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SEQUENCE SPACES OF CONTINUOUS FUNCTIONS

STUART J. SIDNEY AND SUNWOOK HWANG

1. Introduction. The familiar sequence spaces c0 and lp, 0 <
p < ∞, may conveniently be understood as spaces of continuous
functions that vanish at infinity on the locally compact space N of
positive integers, or as spaces of continuous functions on the one-
point compactification of N. On the other hand, to study l∞ as
a space of continuous functions on a compact space (rather than
continuous bounded functions on N) requires considerably more effort;
the appropriate compact space is βN, the Stone-Čech compactification
of N, and it may be obtained variously by methods of set theory,
topology, or analysis.

If instead of looking at sequences of scalars we look at sequences
whose entries are taken from some fixed Banach space E, the study of
c0 and lp, 0 < p < ∞, becomes only marginally more involved. There is
a compact space X (for instance, the closed unit ball of the dual space
of E, in the weak∗ topology) such that E may be regarded as a space of
continuous functions on X, and members of the sequence spaces can be
interpreted as continuous functions on the one-point compactification
of N×X. However, viewing l∞ as a space of continuous functions now
often involves significant new complexities which can have important
reverberations elsewhere in analysis. It is this situation that we propose
to explore here.

By a Banach function space on a compact Hausdorff space X, we
mean a Banach space lying in C(X) which separates the points of X,
has norm dominating the uniform norm, and (for convenience) contains
the constant functions. Here point separation means that if x1 and x2

are distinct points of X, then f(x1) �= f(x2) for some function f in the
function space, and norm domination means that there is a positive
constant c such that the function space norm on f is at least c‖f‖∞,
where ‖f‖∞ = sup{|f(x)| : x ∈ X}. Scalars may be real or complex.

If E is a Banach function space on X, we denote by l∞(N, E), or more
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compactly Ẽ, the Banach space of all bounded sequences f̃ = 〈fk〉∞k=1

of functions f1, f2, . . . , in E under componentwise operations and the
norm ‖f̃‖ = sup{‖fk‖ : k ∈ N} < ∞. Since every sequence f̃ = 〈fk〉∞k=1

in C(X)∼ can be considered as a bounded continuous function on the
product space N × X defined by f̃(n, x) = fn(x) for (n, x) ∈ N × X,
it has a unique extension, also denoted by f̃ , to a continuous function
defined on X̃ = β(N×X), the Stone-Čech compactification of N×X.
Hence C(X)∼ = C(X̃) and thus Ẽ can be considered as a Banach space
lying in C(X̃). It is far from obvious that Ẽ separates the points of
X̃ and so is a Banach function space on X̃; indeed, this is generally
not the case and, as we shall see, having this property can be very
important.

The systematic study of Ẽ was begun by Alain Bernard and col-
leagues in the late 1960’s and early 70’s in connection with aspects of
Banach algebra theory related to the corona theorem. We will describe
these developments, dealing with naturality properties of Banach func-
tion algebras, in Section 2. It turns out that the main application of Ẽ
has been in a very different direction, initiated by Bernard in a series
of articles culminating in [2], showing that very often the affine func-
tions are the only ones that operate on a real Banach function space,
especially if the function space consists of the real part of the functions
in a (complex) uniform algebra. In Section 3 we will discuss how this
line of developments proceeds.

To our knowledge, some of the material in Section 2 has not appeared
in print before, though no claim to originality is being made.

2. Banach function algebras and uniform naturality. By a
Banach function algebra on a compact Hausdorff space X we mean a
complex Banach function space on X that is also a Banach algebra
with pointwise multiplication. The norm domination requirement here
is redundant, since Gelfand theory tells us that, given the rest, it holds
automatically with c = 1. A Banach function algebra on X is a uniform
algebra on X if the norm of the algebra coincides with the supremum
norm on X.

Standard examples are provided by Gelfand transform algebras. Let
A be a commutative complex Banach algebra with the identity ele-
ment 1 and MA its maximal ideal space, or spectrum. MA is the
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weak∗ compact subset of the closed unit ball of the dual space of A
consisting of those nonzero linear functionals φ on A that are multi-
plicative: φ(a1a2) = φ(a1)φ(a2) for elements a1, a2 of A. The Gelfand
transform algebra of A is the algebra Â of functions f̂ from MA into C,
where f̂ is the Gelfand transform of f ∈ A defined by f̂(φ) = φ(f)
for all φ ∈ MA. Â is a Banach function algebra under the norm
‖u‖Â = inf {‖f‖A : f̂ = u}. If A is a Banach function algebra on
X, then X can be thought of as a compact subset of MA with x ∈ X
identified with the functional φx ∈ MA given by φx(f) = f(x).

Suppose A is a Banach function algebra on X. Then Ã is a Banach
algebra of continuous functions on X̃, and a fundamental problem
is this: If we know MA, to what extent can we identify MÃ? We
begin with a lemma, which depends on two general facts. If A is a
commutative algebra with an identity element, then every proper ideal
of A is contained in a maximal (proper) ideal of A; and if A is a
commutative complex Banach algebra with an identity element, then
the maximal ideals of A are precisely the kernels of the functionals in
MA.

Lemma 2.1. Let A be a commutative complex Banach algebra with
the identity element 1, and let Y be a subset of MA. Then the following
are equivalent:

(1) Y is dense in MA.

(2) For any δ > 0 and f1, . . . , fn ∈ A with
∑n

i=1 |f̂i| ≥ δ on Y , there
exist g1, . . . , gn ∈ A such that

∑n
i=1 figi = 1.

