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STABILITY OF THE SPLINE COLLOCATION METHOD
FOR VOLTERRA INTEGRAL EQUATIONS

PEETER OJA

ABSTRACT. Numerical stability of the spline collocation
method for Volterra integral equations is investigated. Gen-
eral stability conditions are obtained and applied to the most
practical types of splines. Results of several numerical tests
are presented.

1. Introduction. We study the stability of the polynomial spline
collocation method applied to Volterra integral equations of the sec-
ond kind. Stability means here the boundedness of approximate solu-
tions in uniform norm when the number of knots increases. A stabil-
ity condition for a test type equation is found. Some general results
are established and applied to several particular cases including linear,
quadratic, and cubic splines. In many practical cases we get explicit
formulae showing the dependence of the stability on collocation param-
eters. A series of numerical tests is given, and they support well the
theoretical results.

2. The spline collocation method. We start with the description
of the spline collocation method for the Volterra integral equation

(2.1) y(t) =
∫ t

0

K(t, s, y(s)) ds+ f(t), t ∈ [0, T ],

with given functions f : [0, T ] → R, K : S × R → R, and set
S = {(t, s) : 0 ≤ s ≤ t ≤ T}.

A mesh 0 = t0 < t1 < · · · < tN = T will be used and the process
N → ∞ is allowed, thus the tn are dependent on N . Denote hn =
tn − tn−1 and σn = (tn−1, tn], n = 1, . . . , N , ∆N = {t1, . . . , tN−1}.

For given integers m ≥ 1 and d ≥ −1, define the space of splines

Sd
m+d(∆N ) = {u ∈ Cd[0, T ] : u |σn

∈ Pm+d, n = 1, . . . , N},
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where Pk means the set of all polynomials with degree not exceeding
k. The restriction un of a spline u ∈ Sd

m+d on σn could be represented

(2.2) un(t) =
m+d∑
k=0

bnk(t− tn−1)k, t ∈ σn.

From u ∈ Cd we get certain linear restrictions for the coefficients bnk,
and we give them in explicit form in the next section.

Suppose that there is a fixed selection of collocation parameters 0 <
c1 < · · · < cm ≤ 1. Then define collocation points tnj = tn−1 + cjhn,
j = 1, . . . ,m, n = 1, . . . , N , forming a set X(N). In order to determine
the approximate solution u ∈ Sd

m+d(∆N ) of the equation (2.1), we
impose the following collocation conditions

(2.3) u(t) =
∫ t

0

K(t, s, u(s)) ds+ f(t), t ∈ X(N).

Starting the calculations by this method, we assume also that we can
use the initial values u(j)

1 (0) = y(j)(0), j = 0, . . . , d (or at least some
approximations of them) which is justified by the requirement u ∈
Cd[0, T ]. Another possible approach is to use only u1(0) = y(0) = f(0)
(if d ≥ 0) and more collocation points (if d ≥ 1) to determine u1.
Thus, on every interval σn we have d+1 conditions of smoothness and
m collocation conditions to determine m+ d+ 1 parameters bnk. This
allows us to realize the method step-by-step going from an interval σn

to the next one.

3. The method in the case of a test equation. Consider the
test equation

(3.1) y(t) = λ

∫ t

0

y(s) ds+ f(t), t ∈ [0, T ],

where, in general, λ may be any complex number. Let in the sequel
∆N be uniform, i.e., hn = h = T/N for all n. Representing t ∈ σn as
t = tn−1 + τh, τ ∈ (0, 1], we have on σn

un(tn−1 + τh) =
m+d∑
k=0

ankτ
k, τ ∈ (0, 1],
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where we passed to the parameters ank = bnkh
k.

First, write down the smoothness conditions (for any u ∈ Sd
m+d(∆N ))

u(j)
n (tn − 0) = u

(j)
n+1(tn + 0),

j = 0, . . . , d, n = 1, . . . , N − 1.

We have

u(j)
n (tn−1 + τh) =

1
hj

m+d∑
k=j

k!
(k − j)!ankτ

k−j.

Hence

u(j)
n (tn − 0) =

1
hj

m+d∑
k=j

k!
(k − j)!ank,

u
(j)
n+1(tn + 0) =

1
hj
j!an+1,j

and

(3.2)
an+1,j =

m+d∑
k=j

k!
(k − j)!j!ank,

j = 0, . . . , d, n = 1, . . . , N − 1.

The collocation conditions (2.3) applied to the test equation (3.1)
give

u(tnj) = λ

∫ tnj

0

u(s) ds+ f(tnj),

j = 1, . . . ,m, n = 1, . . . , N.

