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SOLUTION OF INTEGRAL EQUATIONS USING
PADÉ TYPE APPROXIMANTS

R. THUKRAL

ABSTRACT. We consider the use of Padé-type methods
to accelerate the convergence of the Neumann series of linear
integral equations. The effectiveness of the improved squared
Padé approximant for approximating the characteristic value
and the characteristic function of a linear integral equation is
illustrated. The estimates of characteristic function derived
using the improved squared Padé approximants are found to
be substantially more accurate than the original squared Padé
approximants. Also the family of the Padé-type methods are
reviewed specifically to demonstrate the consistency of the
methods.

1. Introduction. The purpose of this paper is to demonstrate the
improvement of squared Padé approximants, which was initially intro-
duced in [20]. We adopt the same principle used in [7], [14], [20], which
is expressing the denominator polynomial of the new squared Padé ap-
proximants in terms of zeros obtained by the denominator polynomial
of the original squared Padé approximants. This modification is de-
fined in the improved squared Padé approximants section. We review
the recently introduced methods together with classical methods for ac-
celerating the convergence of sequence of functions. The effectiveness
of the methods is examined by determining the characteristic value
and the characteristic function of several linear Fredholm linear equa-
tions. This paper is actually a continuation of the previous study [20].
The extension of this investigation is based on the improvement of the
squared Padé approximants and showing the magnitude of the error
obtained by each of the methods.

The prime motive of the development of the Padé type methods was
to overcome the essential difficulty encountered by the well-established
methods, such as the classical Padé approximants and the functional
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Padé approximants [5], [7], [14], [20]. It was noticed that the problem
with the classical Padé approximants and the functional Padé approxi-
mants methods was the use of the minimal sensitivity principle [1], [2]
and the presence of superfluous zeros in the denominator of the rational
function [6] [8], [12], [14]. Consequently, we found that the integral
Padé approximant is the most effective of the Padé-type methods con-
sidered, and this is a good alternative to functional Padé approximant.
We actually begin by describing the fundamentals of the denominator
for each of the recently introduced Padé-type methods, and the nu-
merator is determined naturally. In order to construct these Padé-type
methods, we use a similar procedure to classical Padé approximant.

The solution of the Fredholm integral equation of the second kind is
based on generating a series of functions, given as

(1) f(x, λ) =
∞∑

i=0

Ci(x)λi,

in which Ci(x) ∈ L2[a, b] are given and [a, b] is the domain of definition
of Ci(x) in some natural sense. We also suppose that f(x, λ) is
holomorphic as a function of λ at the origin λ = 0. Then (1) converges
for values of |λ| which are sufficiently small. In this paper we see how
the methods of Padé-type approximation can be used to accelerate the
convergence of a series having the form (1).

The structure of this paper is as follows. In Sections 2 to 4 we de-
fine three recently introduced methods, namely, the integral Padé ap-
proximant, the improved Padé approximant and the modified Padé
approximant, respectively, and in Section 5 we define the improved
squared Padé approximant. In Sections 6 and 7 we also review two
well-established methods, namely, the classical Padé approximant and
the functional Padé approximant, respectively. In Section 8 we examine
the effectiveness of methods based on the Padé-type approximants for
determining the characteristic values and the characteristic functions of
two linear Fredholm integral equations. The technique utilized for solv-
ing the integral equation is based on successive substitution, which is an
iterative procedure, yielding a sequence of approximations leading to
an infinite power series solution. We make two distinct comparisons of
the estimates derived from the row sequences of the Padé-type approxi-
mants. First, we compare the estimates derived from the row sequences
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of the integral Padé approximant of type (n, 1) with corresponding es-
timates derived from the improved Padé approximant of type (n), the
modified Padé approximant of type (n, 1), the improved squared Padé
approximant of type (n, 1), the functional Padé approximant of type
(n, 2), and the classical Padé approximant of type (n, 1). In the sec-
ond comparison the estimates are based on another row sequence of
the integral Padé approximant of type (n, 2) with corresponding esti-
mates derived from the improved Padé approximant of type (n + 1),
the modified Padé approximant of type (n, 2), the improved squared
Padé approximant of type (n, 2), the functional Padé approximant of
type (n, 4) and the classical Padé approximant of type (n, 2). Finally,
in Section 9 we illustrate the precision of a particular characteristic
function of the integral Padé approximant. The effectiveness of these
Padé-type methods for accelerating the convergence of a sequence of
functions is investigated in the context of the Neumann series of several
linear Fredholm integral equations of the second kind. In this paper
and in the previous study [20] the integral Padé approximants method
is proved to be the most effective of the methods considered. However,
the improvement of the squared Padé approximant is effective when
compared to the original squared Padé approximant.

2. The integral Padé approximants method (IPA). We define
a rational function r(x, λ) to be an integral Padé approximant of type
(n, k) for f(x, λ) if

(2) r(x, λ) =
N(x, λ)
D(λ)

=
∑n

i=0 Ni(x)λi∑k
i=0 Diλi

,

where

(3) (i) N(x, λ) is holomorphic as a function of λ,

(ii) N(x, λ) ∈ L2[a, b] as a function of x,

(iii) D(λ) is a holomorphic function of λ,

(iv) ∂{N} ≤ n, ∂{D} ≤ k,

(v) D(0) = 1,

(vi) N(x, λ)−D(λ)f(x, λ) = 0(λn+1).