Proof. The proof follows the by now familiar lines of that for H∞

(see, e.g., [8]).

(1) implies (2). Let δ > 0 and f1, . . . , fn ∈ A be given with∑n
i=1 |f̂i| ≥ δ on Y . Since Y is dense in MA,

∑n
i=1 |f̂i| ≥ δ on MA, and

hence all the functions f̂1, . . . , f̂n cannot vanish simultaneously at any
element of MA. Thus the ideal generated by f1, . . . , fn is equal to A.
Therefore,

∑n
i=1 figi = 1 for some g1, . . . , gn ∈ A.

(2) implies (1). Assume that Y is not dense in MA. Let φ ∈ MA \ Y ,
where Y is the closure of Y . Since Â separates the points of MA, for
each y ∈ Y , fy ∈ A exists such that f̂y(φ) = 0 and f̂y(y) = 2. The
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open sets Uy = {ψ ∈ MA : |f̂y(ψ)| > 1} for all y ∈ Y form an open
cover of the compact set Y , and hence we can choose y1, . . . , yn ∈ Y

such that Y ⊂ ∪n
i=1Uyi

. Then
∑n

i=1 |f̂yi
| ≥ 1 on Y . If

∑n
i=1 fyi

gi = 1
for some g1, . . . , gn ∈ A, then we have

1 = φ

( n∑
i=1

fyi
gi

)
=

n∑
i=1

f̂yi
ĝi(φ) = 0,

which is impossible, and therefore, for any g1, . . . , gn ∈ A, we have∑n
i=1 fyi

gi �= 1.

Definition 2.2. A commutative complex Banach algebra A with an
identity element is said to be natural on a subset Y of MA if A satisfies
one of the equivalent conditions of Lemma 2.1.

It is clear for a Banach function algebra A on X that, if Ã is natural
on X̃, then A is natural on X, that is, MÃ = X̃ implies MA = X. To
make this more precise even when Ã does not separate the points of
X̃, define a natural inclusion map τ : N ×MA → MÃ by

τ (n, φ)(f̃) = τ (n, φ)(〈fk〉∞k=1) = φ(fn) = f̂n(φ)

for f̃ = 〈fk〉∞k=1 ∈ Ã. The map τ is a homeomorphism of N×MA into
MÃ. Condition (2) of the following theorem is a version of condition
(2) of the above lemma, with estimates added.

Theorem 2.3. Let A be a Banach function algebra on X, and let Y
be a subset of MA. Then the following are equivalent:

(1) τ (N× Y ) is dense in MÃ.

(2) For any n ∈ N and 0 < δ < 1, there is a constant C(n, δ) > 0
such that for any f1, . . . , fn ∈ A with ‖fi‖ ≤ 1 for 1 ≤ i ≤ n and∑n

i=1 |f̂i| ≥ δ on Y , there exist g1, . . . , gn ∈ A satisfying ‖gi‖ ≤ C(n, δ)
for 1 ≤ i ≤ n and

∑n
i=1 figi = 1 on X.

Proof. (1) implies (2). Suppose that τ (N × Y ) is dense in MÃ,
and assume that A fails to satisfy condition (2). Then there exist
n ∈ N and 0 < δ < 1 such that, for each k ∈ N, we can choose
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f1k, f2k, . . . , fnk ∈ A with ‖fik‖ ≤ 1 for 1 ≤ i ≤ n and
∑n

i=1 |f̂ik| ≥ δ
on Y such that

(∗)
for any g1k, . . . , gnk ∈ A with

n∑
i=1

fikgik = 1 on X,

max
1≤i≤n

‖gik‖ > k.

Put f̃i = 〈fik〉∞k=1 for 1 ≤ i ≤ n. Then f̃i ∈ Ã, and

n∑
i=1

| ˆ̃f i(τ (k, φ))| =
n∑

i=1

|τ (k, φ)(f̃i)| =
n∑

i=1

|f̂ik(φ)| ≥ δ

for all (k, φ) ∈ N×Y and hence
∑n

i=1 | ˆ̃f i(ψ)| ≥ δ for all ψ ∈ τ (N×Y ).

Since τ (N × Y ) is dense in MÃ, by Lemma 2.1 we can choose
g̃1, . . . , g̃n ∈ Ã such that

∑n
i=1 f̃ig̃i = 1 on X̃, where g̃i = 〈gik〉∞k=1.

Thus, for every k ∈ N,

n∑
i=1

fikgik(x) =
n∑

i=1

f̃ig̃i(k, x) = 1

for all x ∈ X. Then, by (∗), for every k ∈ N we have max{‖gik‖ : 1 ≤
i ≤ n} > k. Hence, for some 1 ≤ i0 ≤ n, g̃i0 = 〈gi0k〉∞k=1 /∈ Ã since
‖g̃i0‖ = supk∈N ‖gi0k‖ ≥ supk∈N k, which is a contradiction.

(2) implies (1). Suppose that A satisfies (2). We will show that Ã is
natural on τ (N× Y ). Then, by Lemma 2.1, τ (N× Y ) is dense in MÃ.