Denote αn = (ank)m+d
k=0 . Then we get

m+d∑
k=0

ankc
k
j =

n−1∑
r=1

λ

∫ tr

tr−1

ur(s) ds+ λ
∫ tnj

tn−1

un(s) ds+ f(tnj)

=
n−1∑
r=1

λh

∫ 1

0

(m+d∑
k=0

arkτ
k

)
dτ + λh

∫ cj

0

(m+d∑
k=0

ankτ
k

)
dτ

+ f(tnj) =
n−1∑
r=1

λh〈αr, q〉 + λh
m+d∑
k=0

ank

ck+1
j

k + 1
+ f(tnj)
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or

(3.3)
m+d∑
k=0

ank

(
1 − λhcj

k + 1

)
ckj = λh

〈
q,

n−1∑
r=1

αr

〉
+ f(tnj)

where q = (1, 1/2, . . . , 1/(m+d+1)) and 〈·, ·〉 denotes the usual scalar
product in Rm+d+1. The difference of the equations (3.3) with n and
n+ 1 yields

(3.4)
m+d∑
k=0

an+1,k

(
1 − λhcj

k + 1

)
ckj

=
m+d∑
k=0

ank

(
1 − λhcj

k + 1

)
ckj + λh〈q, αn〉 + f(tn+1,j) − f(tnj),

j = 1, . . . ,m, n = 1, . . . , N − 1.

Now we may write together the equations (3.2) and (3.4) in matrix
form,

(3.5)
(V − λhV1)αn+1 = (V0 − λh(V1 − V2))αn + gn,

n = 1, . . . , N − 1,

with (m+ d+ 1) × (m+ d+ 1) matrices V, V0, V1, V2 as follows:

V =
(
I | 0
C

)
, V0 =

(
A | B

C

)
,

I being the (d+ 1) × (d+ 1) unit matrix,

C =

(
1 c1 · · · cm+d

1

1 cm · · · cm+d
m

)
,

A being a (d + 1) × (d + 1) triangular matrix with ones on the main
diagonal and zeros below,

V1 =




0
c1 c21/2 · · · cm+d+1

1 /(m+ d+ 1)

cm c2m/2 · · · cm+d+1
m /(m+ d+ 1)


 ,
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V2 having first d + 1 rows 0 and last m rows the vector q, and,
finally, the m + d + 1-dimensional vector gn = (0, . . . , 0, f(tn+1,1) −
f(tn1), . . . , f(tn+1,m) − f(tnm)). Thus, gn = O(h) for f ∈ C1.

As V is invertible, so also is V − λhV1 for small h, and (3.5) can be
written in the form

αn+1 = (V −1V0 +W )αn + rn

where W = O(h), rn = O(h). Note that W = 0 if λ = 0. Set
M = V −1V0.

4. Stability of the method. We have seen that the spline
collocation method (2.3) for the test equation (3.1) leads to the iteration
process

(4.1) αn+1 = (M +W )αn + rn, n = 1, . . . , N − 1,

with W = O(h), rn = O(h).

We distinguish the method with initial values u(j)
1 (0) = y(j)(0),

j = 0, . . . , d, and another method which uses only u1(0) = y(0)
and additional collocation points t0j = t0 + c0jh, j = 1, . . . , d, with
fixed c0j ∈ (0, 1] \ {c1, . . . , cm} on the first interval σ1. Denote
d0 = max{d, 0}, d1 = max{d, 1} for the method with initial values
and d1 = 1 for the method with additional initial collocation.

Definition 1. We say that the spline collocation method is stable
if, for any λ ∈ C and any f ∈ Cd1 [0, T ], the approximate solution u
remains bounded in L∞(0, T ) as h→ 0.

Let us notice that the boundedness of ‖u‖L∞(0,T ) is equivalent to the
boundedness of ‖αn‖ in n and h in any fixed norm of Rm+d+1.

Proposition 2. The spline collocation method is stable if and only
if

(4.2) ‖u‖L∞(0,T ) ≤ const ‖f‖Cd1 [0,T ] ∀ f ∈ Cd1 [0, T ],

where the constant may depend only on T , λ and on parameters cj and
c0j.
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Proof. We have to prove the “only if” part. But this follows from the
principle of uniform boundedness.

Proposition 3. If there exists a norm of Rm+d+1 such that the
corresponding matrix norm yields ‖M‖ ≤ 1, then the spline collocation
method is stable.