If N(x, λ), D(λ) satisfy axiom (3), then there exists a unique r(x, λ)
defined by (1). The proofs of existence and uniqueness are similar
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to that for the classical Padé approximant [4], [5], and the rate of
convergence is similar to hybrid functional Padé approximant [15].
This is evident from this investigation and in all other test examples
performed.

We express the denominator polynomial of an integral Padé approx-
imant of type (n, k) as

(4)

D(λ) =

∣∣∣∣∣∣∣∣∣∣∣∣

∫ b

a
Cn+k−1(x)Cn−k(x) dx

∫ b

a
Cn+k−1(x)Cn−k+1(x) dx∫ b

a
Cn+k−1(x)Cn−k+1(x) dx

∫ b

a
Cn+k−1(x)Cn−k+2(x) dx

...
...∫ b

a
Cn+k−1(x)Cn−1(x) dx

∫ b

a
Cn+k−1(x)Cn(x) dx

λk λk−1

· · · ∫ b

a
Cn+k−1(x)Cn(x) dx

· · · ∫ b

a
Cn+k−1(x)Cn+1(x) dx

· · · ...
· · · ∫ b

a
Cn+k−1(x)Cn+k−1(x) dx

· · · 1

∣∣∣∣∣∣∣∣∣∣∣
,

provided D(0) �= 0 and Ci(x) are the coefficients of (1).

We take the appropriate roots of denominator polynomial, given by
(4), as our estimates of the characteristic value for the integral Padé
approximant. Once the denominator polynomial has been specified, the
actual approximants are constructed using the accuracy-through order
principle, and this also applies to the other Padé-type approximants.

Naturally, the numerator polynomial N(x, λ) follows from (3)(vi) as

(5) N(x, λ) = [D(λ)f(x, λ)]n0 ,

where this notation, now and in the sequel, indicates that truncation at
degree n in λ has been effected. If, in the representation (4), D(0) �= 0,
then r(x, λ) defined by (2), (4) and (5) is an integral Padé approximant
of type (n, k) for f(x, λ).

Theorem 1. Integral Padé approximant. Let

(6) f(x, λ) = r(x, λ) = N(x, λ)÷D(λ)
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be a meromorphic function with precisely k finite poles. Then, for all n
sufficiently large, there exists a unique rational function r(x, λ) of type
(n, k) which interpolates to f(x, λ). Hence,

(7) lim
n→∞

Nn(x, λ)
Dn(λ)

= f(x, λ).

The rational fractions of the integral Padé approximants can be laid
out in a table:

(8)

r(0,0) r(0,1) r(0,2) · · ·
r(1,0) r(1,1) r(1,2) · · ·
r(2,0) r(2,1) r(2,2) · · ·

...
...

...
. . .

This concept and Theorem 1 are similar to classical Padé approx-
imants [5] and may be expressed for other Padé-type approximants,
also see [20].

Theorem 2. Convergence theorem for integral Padé approx-
imant. Let f(x, λ) be a meromorphic function expressed as

(9) f(x, λ) = N(x, λ)/D(λ),

where

(i) N(x, λ) is holomorphic in |λi| < Ω, i = 1, . . . , k,

(ii) D(λ) is a monic real polynomial of degree k having k zeros and
|λi| < Ω,

(iii) D(λi) �= 0, i = 1, . . . , k.

(iv) x, λ ∈ ∀.

Thus f(x, λ) is holomorphic in the ring

(10) RΩ := {λ : |λ| < Ω} −
k⋃

i=1

{λi},
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where the singularities, i.e., zeros, are removed.

The rate of convergence is formally expressed as

(11) lim
n→∞ |f −Nn/Dn|1/n ≤ α.

The denominator converges according to

(12) lim
n→∞Dn(λ) = D(λ),

and the rate of convergence is given by

(13) lim
n→∞ |Dn −D|1/n ≤ β,

where α and β are the asymptotic error constants.

It was shown in [20] that the integral Padé approximant is identical
to the hybrid functional Padé approximant for the first row sequence
of type (n, 1), and therefore justifies part of the proof. Furthermore,
the error obtained by the integral Padé approximant is numerically
less than that of the functional Padé approximant for the row sequence
type (n, k) when k is equal to or greater than 2. The results of these
findings are illustrated in the numerical examples and in [20]. The
proof of the convergence of the functional Padé approximant is given
in [5], [9] [11], [13], and the proof of the associate method, the hybrid
functional Padé approximant, is given in [15].

3. The improved Padé approximant method (IMPA). We
define a rational function r(x, λ) to be an improved Padé approximant
of type (n, k) for f(x, λ) if

(14) r(x, λ) = P (x, λ)/Q(λ),

where P (x, λ), Q(λ) are polynomials in λ, P (x, λ) ∈ L2[a, b] as a
function of x and

(15) (i) ∂{P} ≤ n, ∂{Q} ≤ k,

(ii) Q(0) = 1,

(iii) P (x, λ)−Q(λ)f(x, λ) = 0(λn+1).
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If P (x, λ), Q(λ) satisfy axiom (15), then there exists a unique r(x, λ)
defined by (1).

We define the denominator polynomial of an improved Padé approx-
imant of type (n, k) as

(16) Q(λ) =

∣∣∣∣∣∣∣∣

M11 M12 · · · M1k

M21 M22 · · · M2k
...

...
...

Mk1 Mk2 · · · Mkk

∣∣∣∣∣∣∣∣
,

provided Q(0) �= 0 and where

(17) Mij = λ

∫ b

a

i−1∑
l=0

xl dx

∫ b

a

k(x, y)
j−1∑
l=0

yl dy −
∫ b

a

i−1∑
l=0

xl

j−1∑
l=0

xl dx.