Let δ > 0 and f̃1, . . . , f̃n ∈ Ã be given such that
∑n

i=1 | ˆ̃fi| ≥ δ

on τ (N × Y ). Dividing δ and the f̃i by a large positive constant if
necessary, we may assume that δ < 1 and that ‖f̃i‖ ≤ 1 for 1 ≤ i ≤ n.
Write f̃i = 〈fik〉∞k=1. Then, for every k ∈ N, we have ‖fik‖ ≤ ‖f̃i‖ ≤ 1
for 1 ≤ i ≤ n and

∑n
i=1 |f̂ik| ≥ δ on Y . Thus, for each k ∈ N, by the

assumption we can choose g1k, . . . , gnk ∈ A such that ‖gik‖ ≤ C(n, δ)
for 1 ≤ i ≤ n and

∑n
i=1 fikgik = 1 on X. Put g̃i = 〈gik〉∞k=1 ∈ Ã for

1 ≤ i ≤ n. Then
∑n

i=1 f̃ig̃i = 1 on X̃ since

n∑
i=1

f̃ig̃i(k, x) =
n∑

i=1

fikgik(x) = 1
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for all (k, x) ∈ N ×X, and the latter is dense in X̃.

Definition 2.4. A Banach function algebra on X is uniformly
natural on a subset Y of MA if A satisfies one of the equivalent
conditions of Theorem 2.3.

Notice that the proof of Theorem 2.3 gives more than was promised. If
Ã is natural on τ (N×Y ) (condition (1) ), then A and Ã are uniformly
natural on Y and τ (N × Y ), respectively, with the same constants
C(n, δ).

Why did these ideas arise in the context of Lennart Carleson’s
corona theorem [5]? This theorem asserts that the open unit disk
∆ = {z ∈ C : |z| < 1} is dense in the maximal ideal space of
H∞ = H∞(∆), the algebra of all bounded holomorphic functions on
∆; in other words, H∞ is natural on ∆. In fact, Carleson proved that
H∞ is uniformly natural on ∆. Now a more tractable cousin of H∞

is the disk algebra A(∆), consisting of all continuous functions on the
closed unit disk ∆ = {z ∈ C : |z| ≤ 1} that are holomorphic on ∆. It is
not hard to see (Proposition 2.5 below) that H∞ is uniformly natural
on ∆ precisely if A(∆) is uniformly natural on ∆ (so a corollary of
Carleson’s theorem is uniform naturality of A(∆) on ∆). It is well
known and not difficult to see that A(∆) is natural on ∆ : MA(∆) = ∆.
Suppose one could find a “soft” proof that τ (N×∆) is dense in MA(∆)∼ .
This would make A(∆) uniformly natural on ∆, hence H∞ would be
uniformly natural on ∆. A possible by-product of such a development
is this: The “soft” proof might well apply to polydisk algebras as well (a
polydisk is a finite product of disks), and since Proposition 2.5 certainly
does, the as yet open question of whether ∆n is dense in the maximal
ideal space of H∞(∆n) would be answered in the affirmative.

Proposition 2.5. A(∆) is uniformly natural on ∆ if and only if H∞

is uniformly natural on ∆.

Proof. Suppose first that A = A(∆) is uniformly natural on ∆. Given
0 < δ < 1 and n ∈ N, let M be a positive constant that can serve as
C(n, δ) for A. Suppose f1, . . . , fn ∈ H∞ are such that ‖fi‖∞ ≤ 1 for
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1 ≤ i ≤ n and
∑n

i=1 |fi| ≥ δ on ∆. For 0 < r < 1 and 1 ≤ i ≤ n,
let fir(z) = fi(rz), so fir ∈ A, ‖fir‖∞ ≤ 1, and

∑n
i=1 |fir| ≥ δ on ∆.

By assumption there exist gir, . . . , gnr ∈A such that ‖gir‖∞ ≤M and∑n
i=1 firgir = 1 on ∆. For each i, fir → fi pointwise (and uniformly on

compact sets) on ∆ as r → 1−. By a normal families argument, we may
find a sequence 〈rk〉, 0 < rk < 1, such that as k → ∞, rk → 1− and
girk

→ gi pointwise (again, uniformly on compact sets) for appropriate
functions g1, . . . , gn ∈ H∞. Then ‖gi‖∞ ≤ M and

∑n
i=1 figi = 1 on

∆. Thus H∞ is uniformly natural on ∆.

Conversely, suppose H∞ is uniformly natural on ∆. Given 0 < δ < 1
and n ∈ N, let M work as C(n, δ) for H∞. Fix M ′ > M . Take
η > 0 so small that nMη < 1 and M/(1 − nMη) ≤ M ′. Suppose
f1, . . . , fn ∈ A satisfy ‖fi‖∞ ≤ 1 and

∑n
i=1 |fi| ≥ δ on ∆. By

assumption, there exist h1, . . . , hn ∈ H∞ such that ‖hi‖∞ ≤ M and∑n
i=1 fihi = 1 on ∆. Using uniform continuity of the fi, take r,

0 < r < 1, so close to 1 that |fi(rz) − fi(z)| < η for z ∈ ∆ and
1 ≤ i ≤ n. Let F (z) =

∑n
i=1 fi(z)hi(rz) for z ∈ ∆. Then F ∈ A and

|F (z)−1| = |∑n
i=1[fi(z)−fi(rz)]hi(rz)| < nMη, so |F | > 1−nMη > 0

on ∆. For 1 ≤ i ≤ n, let gi(z) = hi(rz)/F (z), so gi ∈ A, ‖gi‖∞ ≤ M ′,
and

∑n
i=1 figi = 1 on ∆. We conclude that A is uniformly natural on

∆.

Again, more has been proven than was advertised. If δ and n are
fixed, any constant that can be C(n, δ) for A(∆) also works as C(n, δ)
for H∞, while anything strictly larger than a C(n, δ) for H∞ can serve
as C(n, δ) for A(∆).

