $A=\left[a_{i, j}\right] \in G L(n, \mathbf{Z})$. Firstly, since $\operatorname{det}(A)= \pm 1$, $\operatorname{rank}_{\mathbf{Q}}\left(A-I_{n}\right)=1$, there is at least one nonzero off diagonal element. By conjugating A with elementary matrices, we can assume that $a_{n, 1} \neq 0$. Let $E_{1}=\operatorname{gcd}\left(a_{n, 1}, a_{n, 2}\right) \neq 0$, choose t_{1}, r_{1} such that $t_{1}\left(a_{n, 1} / E_{1}\right)-r_{1}\left(a_{n, 2} / E_{1}\right)=1$, and put $B=\left[\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right]$, with $\alpha=\left(\alpha_{n, 1} / E_{1}\right)$, $\beta=\left(\alpha_{n, 2} / E_{1}\right), \gamma=r_{1}$ and $\delta=t_{1}$. Define the matrix $K \in G L(n, \mathbf{Z})$ by $K=\left[\begin{array}{cc}B & 0 \\ 0 & I_{n-2}\end{array}\right]$. Now $K A K^{-1}$ is a matrix whose last row is $\left[E_{1}, 0, a_{n, 3}, a_{n, 4}, \ldots, a_{n, n}\right]$. Conjugating again by the elementary matrix $e_{2,3}$ (which switches rows 2 and 3), we get that A is similar to a matrix having as last row $\left[E_{1}, a_{n, 3}, 0, a_{n, 4}, \ldots, a_{n, n}\right]$ so that by proceeding as before and then conjugating by $e_{2,4}$ etc., A is similar to a matrix having as last row $\left[E, 0, \ldots, 0, a_{n, n}\right]$, where $E=\operatorname{gcd}\left(a_{n, 1}, \ldots, a_{n, n-1}\right) \neq 0$.

Now, by using the fact that $\operatorname{rank}_{\mathbf{Q}}\left(A-I_{n}\right)=1$, we see that

$$
A \sim\left[\begin{array}{ccccc}
a_{1,1}^{\prime} & 0 & \cdots & 0 & a_{1, n}^{\prime} \\
a_{2,1}^{\prime} & 1 & \ddots & \vdots & a_{2, n}^{\prime} \\
\vdots & & \ddots & 0 & \vdots \\
a_{n-1,1}^{\prime} & 0 & \cdots & 1 & a_{n-1, n}^{\prime} \\
E & 0 & \cdots & 0 & a_{n, n}
\end{array}\right] \sim\left[\begin{array}{cccccc}
1 & a_{2,1}^{\prime} & 0 & \cdots & 0 & a_{2, n}^{\prime} \\
0 & a_{1,1}^{\prime} & 0 & \cdots & 0 & a_{1, n}^{\prime} \\
0 & 0 & 1 & \ddots & \vdots & \vdots \\
\vdots & \vdots & \ddots & \ddots & 0 & \vdots \\
0 & a_{n-1,1}^{\prime} & 0 & \cdots & 1 & a_{n-1, n}^{\prime} \\
0 & E & 0 & \cdots & 0 & a_{n, n}^{\prime}
\end{array}\right]
$$

Since $\operatorname{det}(A)= \pm 1$, it follows that $\operatorname{det}(\tilde{A})= \pm 1$, where

$$
\tilde{A}=\left[\begin{array}{ccccc}
a_{1,1}^{\prime} & 0 & \cdots & 0 & a_{1, n}^{\prime} \\
0 & 1 & \ddots & \vdots & \vdots \\
\vdots & \ddots & \ddots & 0 & \vdots \\
a_{n-1,1}^{\prime} & 0 & \cdots & 1 & a_{n-1, n}^{\prime} \\
E & 0 & \cdots & 0 & a_{n, n}^{\prime}
\end{array}\right]
$$

Suppose now that $\operatorname{det}(A)=\operatorname{det}(\tilde{A})=1$. Either $\operatorname{rank}_{\mathbf{Q}}\left(\tilde{A}-I_{n-1}\right)=$ 1, so by the induction hypothesis there exists $K \in G L(n-1, \mathbf{Z})$ such that $K \tilde{A} K^{-1}$ is in standard form or $\operatorname{rank}_{\mathbf{Q}}\left(\tilde{A}-I_{n-1}\right)=0$ and $\tilde{A}=I_{n-1}$. Therefore,

$$
\left[\begin{array}{cc}
1 & 0 \\
0 & K
\end{array}\right] A\left[\begin{array}{cc}
1 & 0 \\
0 & K
\end{array}\right]^{-1}=\left[\begin{array}{cccc}
1 & a_{1,2}^{\prime \prime} & \cdots & a_{1, n}^{\prime \prime} \\
0 & & & \\
\vdots & & K \tilde{A} K^{-1} & \\
0 & & &
\end{array}\right]
$$

Conjugating by

$$
\left[\begin{array}{ccccccc}
0 & 0 & 0 & \cdots & 0 & 1 & 0 \\
0 & 0 & 1 & \cdots & 0 & 0 & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots & \vdots & \vdots \\
0 & 0 & & \ddots & 1 & 0 & 0 \\
0 & 1 & 0 & \cdots & 0 & 0 & 0 \\
0 & 0 & 0 & \cdots & 0 & 0 & 1 \\
1 & 0 & 0 & \cdots & 0 & 0 & 0
\end{array}\right]
$$

we have

$$
A \sim\left[\begin{array}{ccccc}
1 & 0 & \cdots & \cdots & 0 \\
0 & 1 & \ddots & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
M & \cdots & 0 & 1 & 0 \\
a_{1, n-1}^{\prime \prime} & \cdots & \cdots & a_{1, n}^{\prime \prime} & 1
\end{array}\right], \quad M \in \mathbf{Z}
$$