We take the zeros of (16) as our estimates of the characteristic values
for the improved Padé approximant.

Naturally, the numerator polynomial P (x, λ) follows from (15)(iii) as

(18) P (x, λ) = [Q(λ)f(x, λ)]n0 .

If, in the representation (16), Q(0) �= 0, then r(x, λ) defined by (14),
(16) and (18) is an improved Padé approximant of type (n, k) for
f(x, λ).

4. The modified Padé approximant method (MPA). A
modified Padé approximant of type (n, k) for the given power series
(1) is the rational function

(19) r(x, λ) = A(x, λ)/B(λ),

where A(x, λ), B(λ) are polynomials in λ, A(x, λ) ∈ L2[a, b] as a
function of x and

(20) (i) ∂{A} ≤ n, ∂{B} ≤ k,

(ii) B(0) = 1,

(iii) A(x, λ)−B(λ)f(x, λ) = 0(λn+1).
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The construction of the denominator polynomial of the modified Padé
approximant of type (n, k) is given as

(21) B(λ) =∣∣∣∣∣∣∣∣∣∣

∫ b

a
Cn−k(x) dx

∫ b

a
Cn−k+1(x) dx · · · ∫ b

a
Cn(x) dx∫ b

a
Cn−k+1(x) dx

∫ b

a
Cn−k+2(x) dx · · · ∫ b

a
Cn+1(x) dx

...
...

...

λk λk−1 · · · 1

∣∣∣∣∣∣∣∣∣∣

provided B(0) �= 0 and Ci(x) are the coefficients of (1).

Naturally, the numerator polynomial A(x, λ) follows from (20)(iii) as

(22) A(x, λ) = [B(λ)f(x, λ)]n0 .

Each approximant of the sequence of (n, k)-type modified Padé approx-
imant has precisely k poles. If, in the representation (21), B(0) �= 0,
then r(x, λ) defined by (19), (21) and (22) is the modified Padé ap-
proximant of type (n, k) for f(x, λ). We take the zeros of (21) as our
estimates of the characteristic value for the modified Padé approximant.

5. The improved squared Padé approximant method (ISPA).
An improved squared Padé approximant of type (n, k) for the given
power series (1) is the rational function

(23) r(x, λ) = G(x, λ)/H(λ),

where G(x, λ), H(λ) are polynomials in λ, G(x, λ) ∈ L2[a, b] as a
function of x and

(24) (i) ∂{G} ≤ n, ∂{H} ≤ k,

(ii) H(0) = 1,

(iii) G(x, λ)−H(λ)f(x, λ) = 0(λn+1).

The roots of the denominator polynomial of the improved squared
Padé approximant of type (n, k) are evaluated from the following



SOLUTION OF INTEGRAL EQUATIONS 189

determinant

(25) L(λ) =∣∣∣∣∣∣∣∣∣

∫ b

a
C2

n−k(x) dx
∫ b

a
C2

n−k+1(x) dx · · · ∫ b

a
C2

n(x) dx∫ b

a
C2

n−k+1(x) dx
∫ b

a
C2

n−k+2(x) dx · · · ∫ b

a
C2

n+1(x) dx
...

...
...

λk λk−1 · · · 1

∣∣∣∣∣∣∣∣∣
provided L(0) �= 0 and Ci(x) are the coefficients of (1). Then we take
the square root of the zeros given by (25) and express the denominator
polynomial of the improved squared Padé approximant of type (n, k)
as

(26) H(λ) =
k∏

i=1

(λ−
√
|λi|).

This improvement is based on the same principle as the hybrid func-
tional Padé approximant [7], [14]. The numerator polynomial G(x, λ)
follows from (24)(iii) as

(27) G(x, λ) = [H(λ)f(x, λ)]n0 .

Each approximant of the sequence of (n, k)-type Padé approximant has
precisely k poles. If, in the representation (25), L(0) �= 0, then r(x, λ)
defined by (23), (25), (26) and (27) is the improved squared Padé
approximant of type (n, k) for f(x, λ). Actually we take the square
root of the zeros formed by (25) as our estimates of the characteristic
value.

In addition, it has been established in [20] that the rational function
for the squared Padé approximant is expressed as

(28) r(x, λ) = M(x, λ)÷ L(λ).

The axiom (24) also applies here with the exception of replacing the
notations of G for M and H for L.

The denominator polynomial of the squared Padé approximant of
type (n, k) is identical (25), and the numerator polynomial is given by

(29) M(x, λ) = [L(λ)f(x, λ)]n0 .
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Similarly, in the representation (25), L(0) �= 0, then r(x, λ) defined by
(25), (28) and (29) is the squared Padé approximant of type (n, k) for
f(x, λ).

6. The classical Padé approximant method (CPA). A classical
Padé approximant of type (n, k) for the given power series (1) is the
rational function

(30) r(x, λ) = U(x, λ)/V (x, λ),

where U(x, λ), V (x, λ) are polynomials in λ, U(x, λ) ∈ L2[a, b] as a
function of x and

(31) (i) ∂{U} ≤ n, ∂{V } ≤ k,

(ii) V (0) = 1,

(iii) U(x, λ)− V (x, λ)f(x, λ) = 0(λn+k+1).

The construction of the denominator polynomial of classical Padé
approximant of type (n, k) is given as

(32) V (x, λ) =

∣∣∣∣∣∣∣∣

Cn−k(x) Cn−k+1(x) · · · Cn(x)
Cn−k+1(x) Cn−k+2(x) · · · Cn+1(x)

...
...