In the best of all worlds, A(∆) would be uniformly natural because
of a general result that all uniform algebras (or even Banach function
algebras) are uniformly natural on their maximal ideal spaces. This
question was raised by Walter Rudin [3, p. 347]. If A is a uniform alge-
bra on X = MA, then do there exist appropriate constants C(A, n, δ)
for all 0 < δ < 1 and n ∈ N? If so, can these constants be chosen to
be independent of the algebra A? It is easy to see that an affirmative
answer to the first question implies an affirmative answer to the second.
For, suppose that for some n and δ, no C(n, δ) exists that works for
all uniform algebras A. Then, for each k ∈ N, there are a uniform
algebra Ak on Xk = MAk

and functions fk1, . . . , fkn ∈ Ak such that
‖fki‖∞ ≤ 1 and

∑n
i=1 |fki| ≥ δ on Xk, and whenever

∑n
i=1 fkigi = 1
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for some g1, . . . , gn ∈ Ak, it follows that max{‖gi‖∞ : 1 ≤ i ≤ n} > k.
Let X denote the one-point compactification of the disjoint union of
the Xk, and let A consist of the continuous functions on X whose re-
striction to each Xk belongs to Ak. It is routine to check that A is a
uniform algebra on X whose maximal ideal space coincides with X and
that no constant can serve as C(n, δ).

Unfortunately, the answer to Rudin’s question is negative, as shown
by an ingenious example produced by Jean-Pierre Rosay [12].

Example 2.6 [12]. Let Y = {(ζ1, ζ2) ∈ C2 : 1/2 ≤ max{|ζ1|, |ζ2|} ≤
1} and let X = {(ζ1, ζ2) ∈ Y : |ζ1 + ζ2| ≥ 1/4}. We endow Y (and
perforce X) with an equivalence relation ∼: (ζ1, ζ2) ∼ (ζ ′1, ζ ′2) if and
only if ζ1 = ±ζ ′1 and ζ2 = ±ζ ′2. Note that every point of Y is equivalent

to at least one point of X, and likewise for
◦
Y and

◦
X, the interior of Y

and X, respectively, in C2. Thus, any function f on X (or
◦
X) that is

constant on each equivalence class extends uniquely to such a function

f̃ on Y (or
◦
Y ), and any continuous or holomorphic character of f will be

enjoyed by f̃ as well. We shall need a special case of Hartog’s theorem

from several complex variables: Every holomorphic function on
◦
Y has

a unique holomorphic extension to ∆2.

Let B denote the uniform algebra on X consisting of continuous

functions that are holomorphic on
◦
X. The elements z1 and z2 of B are

the coordinate functions: z1(ζ1, ζ2) = ζ1 and z2(ζ1, ζ2) = ζ2. z1 + z2 is
invertible in B, so ẑ1 + ẑ2 = ẑ1 + z2 can never vanish on MB; thus, ẑ1

and ẑ2 do not vanish simultaneously, whence ẑ2
1 and ẑ2

2 cannot vanish
simultaneously on MB , whence |ẑ2

1 |+ |ẑ2
2 | ≥ δ on MB for some constant

δ, 0 < δ < 1. Of course, ‖z2
1‖∞ = ‖z2

2‖∞ = 1.

Take an increasing sequence 〈Ek〉 of finite subsets of X whose union
is dense in X such that each Ek is closed under ∼ in X. If p ∈ Ek and
q ∈ X satisfy p ∼ q, then q ∈ Ek. Let Bk denote the subalgebra of B
consisting of functions f such that f(p) = f(q) whenever p and q are
equivalent points of Ek. Of course, z2

1 and z2
2 belong to Bk. General

Banach algebra theory shows that MBk
is nothing but MB with finitely

many point identifications: two points of MB are identified if and only
if they are equivalent points of Ek. As a consequence, |ẑ2

1 | + |ẑ2
2 | ≥ δ
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on MBk
.

We shall now show that no single constant can serve as C(2, δ) for
all the Bk. Indeed, suppose M were such a constant. For each k there
would be g1k and g2k in Bk such that ‖gjk‖∞ ≤ M and z2

1g1k+z2
2g2k = 1

on X. By a normal families argument, on passing to a subsequence if
necessary, we may assume that there are holomorphic functions g1 and

g2 on
◦
X such that g1k → g1 and g2k → g2 pointwise (uniformly on

compacta) on
◦
X as k → ∞. Evidently, z2

1g1 + z2
2g2 = 1 on

◦
X, and

g1(p) = g1(q), g2(p) = g2(q) whenever p and q are equivalent points

of
◦
X. Then g1, g2 have holomorphic extensions g̃1, g̃2 to

◦
Y that still

satisfy z2
1 g̃1 + z2

2 g̃2 = 1 on
◦
Y . This relation persists on ∆2 if g̃1 and

g̃2 are extended holomorphically, and this contradicts the fact that
z2
1 = z2

2 = 0 at (0, 0).

How does one prove that a Banach function algebra is uniformly
natural? An easy example is C(X). If ‖fi‖∞ ≤ 1 and

∑n
i=1 |fi| ≥ δ > 0

on X, let F =
∑n

i=1 |fi|2 ≥ n−1δ2 and gi = F−1fi. Then ‖gi‖∞ ≤
nδ−2 = C(n, δ) and

∑n
i=1 figi = 1. By mimicking this argument, we

can treat several other examples.