If $M \neq 0$, then $a_{1, j}^{\prime \prime}=0$ for $j=2, \ldots, n-2, n$. Now choose t and r such that $t(M / F)-r\left(a_{1, n-1}^{\prime \prime} / F\right)=1$, where $F=\operatorname{gcd}\left(M, a_{1, n-1}^{\prime \prime}\right)$ and put $B=\left[\begin{array}{c}\alpha \beta \\ \gamma\end{array}\right]$ with $\alpha=\left(a_{1, n-1}^{\prime \prime}\right) / F, \beta=-M / F, \gamma=t$ and $\delta=-r$. Conjugating by

$$
\left[\begin{array}{cc}
I_{n-2} & 0 \\
0 & B
\end{array}\right],
$$

we have

$$
A \sim\left[\begin{array}{lll}
1 & & \\
& \ddots & \\
F & & 1
\end{array}\right] \sim S_{1}^{F} .
$$

If $M=0$, without loss of generality, we can assume that $a_{1, n-1}^{\prime \prime} \neq 0$. We can then proceed as in the first part of the proof to obtain

$$
A \sim\left[\begin{array}{lll}
1 & & \\
& \ddots & \\
F & & 1
\end{array}\right] \sim S_{1}^{F}
$$

with $F=\operatorname{gcd}\left(a_{1, j}^{\prime \prime}\right), j=2, \ldots, n$.
Finally, suppose that $\operatorname{det}(A)=\operatorname{det}(\tilde{A})=-1$. By the induction hypothesis, there exists $K \in G L(n-1, \mathbf{Z})$ such that $K \tilde{A} K^{-1}$ is in standard form. Therefore,

$$
A \sim\left[\begin{array}{cccc}
1 & a_{1,2}^{\prime \prime} & \cdots & a_{1, n}^{\prime \prime} \\
0 & 1 & \ddots & \vdots \\
\vdots & \ddots & \ddots & 0 \\
0 & \cdots & 0 & X
\end{array}\right]
$$

where

$$
X=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Since $\operatorname{rank}_{\mathbf{Q}}\left(A-I_{n}\right)=1$, we have $a_{1, j}^{\prime \prime}=0$ for $j=2, \ldots, n-2$ and $a_{1, n-1}^{\prime \prime}=0$ or $-a_{1, n}^{\prime \prime}$, respectively. In the first case, conjugation by $e_{1, n-1}$ gives

$$
A \sim\left[\begin{array}{cccc}
1 & & & \\
& \ddots & & \\
& & 1 & a_{1, n}^{\prime \prime} \\
& & 0 & -1
\end{array}\right]
$$

But, by Lemma 14,

$$
\left[\begin{array}{cc}
1 & a_{1, n}^{\prime \prime} \\
0 & -1
\end{array}\right]
$$

is conjugate to

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \quad \text { or } \quad\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] .
$$

Thus A is conjugate to S_{2} or S_{3}. In the second case, conjugation by

$$
\left[\begin{array}{ccc}
1 & & a_{1, n}^{\prime \prime} \\
& \ddots & \\
& & 1
\end{array}\right]
$$

gives $A \sim S_{3}$.

REFERENCES

1. B. Blackadar, K-theory for operator algebras, Math. Sci. Res. Inst. Publ., vol. 5, Springer, New York, 1986.
2. R. Ji, On the crossed product C^{*}-algebra associated with Furstenberg transformations on tori, Ph.D. Dissertation, SUNY at Stony Brook, New York, 1986.
3. J. Packer, K-theoretical invariants for C^{*}-algebras associated to transformations and induced flows, J. Funct. Anal. 67 (1986), 25-59.
4. M. Pimsner, Ranges of traces on K_{0} of reduced crossed products by free groups, Lecture Notes in Math., vol. 1132, Springer-Verlag, New York, 1985.
5. N. Riedel, Classification of the C^{*}-algebras associated with minimal rotations, Pacific J. Math. 101 (1982), 153-161.
6. M. Rieffel, C^{*}-algebras associated with irrational rotations, Pacific J. Math. 93 (1981), 415-429.
7. H. Rouhani, Quasi rotation C^{*}-algebras, Pacific J. Math. 148 (1991), 131-151.
8. -, A Furstenberg transformation of the 2-torus without quasi-discrete spectrum, Canad. Math. Bull. 33 (1990), 316-322.

Department of Mathematics, University of Colorado, Campus Box 395, Boulder, CO 80309
E-mail address: farsi@euclid.colorado.edu
Department of Mathematics, Widener University, Chester, PA 19013
E-mail address: watling@kuratowski.math.widener.edu

[^0]: Received by the editors on September 4, 1997.
 1991 AMS Mathematics Subject Classification. Primary 46L80, 46L40.
 Key words and phrases. Dynamical systems, tori, C^{*}-algebras, classification.
 First author partially supported by a University of Colorado Junior Faculty