...
λk λk−1 · · · 1

∣∣∣∣∣∣∣∣
,

provided V (x, 0) �= 0 and Ci(x) are the coefficients of (1).

Naturally, the numerator polynomial U(x, λ) follows from (31)(iii) as

(33) U(x, λ) = [V (λ)f(x, λ)]n0 .

Each approximant of the sequence of (n, k)-type Padé approximant
has precisely k poles. To determine these zeros, in order to estimate
the characteristic value, we must assign a particular value of x in the
Neumann series, and this is usually done using the principle of minimal
sensitivity [1], [2]. The proof of convergence, existence, uniqueness and
other related definitions of the classical Padé approximants are treated
in [4], [5] and many other texts.

7. The functional Padé approximant method (FPA). We
define a rational function r(x, λ) to be a functional Padé approximant
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of type (n, 2k) for f(x, λ) if

(34) r(x, λ) = p(x, λ)/q(λ),

where p(x, λ), q(λ) are polynomials in λ, p(x, λ) ∈ L2[a, b] as a function
of x, and

(35) (i)
{

∂{p}≤n−α

∂{q}≤2k−2α
for α ≥ 0,

(ii) q(λ) | ∫ b

a
|p(x, λ)|2 dx,

(iii) q(λ) = q∗(λ),

(iv) q(λ) �= 0,

(v) p(x, λ)− q(λ)f(x, λ) = 0(λn+1).

The asterisk in (35)(iii) denotes the functional complex conjugate.

If p(x, λ), q(λ), satisfy (35)(i) (35)(v), then r(x, λ) defined by (1)
is unique; the questions of existence, uniqueness and degeneracy are
treated in [11]. The explicit formula for the denominator polynomial
is given by

(36) q(λ) =

∣∣∣∣∣∣∣∣∣∣

0 M01 · · · M0,2k−1 M0,2k

−M01 0 · · · M1,2k−1 M1,2k

...
...

...
...

...
−M0,2k−1 −M1,2k−1 · · · 0 M2k−1,2k

λ2k λ2k−1 · · · λ 1

∣∣∣∣∣∣∣∣∣∣
.

The elements of (36) are defined by

(37) Mij :=
j−i−1∑

l=0

∫ b

a

Cl+i+n−2k+1(x)[Cj−l+n−2k(x)]∗ dx,

for i = 0, 1, . . . , 2k and j = i + l, i + 2, . . . 2k and taking Cj(x) := 0 if
j < 0.

We know that the polynomials produced by (36) are strictly positive
for λ ∈ � and their zeros occur in complex conjugate pairs close to the
real axis [6], [7], [9], [14]. We take the real parts of the zeros of q(λ) as
our estimates of the characteristic value λc. The proof of convergence
of the characteristic value of the functional Padé approximants are
discussed in [5], [8], [13], [15].
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The numerator polynomial p(x, λ) follows from (35)(v) as

(38) p(x, λ) = [q(λ)f(x, λ)]n0 .

If, in the representation (36), q(0) �= 0, then r(x, λ) defined by (34),
(36) and (38) is the functional Padé approximant of type (n, 2k) for
f(x, λ).

In addition, the denominator polynomial of a hybrid functional Padé
approximant is defined in terms of the roots of the denominator of
the corresponding functional Padé approximant [6], [7], [9], [14].
We actually take the real parts of the roots of the functional Padé
approximant and express the hybrid functional Padé approximant of
type (n, k) as

(39) qH(λ) =
k∏

i=1

(λ− λ�
i ).

The associated numerator polynomial is defined as

(40) pH(x, λ) = [f(x, λ)qH(λ)]n0 .

Since n and k govern the degree of the numerator and denominator,
respectively, we express the hybrid functional Padé approximant of type
(n, k) as

(41) rH(x, λ) = pH(x, λ)/qH(λ).

We have found that (41) is identical to the integral Padé approximant
(2) for k = 1. Also it has been shown that the hybrid functional
Padé approximant is dependent on functional Padé approximant and
therefore requires much more numerical computation that the integral
Padé approximant [20]. We can easily prove this by comparing the
dimensions of the determinant and the degree of the denominator
polynomial of the functional Padé approximant and the integral Padé
approximant, which are given by (35) and (4), respectively.

8. Application to linear integral equations. To demonstrate the
performance of each of the Padé-type methods, we take two familiar lin-
ear Fredholm integral equations of the second kind. We determine the
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consistency and stability of the results by examining the convergence of
the Padé-type methods for two particular types of row sequence. The
findings are generalized by illustrating the effectiveness of the Padé-type
methods for determining the characteristic values and the characteris-
tic function of two linear integral equations. Consequently, we shall
demonstrate the improvement of the squared Padé approximant and
the error obtained by each of the Padé-type methods.

The following procedure is common to both of the illustrative numer-
ical examples. We illustrate the convergence of the methods described
by making two distinct comparisons of the estimates based on two par-
ticular types of row sequence. The first of the comparisons is based on
the estimates obtained by the row sequence of the improved squared
Padé approximant of type (n, 1) with corresponding estimates derived
from the integral Padé approximant of type (n, 1), the classical Padé
approximant of type (n, 1), the modified Padé approximant of type
(n, 1), the improved Padé approximant of n-dimensional system (given
by (16)) and the functional Padé approximant of type (n, 2). The sec-
ond comparison is based on the row sequence of the improved squared
Padé approximant of type (n, 2) with corresponding estimates derived
from the integral Padé approximant of type (n, 2), the classical Padé
approximant of type (n, 2), the modified Padé approximant of type
(n, 2), the improved Padé approximant of (n + 1)-dimensional system
and the functional Padé approximant of type (n, 4). In each case the
comparisons with other methods were made using a similar amount
of data, that is, using a similar number of terms of the Neumann se-
ries, with the exception of the improved Padé approximant which is
constructed differently from the other Padé-type approximant.