A Banach function space E on X is said to be self-adjoint if it is
closed under conjugation: f ∈ E implies f̄ ∈ E. An easy application
of the closed graph theorem shows that then the real-linear mapping
f �→ f̄ on E is continuous; of course, if the norm is the uniform norm,
this conclusion is immediate. A Banach function algebra A on X
is inverse-closed if whenever f ∈ A and f vanishes nowhere on X,
it follows that 1/f ∈ A. If A is a Banach function algebra on X,
that is both self-adjoint and inverse-closed, then A is natural on X; if
f1, . . . , fn are functions in A that have no common zero in X, then
F =

∑n
i=1 fifi ∈ A and F has no zeros in X, so gi = F−1fi ∈ A and∑n

i=1 figi = 1. To obtain a version of this that includes estimates, we
first make a definition.

Definition 2.7. A Banach function algebra A on X is uniformly
inverse-closed (on X) if, whenever 0<δ<1, there is a positive constant
C(δ) such that if f ∈ A satisfies ‖f‖ ≤ 1 and |f | ≥ δ on X, it follows
that there is a g ∈ A such that ‖g‖ ≤ C(δ) and fg = 1 on X.
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Theorem 2.8. Let A be a Banach function algebra on X. Suppose
that A is both self-adjoint and uniformly inverse-closed on X. Then A
is uniformly natural on X.

Proof. Take a positive constant M such that ‖f̄‖ ≤ M‖f‖ for every
f ∈ A. Suppose 0 < δ < 1 and n ∈ N are given. Let f1, . . . , fn ∈ A
satisfy ‖fi‖ ≤ 1 for 1 ≤ i ≤ n and

∑n
i=1 |fi| ≥ δ on X. Then

F = n−1
∑n

i=1 fifi belongs to A and satisfies ‖F‖ ≤ 1, F ≥ δ′ = n−2δ2

on X, so F−1 ∈ A and ‖F−1‖ ≤ C(δ′). If gi = n−1F−1fi, then gi ∈ A,
‖gi‖ ≤ n−1C(δ′)M for 1 ≤ i ≤ n and

∑n
i=1 figi = 1 on X.

The interpretation via sequence algebras is similar to Theorem 2.3
and has a similar but simpler proof. We merely state the result, for
which no application will be exhibited here.

Theorem 2.9. Let A be a Banach function algebra on X. Then the
following are equivalent:

(1) Whenever f̃ ∈ Ã and |f̃ | ≥ δ on N×X for some δ > 0, it follows
that f̃−1 ∈ Ã.

(2) A is uniformly inverse-closed.

We conclude this section with two examples. Note that in both cases
the last assertion is that τ (N × X) is dense in MÃ, rather than that
MÃ = X̃. The reason is that, for reasons we will see in the next section,
Ã definitely does not separate the points of X̃; thus, MÃ is actually a
certain quotient space of X̃.

2.10. The algebra Lipα(T), 0 < α ≤ 1. Let T be the unit circle
in the complex plane, and let A = Lipα(T) be the subspace of C(T)
consisting of the functions f for which

sup
t∈T
h 	=0

|f(t + h) − f(t)|
|h|α < ∞
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with the norm

‖f‖ = ‖f‖∞ + sup
t∈T
h 	=0

|f(t + h) − f(t)|
|h|α .

Then A is a self-adjoint Banach function algebra on T under pointwise
multiplication and addition which is inverse-closed, and MA = T.

Now let f ∈ A be such that ‖f‖ ≤ 1 and |f | ≥ δ > 0 on T. Take
C(δ) = δ−2. Then since ‖f−1‖∞ ≤ δ−2‖f‖∞ and

sup
t∈T
h 	=0

|f−1(t + h) − f−1(t)|
|h|α ≤ δ−2 sup

t∈T
h 	=0

|f(t + h) − f(t)|
|h|α ,

we have that f−1 ∈ A and ‖f−1‖ ≤ δ−2‖f‖ ≤ δ−2 = C(δ). Thus, A is
uniformly inverse-closed and therefore τ (N× T) is dense in MÃ.

2.11 The algebra C(m)[0, 1]. Let m ∈ N, and let A = C(m)[0, 1]
be the Banach function algebra of complex-valued continuous functions
on the closed unit interval [0, 1] which are m-times continuously differ-
entiable with the norm

‖f‖ =
m∑

k=0

‖f (k)‖∞
k!

.

Then A is self-adjoint and natural on [0, 1]. Moreover, A is uniformly
inverse-closed by taking C(δ) =

∑m
k=0(λk/k!) where λk = λk(δ, 1) are

chosen as in the lemma below. Thus, A is uniformly natural on [0, 1],
and therefore τ (N× [0, 1]) is dense in MÃ.

Lemma. Let 0 < a < b be two real numbers. For each integer k ≥ 0,
there exist a positive constant λk = λk(a, b) and a real polynomial
in k + 1 variables, Pk = Pk(ζ0, ζ1, . . . , ζk) such that if m ∈ N and
if h ∈ C(m)[0, 1] satisfies |h| ≥ a on [0, 1] and ‖h‖ ≤ b, then for
k = 0, 1, . . . ,m and u = 1/h ∈ C(m)[0, 1] we have

u(k) =
dku

dtk
= uk+1Pk(h, h′, . . . , h(k)),

‖u(k)‖∞ ≤ λk.
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Proof. Induction provides the Pk with P0(ζ0) = 1,

Pk+1(ζ0, ζ1, . . . , ζk+1)

= − (k + 1)ζ1Pk(ζ0, . . . , ζk) +
k∑

j=0

ζ1ζj+1
∂Pk

∂ζj
(ζ0, . . . , ζk).

Then take λk =λk(a, b)=a−(k+1) sup{|Pk(ζ0, . . . , ζk)| :
∑k

j=0(|ζj |/j!) ≤
b}.

3. The ultraseparation property. Consider a Banach function
algebra A on X = MA. In Section 2 we studied the map τ : N×X →
MÃ given by τ (n, φ)(f̃) = f̂n(φ) where f̃ = 〈fk〉∞k=1 ∈ Ã and saw that
one formulation of A being uniformly natural on X is that τ (N × X)
is dense in MÃ. This can be slightly reformulated if we note that τ

has a continuous extension τ̃ from X̃ = β(N × X) into MÃ. Thus A

is uniformly natural on X if and only if τ̃ : X̃ → MÃ is onto. It is
now natural to ask: What happens if τ̃ is one-to-one? This possibility
can be formulated so as to apply to Banach function spaces as well as
algebras and gives us the following fundamental concept introduced by
Bernard.

Definition 3.1. A Banach function space E on X is said to be
ultraseparating on X if Ẽ, regarded as a Banach space of continuous
functions on X̃, separates the points of X̃.

Various characterizations of this property have been proven, but we
shall ignore them. Instead, we shall try to indicate some of the ways
in which ultraseparability can be used.

For a more comprehensive view of the “state of the art” in the
late 1960’s and early 70’s, when Bernard was creating and applying
these ideas, we call the reader’s attention to Robert B. Burckel’s
monograph [4]. The proofs below are substantially those of Bernard.
In particular, the use of sequence spaces in the proofs of Bernard’s
generalization of the Hoffman-Wermer theorem, Theorem 3.4 and of
Wermer’s theorem 3.5, is completely different from earlier proofs of
similar results. The key tool for many of the applications is the
following result, for which scalars may be real or complex.
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Bernard’s lemma 3.2 [1], [2]. Let E be a Banach function space
on X. If Ẽ, regarded as a Banach space of continuous functions on
X̃, is uniformly dense in C(X̃), then E = C(X) (and consequently,
Ẽ = C(X̃)).

Proof. For simplicity let N denote the norm on E and ‖ ‖ the
uniform norm on the appropriate space. We first prove existence of
a positive integer k such that whenever u ∈ C(X) and ‖u‖ ≤ 1, there
is an f ∈ E such that N(f) ≤ k and ‖f − u‖ ≤ 1/2. Indeed, if no
such k exists, then for each k ∈ N there is a uk ∈ C(X) such that
‖uk‖ ≤ 1 and N(f) > k whenever f ∈ E satisfies ‖f − uk‖ ≤ 1/2.
Consider ũ = 〈uk〉∞k=1 ∈ C(X)∼ = C(X̃). By the hypothesized density
there is f̃ = 〈fk〉∞k=1 ∈ Ẽ such that ‖f̃ − ũ‖ ≤ 1/2. This says that,
for each k ∈ N, ‖fk − uk‖ ≤ 1/2, hence N(fk) > k. This in turn
contradicts the fact that the sequence 〈N(fk)〉 is bounded because
f̃ ∈ Ẽ. Renormalizing, we have shown that there is a positive constant
M that satisfies

(∗∗)
If u ∈ C(X), then there is an f ∈ E such
that N(f) ≤ M‖u‖ and ‖f−u‖ ≤ 2−1‖u‖.

Now let u ∈ C(X). Let u1 = u and take f1 ∈ E such that
N(f1) ≤ M‖u1‖ and ‖u2‖ ≤ 2−1‖u1‖ where u2 = u1 − f1. Then
take f2 ∈ E satisfying N(f2) ≤ M‖u2‖ and ‖u3‖ ≤ 2−1‖u2‖ where
u3 = u2 − f2. Continuing in this fashion using (∗∗), we obtain
sequences u = u1, u2, . . . in C(X) and f1, f2, . . . in E with uk+1 =
uk − fk, N(fk) ≤ M‖uk‖, and ‖uk+1‖ ≤ 2−1‖uk‖. By induction
‖uk‖ ≤ 21−k‖u‖, hence N(fk) ≤ 21−kM‖u‖. The series

∑∞
k=1 fk

then converges in E, say to F ∈ E, with N(F ) ≤ ∑∞
k=1 21−kM‖u‖ =

2M‖u‖. Then also this series converges to F uniformly on X. But
‖u−∑k

j=1 fj‖ = ‖uk+1‖ which tends to 0 as k → ∞, so the series also
converges uniformly to u. Thus, u = F ∈ E.

The following corollary shows that, as anticipated, the algebras in
examples 2.10 and 2.11 are not ultraseparating.

Corollary 3.3. Let A be a Banach function algebra on X. If A is
both self-adjoint and ultraseparating on X, then A = C(X).
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Proof. The ultraseparation hypothesis shows that Ã is a Banach
function algebra on X̃. Because the conjugation mapping on A is
continuous, Ã is also self-adjoint on X̃. The Stone-Weierstrass theorem
implies that Ã is uniformly dense in C(X̃), and then Bernard’s lemma
gives A = C(X).