8.1 Numerical example 1. We investigate the convergence of
the Padé-type methods for the Neumann series solution of the linear
integral equation of the form

(42) f(x, λ) = g(x) + λ

∫ 1

0

k(x, y)f(y, λ) dy,

where

g(x) = x2 and k(x, y) =
{
y(2− x) 0 ≤ y ≤ x ≤ 1,
x(2− y) 0 ≤ x ≤ y ≤ 1.
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This integral equation is a linear inhomogeneous Fredholm of the
second kind with a nondegenerate kernel. As a standard procedure,
the analytic solution of (42) can be found by converting it to a second
order ordinary differential equation [3], and the explicit solution of (42)
is given by

(43) f(x, λ) =
1
λ
− cos(µx)

λ
− [1− cos(µ) + sin(µ)µ− 3λ] sin(µx)

λ sin(µ) + λµ cos(µ)

where µ =
√
2λ. It is easily found that the denominator of (43) has

the following characteristic values λ1 = 2.05793 . . . , λ2 = 12.06967 . . . ,
λ3 = 31.82955 . . . , etc.

The Neumann series solution for (42) is convergent for |λ| < λc [16],
[19], and the first few terms of this series, given by iteration of (42),
are

(44)
f(x, λ) =

∞∑
i=0

Ci(x)λi

= x2+
[

5
12
x− 1

6
x4

]
λ+

[
43
180

x− 5
36
x3+

1
90
x6

]
λ2+ · · · .

In Table 1 we compare the estimates of the first characteristic value for
each of the iterative methods described. We know that the estimates of
the improved squared Padé approximant and the original squared Padé
approximant are identical because both of these methods use the same
determinantal formula given by (25). We also know that the estimates
of the integral Padé approximant and the functional Padé approximant
are identical for the first row sequence [20]. We find that the estimates
from the integral Padé approximant give better approximations than
the other similar methods. Moreover, we list the errors obtained by
the Padé-type methods in Table 2. The results in Tables 3a and 3b are
also the estimates of the first characteristic value derived by the second
row sequence. Here also, we see that the row sequence of the integral
Padé approximants give better approximation than the other Padé-
type methods. Again we list the errors obtained by these methods in
Table 4. The other estimates produced by the second row sequence are
the second characteristic value, and we list these estimates in Table 5.
Accordingly, the errors that occurred by these methods are listed in
Table 6.
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TABLE 1. Estimates showing the precision of the characteristic

value λ1 derived using the six methods described.

The exact value of λ1 =2.057929182 . . . .

IPA(n, 1) ISPA(n, 1) MPA(n, 1) IMPA(n) CPA(n, 1)

=FPA(n, 2) =SPA(n, 1)

n λ1 λ1 λ1 λ1 λ1

1 2.125 2.3 1.9 2.4 1.3

2 2.0598 2.064 2.03 2.106 1.94

3 2.05798 2.0581 2.052 2.0585 2.04

4 2.057931 2.057935 2.0570 2.05795 2.055

5 2.05792923 2.0579293 2.0578 2.05792929 2.0574

TABLE 2. Errors occurring in the estimates, shown

in Table 1, of the six methods described.

IPA=FPA ISPA=SPA MPA IMPA CPA

n λ1 λ1 λ1 λ1 λ1

1 -0.0674 -0.242 -0.153 -0.342 0.795

2 -0.188(-2) -0.652(-2) -0.0303 -0.0481 0.122

3 -0.545(-4) -0.187(-3) -0.550(-2) -0.589(-3) 0.0196

4 -0.158(-5) -0.543(-5) -0.963(-3) -0.249(-4) -0.325(-2)

5 -0.460(-7) -0.158(-6) -0.166(-3) -0.104(-6) -0.547(-3)

TABLE 3a. Estimates showing the precision of the characteristic

value λ1 derived using the six methods described.

The exact value of λ1 = 2.05792918284726141 . . . .

IPA(n, 2) MPA(n, 2) CPA(n, 2)
n λ1 λ1 λ1

1 2.0599 2.04 1.82
2 2.0579294 2.0588 2.0583
3 2.0579291837 2.05798 2.0578
4 2.057929182851 2.057931 2.057917
5 2.05792918284728 2.0579294 2.057928
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TABLE 3b. Estimates showing the precision of the characteristic

value λ1 derived using the six methods described.

The exact value of λ1 = 2.05792918284726141 . . . .

FPA(n, 4) ISPA(n, 2)=SPA(n, 2) IMPA(n+1)
n λ1 λ1 λ1

1 1.96 2.099 2.106
2 2.057931 2.05795 2.0585
3 2.057929187 2.05792925 2.05795
4 2.057929182861 2.0579291831 2.05792928
5 2.05792918284732 2.0579291828483 2.057929185

TABLE 4. Errors occurring in the estimates, shown in

Tables 3a and 3b, of the six methods described.

IPA FPA ISPA MPA IMPA CPA

n λ1 λ1 λ1 λ1 λ1 λ1

1 0 0 0 0 0 0

2 -0.205(-6) -0.208(-5) -0.229(-4) -0.914(-3) -0.589(-3) -0.329(-3)

3 -0.804(-9) -0.373(-8) -0.703(-7) -0.573(-4) -0.249(-4) 0.106(-3)

4 -0.331(-11) -0.134(-10) -0.270(-9) -0.383(-5) -0.104(-6) 0.124(-4)

5 -0.138(-13) -0.541(-13) -0.110(-11) -0.256(-6) -0.194(-8) 0.100(-5)

TABLE 5. Estimates showing the precision of the characteristic

value λ2 derived using the six methods described.

The exact value of λ2 = 12.069671015222778 . . . .

IPA(n, 2) FPA(n, 2) ISPA(n, 2) MPA(n, 2) IMPA(n+2) CPA(n, 2)

=SPA

n λ2 λ2 λ2 λ2 λ2 λ2

1 12.96

2 12.13 12.69 12.95 10.0 12.14 12.53

3 12.077 12.14 12.16 11.2 12.76 12.77

4 12.0707 12.079 12.08 11.7 12.0699 12.46

5 12.06983 12.071 12.071 11.93 12.069681 12.24
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TABLE 6. Errors occurring in the estimates, shown

in Table 5, of the six methods described.

IPA FPA ISPA=SPA MPA IMPA CPA
n λ2 λ2 λ2 λ2 λ2 λ2

1 -0.890
2 -0.0560 -0.6201 -0.8836 2.0747 -0.8885 -0.4647
3 -0.0076 -0.0715 -0.0880 0.8514 -0.0656 -0.6985
4 -0.0011 -0.0097 -0.0116 0.3444 -0.0065 -0.3888
5 -0.0002 -0.0014 -0.0016 0.1362 -0.0002 -0.1725

8.2. Precision of the approximate solution. In Figure 1 we
display the exact (analytic) solution and its approximations obtained
using the improved squared Padé approximant of type (2,2), the orig-
inal squared Padé approximant of type (2,2), the integral Padé ap-
proximant of type (2,2), the modified Padé approximant of type (2,2),
the improved Padé approximant of type (2,2) and the functional Padé
approximant of type (2,4). Also in Figure 1 we see a remarkable preci-
sion of the improved squared Padé approximant and other Padé-type
approximants, where graphically there is no significant difference be-
tween the improved squared Padé approximant and the exact solution,
whereas the original squared Padé approximant is visibly different from
the exact solution. We have found that the precision of the character-
istic function for the improved squared Padé approximant has been
improved when compared to the original squared Padé approximant.
Therefore, in Table 7 we show the errors incurred by the improved
squared Padé approximant and the original squared Padé approximant
together with the other Padé type approximants for x = 0(0.25)1 in
the solution of (42). For a particular value of the characteristic value,
we list the appropriate rational functions displayed and we observe the
precision of coefficients of x for each of the Padé-type approximants
with the exact solution f(x, λ) given as

(45)
f(x, 0.5) = 0.8884x+ x2 − 0.2961x3 − 0.1667x4

+ 0.02961x5 + 0.0111x6 − · · · .

Solution of the integral equation (42) using the improved squared Padé
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f(x,1)

Exact
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0.2 0.4 0.6 0.8 1
x

FIGURE 1. The analytic solution (exact) of (42) for λ = 1. The curves
IPA, ISPA, FPA, IMPA and MPA are indistinguishable from the exact curve
whereas the curve SPA is perceptibly different.

approximant of type (2,2) is

(46)
G(x, 1)
H(1)

= 0.887x+ x2 − 0.293x3 − 0.153x4 + 0.023x6.

Solution of (42) based on the squared Padé approximant of type (2,2)
is

(47)
M(x, 1)
L(1)

= 0.730x+ x2 − 0.183x3 − 0.166x4 + 0.015x6.

Solution of (42) using the integral Padé approximant of type (2,2) is

(48)
N(x, 1)
D(1)

= 0.888x+ x2 − 0.294x3 − 0.153x4 + 0.024x6.
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Solution of (42) based on the functional Padé approximant of type (2,4)
is

(49)
p(x, 1)
q(1)

= 0.841x+ 1.162x2 − 0.607x3 + 0.081x4 + 0.049x6.

Solution of (42) based on the modified Padé approximant of type (2,2)
is

(50)
A(x, 1)
B(1)

= 0.889x+ x2 − 0.300x3 − 0.149x4 + 0.024x6.

Solution of (42) based on the improved Padé approximant of type (2,2)
is

(51)
P (x, 1)
Q(1)

= 0.876x+ x2 − 0.281x3 − 0.157x4 + 0.022x6.

TABLE 7. Errors occurring in the solution of (42)

using the six methods described.

IPA MPA ISPA SPA IMPA FPA

x λ = 1 λ = 1 λ = 1 λ = 1 λ = 1 λ = 1

0 0 0 0 0 0 0

0.25 0.107(-3) -0.151(-3) 0.195(-3) 0.377(-1) 0.275(-2) 0.565(-2)

0.5 -0.509(-4) -0.228(-3) 0.246(-3) 0.656(-1) 0.423(-2) 0.696(-2)

0.75 -0.111(-3) 0.129(-3) -0.153(-3) 0.767(-1) 0.438(-2) -0.260(-2)

1.0 0.226(-3) 0.733(-3) 0.102(-3) 0.687(-1) 0.388(-2) -0.610(-1)

8.3 Numerical example 2. In this subsection we take another
linear integral equation. We shall illustrate the convergence of the
Padé-type methods for the Neumann series solution of the following
linear integral equation

(52) f(x, λ) = x+ λ

∫ 1

0

[1 + sin(x) sin(y)]f(y, λ) dy.