Perhaps the first application of ultraseparability was Bernard’s ex-
tension of the Hoffman-Wermer theorem [9]. The Hoffman-Wermer
theorem asserts that if A is a uniform algebra on X and if

ReA = {Re f : f ∈ A}
= {u ∈ CR(X) : u + iv ∈ A for some v ∈ CR(X)}

is uniformly closed, then A = C(X). A number of authors (initially
[14]) later showed that if A is a uniform algebra on X, if K is a
nonempty closed subset of X, and if (ReA)|K , the space of restrictions
to K of functions from ReA, is uniformly closed, then A|K = C(K).
If we observe that A|K , the restriction algebra, is actually a Banach
function algebra on K in an appropriate quotient norm, and that
(ReA)|K = Re (A|K), then we see that this is in turn a particular
case of Bernard’s result.

Theorem 3.4 [1], [2]. Let A be a Banach function algebra on X.
Suppose that ReA is uniformly closed. Then A = C(X).

Proof. Let B denote the uniform closure of A. Then B is a uniform
algebra on X and ReB = ReA so, by the Hoffman-Wermer theorem
B = C(X), hence ReA = CR(X). Letting N denote the norm
in A and ‖ ‖ the uniform norm on X, the open mapping theorem
applied to the continuous real-linear surjection f �→ Re f from A to
ReA = CR(X) shows that there is a positive constant M such that
whenever u ∈ CR(X), there is an f ∈ A for which Re f = u and
N(f) ≤ M‖u‖. Now suppose ũ = 〈uk〉∞k=1 ∈ CR(X)∼ = CR(X̃).
For each k ∈ N there is an fk ∈ A that satisfies Re fk = uk and
N(fk) ≤ M‖uk‖. Thus f̃ = 〈fk〉∞k=1 ∈ Ã and Re f̃ = ũ. This gives
Re Ã = CR(X̃) so, as in the beginning of the proof, the uniform closure
of Ã is all of C(X̃), i.e., Ã is dense in C(X̃). Then Bernard’s lemma
gives A = C(X).
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The main applications of ultraseparating function spaces have been to
the symbolic calculus on real parts of Banach function spaces, especially
uniform algebras. From our point of view, the first result along these
lines was published by John Wermer in 1963:

Theorem 3.5 [15]. Let A be a uniform algebra on X. If ReA is
closed under multiplication, then A = C(X).

The special hypothesis here, that uv belongs to ReA whenever u and
v both do, can be rephrased to say that φ(t) = t2 operates on ReA in
the sense that the composition φ◦u ∈ ReA whenever u ∈ ReA. Now if
E is any Banach function space, then every affine function φ(t) = at+b
surely operates on E. In view of Wermer’s theorem (and to be sure,
others which are important but do not lie directly on the path we are
following), it is natural to ask which continuous functions operate on
which Banach function spaces, and in what manner (e.g., boundedness
conditions)? A number of results in this vein are proved in Bernard’s
seminal paper [2], including the following: If A is a uniform algebra on
X and if |u| ∈ ReA whenever u ∈ ReA, that is, φ(t) = |t| operates on
ReA, then A = C(X). All this made the following conjecture natural.

Conjecture. Let A be a uniform algebra on X, let I be an interval
of real numbers, and let φ be a real-valued function on I that is not the
restriction to I of an affine function on R. If φ operates on ReA, in
the sense that φ ◦ u ∈ ReA whenever u ∈ ReA and u has range in I,
then A = C(X).

In [13] (see also [10] and Theorem 2.5.6 in [11]) the results of Wermer
and Bernard on this conjecture were extended to several situations,
most notably to that in which I contains no nondegenerate subinterval
on which φ is the restriction of an affine function. Finally, in [7] Hatori
completed the proof of the conjecture in general. Substantial later
work has extended these developments in various directions, but we
shall content ourselves with showing how Bernard’s methods apply to
give a proof of Wermer’s theorem quite different from Wermer’s original
one.
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Proof of Theorem 3.5 [2]. Let ‖ ‖ be the uniform norm, and let N
be the norm on ReA as a quotient space of A: N(u) = inf {‖f‖ : f ∈
A, Re f = u}. As in Wermer’s paper, the closed graph theorem shows
that multiplication is continuous on ReA: there is a constant M > 0
such that N(uv) ≤ MN(u)N(v) whenever u, v ∈ ReA. This is proved
in two stages: a first application of the closed graph theorem shows
that for each u ∈ ReA the linear mapping v �→ uv from ReA to itself
is a bounded linear mapping L(u), and a second application shows that
the linear mapping u �→ L(u) from ReA to the space of bounded linear
operators on ReA is bounded.

The immediate and crucial consequence of the existence of M is
that (ReA)∼ = Re (Ã) is actually closed under multiplication. So
if we can show that (ReA)∼ separates the points of X̃, i.e., that
ReA is ultraseparating on X, then the Stone-Weierstrass theorem
will imply that (ReA)∼ is uniformly dense in CR(X)∼ = CR(X̃);
Bernard’s lemma will then give ReA = CR(X), and the Hoffman-
Wermer theorem will yield A = C(X).