This integral equation is a linear inhomogeneous Fredholm of the second
kind, and the analytic solution of (52) is given as

(53) f(x, λ) =
2πλ+ π2/2(1− (πλ/2)) + sin(x)π

1− 3πλ/2 + (π2/2− 4)λ2
.
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It is easily found that the denominator of (53) has the following
characteristic values λ1 = 0.2219814858 . . . and λ2 = 4.8190731647 . . . .

The first few terms of the Neumann series are

(54)

f(x, λ) =
∞∑

i=0

Ci(x)λi

= x+
[
sin(x)π +

1
2
π

]
λ+

[
3
2
sin(x)π2 + 2π +

1
2
π3

]
λ2 + · · · .

We repeat the procedure of the comparisons in the previous example.
That is, we compare the estimates of the characteristic value for each of
the methods. In Table 8 we list the estimates of the first characteristic
value and the errors obtained by these methods in Table 9. As expected,
the integral Padé approximant gives better approximations than the
other similar methods. Moreover, the results in Tables 10a and 10b
are the estimates of the first characteristic value but derived from the
second row sequence, and, again, we list the errors obtained by these
methods in Table 11. We see that the row sequence of the integral
Padé approximants gives better approximation than the other Padé-
type methods. We have found with this example that the estimates of
the characteristic value based on the second row sequence for each of
the Padé-type approximants to be exact after a few iterations, with the
exception of the improved Padé approximants. Hence, we have omitted
the tables of the second characteristic value.

TABLE 8. Estimates showing the precision of the characteristic

value λ1 derived using the six methods described.

The exact value of λ1 = 0.22198148581854962 . . . .

IPA(n, 1) ISPA(n, 1) MPA(n, 1) IMPA(n) CPA(n, 1)

=FPA(n, 2) =SPA(n, 1)

n λ1 λ1 λ1 λ1 λ1

1 0.22219 0.259 0.227 0.2265 0.1

2 0.2219819 0.221986 0.2222 0.2265 0.223

3 0.2219814868 0.221981496 0.221991 0.221996 0.22203

4 0.221981485821 0.22198148584 0.22198151 0.221996 0.221984
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TABLE 9. Errors occurring in the estimates, shown

in Table 8, of the six methods described.

IPA=FPA ISPA=SPA MPA IMPA CPA
n λc λc λc λc λc

1 -0.209(-3) -0.371(-1) -0.453(-2) -0.453(-2) 0.144
2 -0.443(-6) -0.503(-5) -0.209(-3) -0.453(-2) -0.101(-2)
3 -0.940(-9) -0.107(-7) -0.962(-5) -0.146(-4) -0.467(-4)
4 -0.199(-11) -0.226(-10) -0.443(-6) -0.146(-4) -0.215(-5)

TABLE 10a. Estimates showing the precision of the characteristic

value λ1 derived using the six methods described.

The exact value of λ1 = 0.22198148581854962 . . . .

ISPA(n, 2) =SPA(n, 2) MPA(n, 2) CPA(n, 2)

n λ1 λ1 λ1

1 0.2288 0.22227

2 0.221981496 0.22198148581854962. . . 0.222035

3 0.22198148581854962. . . 0.22198148581854962. . . 0.22198148581854962. . .

4 0.22198148581854962. . . 0.22198148581854962. . . 0.22198148581854962. . .

TABLE 10b. Estimates showing the precision of the characteristic

value λ1 derived using the six methods described.

The exact value of λ1 = 0.22198148581854962 . . . .

IPA(n, 2) FPA(n, 4) IMPA(n+ 1)
n λ1 λ1 λ1

1 0.2221981929 0.2288 0.2265
2 0.22198148581854962. . . 0.221981496 0.221996
3 0.22198148581854962. . . 0.22198148581854962. . . 0.221996
4 0.22198148581854962. . . 0.22198148581854962. . . 0.22198149
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TABLE 11. Errors occurring in the estimates, shown in

Tables 10a and 10b, of the six methods described.

ISPA IPA FPA MPA IMPA CPA

n λ1 λ1 λ1 λ1 λ1 λ1

1 -0.679(-2) 0.443(-6) 0.185(-1) -0.288(-3) -0.453(-2)

2 -0.100(-7) 0 -0.857(-9) 0 -0.146(-4) -0.530(-4)

3 0 0 0 0 -0.146(-4) 0

4 0 0 0 0 -0.669(-8) 0

8.4 Precision of the approximate solution. In Figure 2 we
display the exact solution and its approximations obtained using the
improved squared Padé approximant of type (2,1), the integral Padé ap-
proximant of type (2,1), the modified Padé approximant of type (2,1),
the original squared Padé approximant of type (2,1), the improved Padé
approximant of type (2,1) and the functional Padé approximant of type
(2,2). Also, in Figure 2 we see a remarkable precision of the improved
squared Padé approximant and other Padé-type approximants. Graph-
ically there is no significant difference between the improved squared
Padé approximant and the exact solution, whereas the original squared
Padé approximant is visibly different from the exact solution. For the
purpose of this paper, we have shown that the precision of the charac-
teristic function for the improved squared Padé approximant has been
improved when compared to the original squared Padé approximant.
Therefore, in Table 7 we show the errors incurred by the improved
squared Padé approximant and the original squared Padé approximant
together with the other Padé-type approximants for x = 0(0.25)1 in
the solution of (42). For a particular value of λ = 0.5 we list the ap-
propriate rational functions displayed, but first we state the analytic
solution

(55) f(x, 0.5) = x− 1.871− 1.399 sin(x).

Solution of (52) based on the improved squared Padé approximant of
type (2,1) is

(56)
G(x, 0.5)
H(0.5)

= x− 1.882− 1.384 sin(x).
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FIGURE 2. The analytic solution (exact) of (52) for λ = 1/2. All the
approximant curves are indistinguishable from the exact curve whereas the
curve SPA is perceptibly different.

Solution of (52) based on the square Padé approximant of type (2,1) is

(57)
M(x, 0.5)
L(0.5)

= x+ 1.872 + 1.166 sin(x).

Solution of (52) based on the integral Padé approximant of type (2,1)
is

(58)
N(x, 0.5)
D(0.5)

= x− 1.881− 1.384 sin(x).

Solution of (52) based on the functional Padé approximant of type
(2,2) is

(59)
p(x, 0.5)
q(0.5)

= x− 2.041− 1.150 sin(x).
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Solution of (52) based on the modified Padé approximant of type (2,1)
is

(60)
A(x, 0.5)
B(0.5)

= x− 1.889− 1.389 sin(x).

Solution of (52) based on the improved Padé approximant of type (2,1)
is

(61)
P (x, 0.5)
Q(0.5)

= x− 2.044− 1.301 sin(x).

TABLE 12. Errors occurring in the solution of (52)

by the six Padé-type approximants.

IPA MPA ISPA SPA IMPA FPA

x λ = 0.5 λ = 0.5 λ = 0.5 λ = 0.5 λ = 0.5 λ = 0.5

0 0.103(-1) 0.176(-1) 0.104(-1) -3.74 0.172 0.170

0.25 0.656(-2) 0.151(-1) 0.675(-2) -4.38 0.196 0.108

0.50 0.307(-2) 0.128(-1) 0.328(-2) -4.97 0.218 0.500(-1)

0.75 0.229(-4) 0.108(-1) 0.259(-3) -5.49 0.237 -0.376(-3)

1.0 -0.238(-2) 0.916(-2) 0.212(-2) -5.90 0.252 -0.402(-1)

10. Remarks and conclusion. The Padé-type methods are
rational approximation solutions to linear integral equations, and these
methods are essentially for accelerating the convergence of a sequence
of functions. We have demonstrated the Padé-type approximants for
two types of row sequence purely to illustrate the accuracy of the
approximate solution, the stability of the convergence, the consistency
of the results and to determine the efficiency of each of the methods.

In this paper we show that simply expressing the denominator poly-
nomial of the improved squared Padé approximant in terms of the ze-
ros obtained by the original squared Padé approximant, we actually
increase the precision of the characteristic function of a linear integral
equation. The precision of the characteristic value of the improved
squared Padé approximant is substantially more accurate when com-
pared to the improved Padé approximant, the modified Padé approx-
imant and the classical Padé approximant. Moreover, the precision of
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the characteristic function is substantially more accurate when com-
pared to the original squared Padé approximant, the functional Padé
approximant, the improved Padé approximant, the modified Padé ap-
proximant and the classical Padé approximant. Unfortunately, the
drawback of the original squared Padé approximant is also common
to the improved squared Padé approximant, which is the inadequacy
of both of the methods when the generating function possesses an al-
ternating or a negative power series. Hence, further investigation is
needed to eliminate the drawback.

In all the numerical examples performed we have found that the in-
tegral Padé approximant is much more efficient and does not have the
drawbacks of the other similar Padé-type approximants considered. We
observe the remarkable precision of the estimates of the characteristic
value and the characteristic function of the integral equation given in
this paper and in the previous study [20]. We shall describe the draw-
back of the other Padé-type methods compared to the integral Padé
approximants. The poor performance of the functional Padé approx-
imant is due to the superfluous zeros in the denominator polynomial
[6], [8], [12], [14], [20]. Also, it is well established that the drawback of
the classical Padé approximant is the problem of assigning a particular
value of x in the Neumann series to determine the estimate of the char-
acteristic value [6], [14], [20]. The disadvantage with the improved
Padé approximant and the modified Padé approximant is that they
lack the remarkable precision of the integral Padé approximant. The
results of this investigation are similar to the previous study. However,
the purpose of this paper was to illustrate the improvement of the
original squared Padé approximant and demonstrate the consistency
of the Padé-type methods. Finally, an analytical investigation of the
Padé-type approximants is a subject of further research.

Acknowledgments. I am grateful to Professor G.G. Walter and
the anonymous referees for their helpful comments on this paper.

REFERENCES

1. C. Alabiso, P. Butera and G.M. Prosperi, Resolvent operator, Padé approxi-
mation and bound states in potential scattering, Nuovo Cim. 3 (1970), 831 839.

2. , Variational principles and Padé approximants. Bound states in po-
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8. , A review of Padé methods for the acceleration of convergence of a
sequence of vectors, Appl. Numer. Math. 15 (1994), 153 174.

9. , Extrapolation methods for vector sequence, Numer. Math. 61 (1994),
475 487.

10. , A new approach to acceleration of convergence of a sequence of
vectors, Numer. Algebra 11 (1996), 189 206.

11. P.R. Graves-Morris and C.D. Jenkins, Degeneracies of generalised inverse,
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