It suffices, then, to prove that Re Ã separates the points of X̃ or,
equivalently, that Ã does. Now the Stone-Weierstrass theorem forces
ReA to be uniformly dense in CR(X) (a uniform algebra with this
property is said to be Dirichlet). Therefore, if K and L are disjoint
compact subsets of X, u ∈ ReA exists such that u < 0 on K, u > 1
on L and u < 2 on X; taking v ∈ ReA such that u + iv ∈ A and
setting f = exp(u + iv), we have f ∈ A, |f | < 1 on K, |f | > e
on L, and ‖f‖ < e2. Suppose now that φ and ψ are distinct points
in X̃. Let U and V be disjoint compact neighborhoods of φ and ψ,
respectively. For each k ∈ N, Kk = {x ∈ X : τ (k, x) ∈ U} and
Lk = {x ∈ X : τ (k, x) ∈ V } are disjoint compact subsets of X, so
there is an fk ∈ A that satisfies |fk| < 1 on Kk, |fk| > e on Lk and
‖fk‖ < e2. Then f̃ = 〈fk〉∞k=1 belongs to Ã, |f̃ | < 1 on ∪kτ ({k} ×Kk)
and |f̃ | > e on ∪kτ ({k} × Lk). φ belongs to the closure in X̃ of
the first of these unions, and ψ belongs to the closure of the second.
Therefore, |f̃(φ)| ≤ 1 and |f̃(ψ)| ≥ e and in particular f̃(φ) �= f̃(ψ).
This completes the proof.

We shall close with a few remarks on the preceding proof and how
to extend it. There are two ways in which the fact that the operating
function is φ(t) = t2 is used. First, from the fact that φ operates on
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ReA it is deduced that φ operates on (ReA)∼. Second, the Stone-
Weierstrass theorem is applied twice. For more general φ, appropriate
variants of these steps must be found. Typically, the Baire category
theorem is used to show that composition by φ takes a dense subset B0

of some ball B in ReA (or, in some cases, in an appropriate subspace
of ReA) into a bounded subset of ReA. It follows that φ “operates”
from a small part of (ReA)∼, namely those sequences whose members
come from B0, into (ReA)∼ and so, by the continuity of φ (which can
be deduced from the hypotheses in the conjecture), composition by φ
carries sequences from B into the uniform closure of (ReA)∼. Is this
enough to make (ReA)∼ uniformly dense in CR(X̃)? Obviously not,
since at one extreme, all the functions in B might have range contained
in some interval on which φ is affine! In [13], an extra hypothesis is
inserted in Theorem 2 to avoid precisely this difficulty, but generally
considerable effort must be expended to apply the category argument
in such a manner that the resulting ball B is well located.

Even supposing this has been accomplished, formidable technical dif-
ficulties may remain. Since ReA (and perforce (ReA)∼) is not known
to be closed under multiplication, Stone-Weierstrass is unavailable.
Fortunately, de Leeuw and Katznelson provided a viable substitute [6]:
If E is a subspace of CR(X) that contains the constant functions and
separates the points of X, and if φ is a continuous real-valued function
on some interval I such that φ is not the restriction to I of an affine
function, then E is uniformly dense in CR(X) if φ “operates” on E in
the sense that φ ◦ u ∈ E whenever u ∈ E has range contained in I.
(Actually, this is the real version of the theorem in [6], in which E is
a complex function space and φ is defined on an open set of complex
numbers). In our situation, with E = ReA, it gives density of ReA in
CR(X) immediately, so the first application of Stone-Weierstrass in the
proof of Theorem 3.5 is covered. Unfortunately, the second density
of (ReA)∼ in CR(X̃) is much harder because φ may operate on too
small a subset of (ReA)∼. To get a general idea of what must be done,
let’s examine the proof of the de Leeuw Katznelson theorem.

Here is a sketch of the proof, following Bernard [2, Appendices].
Assume E is uniformly closed. For a well-chosen C∞ function k of small
support near zero, the convolution φ1 = φ ∗ k will be close enough to φ
to be nonaffine, while it still operates on E, φ1 ◦u =

∫
k(t)φ◦ (u− t) dt,

and is C∞. Because φ1 is not affine φ′′
1 is not identically zero; with some
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linear changes of variable, we can assume φ1(t) = t2 + t2ε(t) where ε(t)
tends to zero with t. If u ∈ E, n2φ1 ◦ (u/n) → u2, so u2 ∈ E. Now
Stone-Weierstrass applies.

To apply all this in our situation, let V denote the uniform closure
of (ReA)∼ in CR(X̃), and let H be its “multiplier algebra” consisting
of those ũ ∈ CR(X̃) for which ũṽ ∈ V whenever ṽ ∈ V (it suffices
to consider ṽ ∈ (ReA)∼). H is a uniformly closed subalgebra of
CR(X̃) that contains the constant functions and is contained in V .
If H separates the points of X̃, then H = CR(X̃) so V = CR(X̃). If φ1

is as in the proof sketched above, then φ1 carries sequences from our
selected ball B into V . If now ũ is such a sequence and if ṽ ∈ (ReA)∼

is arbitrary, the difference quotients (φ1 ◦ (ũ+ tṽ)−φ1 ◦ ũ)/t belong to
V for small nonzero t and tend to (φ′

1 ◦ ũ)ṽ as t → 0, so (φ′
1 ◦ ũ)ṽ ∈ V .

Thus φ′
1 ◦ ũ ∈ H, and the problem becomes to find enough functions of

this type to separate the points of X̃. Even this can’t always be done
in any obvious way, but after various reductions, something very much
like it can, ultimately yielding a proof of the full conjecture.

The investigation of functions operating on general Banach function
spaces continues to flourish, and the methods we have discussed con-
tinue to play a prominent role. The “ultraseparation” property is of
some interest in its own right. We close with a problem in this area.

Problem. If A1 and A2 are ultraseparating uniform algebras on X1

and X2, respectively, and if A is the uniformly closed linear span on
X = X1 × X2 (topological product) of the functions f1 ⊗ f2(x1, x2) =
f1(x1)f2(x2) where fi ∈ Ai, i = 1, 2, must A be ultraseparating on X?
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