Proof. If we use the initial values a1j = hjy(j)(0)/j!, j = 0, . . . , d,
then by (3.3) for n = 1 we have

(4.3) (V − λhV1)α1 = g0

where g0 = (α10, . . . , α1d, f(t11), . . . , f(t1n)). This enables us to
estimate ‖g0‖∞ and thus ‖α1‖ by const ‖f‖Cd0 [0,T ] because of

(4.4) y(j)(0) =
j∑

k=0

λj−kf (k)(0).

The other choice of initial values a10 = y(0) = f(0) and a1j = f(t0j),
j = 1, . . . , d, gives ‖α1‖ ≤ const ‖f‖C[0,T ]. Since we have ‖α1‖ ≤ L0,
‖W‖ ≤ Kh and ‖rn‖ ≤ Lh, induction yields

‖αn‖ ≤ (1 +Kh)n−1L0 +
n−2∑
k=0

(1 +Kh)kLh.

Hence, taking into account Nh = T ,

‖αn‖ ≤ (1 +Kh)NL0 +
N−1∑
k=0

(1 +Kh)kLh ≤ eKT (L0 + LT )

which completes the proof.

Actually, for n ≥ 1, we have ‖gn‖ ≤ h const ‖f‖C1[0,T ], and the proof
gives once more the estimate ‖αn‖ ≤ const ‖f‖Cd1 [0,T ].

We will use the following fact: there exists a vector norm such that
the corresponding matrix norm is equal to the spectral radius of the
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matrix if and only if all eigenvalues with maximal modulus have equal
algebraic and geometric multiplicities.

Proposition 4. The matrix M has eigenvalue µ = 1 with geometric
multiplicity m.

Proof. It is clear that Ker (M −µI) = Ker (V0 −µV ). The geometric
multiplicity of µ = 1 is dimKer (V0 − V ). But dimKer (V0 − V ) =
m + d + 1 − rank (V0 − V ). As rank (V0 − V ) = d + 1, we get the
assertion.

Proposition 5. If all eigenvalues ofM are in the closed unit disk and
those which are on the unit circle have equal algebraic and geometric
multiplicities, then the spline collocation method is stable. If M has an
eigenvalue outside of the closed unit disk, then the spline collocation
method is not stable.

Proof. The first claim is proved in Proposition 3.

In order to prove the second one, suppose that M has an eigenvalue
outside of the closed unit disk. Then M +W also has an eigenvalue µ
such that |µ| ≥ 1+ δ with some fixed δ > 0 for any sufficiently small h.
This property is based on the continuous dependence of the eigenvalues
on the elements of the matrix. Fix for a moment a sufficiently small
h = T/N . Then, for α1 �= 0 (depending on h) such that (M +W )α1 =
µα1 and rn = 0, n ≥ 1, we have ‖αn+1‖ ≥ (1 + δ)n‖α1‖. In the case
of the method of initial values the vector α1 determines via (4.3) and
(4.4) the values f (j)(0), j = 0, . . . , d, f(t11), . . . , f(t1m). Take f on
[0, h] as the polynomial interpolating the values f (j)(0), j = 0, . . . , d,
f(t1j), j = 1, . . . ,m, and f (j)(h) = 0, j = 0, . . . , d1. In the case
of the method of additional knots, let f be on [0, h] the interpolating
polynomial by the data f(0), f(t0j), j = 0, . . . , d, f(t1j), j = 1, . . . ,m,
and f (j)(h) = 0, j = 0, . . . , d1 (here d1 = 1). In both cases we ask f to
be on [nh, (n+ 1)h], n ≥ 1, the interpolating polynomial by the values
f (j)(nh) = 0 and f (j)((n+ 1)h) = 0, j = 0, . . . , d1, f(tn+1,j) = f(t1j),
j = 1, . . . ,m. This guarantees that f ∈ Cd1 [0, T ], and we also get
rn = 0, n ≥ 1. For example, the limit process in the classical Newton
interpolation formula with single knots permits us to get the interpolant
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f on [tn, tn+1] as follows:

(4.5) f(t) = f(tn + τh) =
κ∑

i=0

( ki∑
l=0

hslpilf
(sl)(ξl)

) i−1∏
r=0

(τ − br)

with br being cj or c0j , ξl being tnj or tj , 0 ≤ sl ≤ d1, ki ≤ i, constants
pil depending on cj and c0j , κ = m + d + d1 + 1 on the interval [0, h]
and κ = m+ 2d1 + 1 on the interval [nh, (n+ 1)h], n ≥ 1. We see that
sl ≥ 0 holds only for ξl = tj and indeed it may be f (sl)(ξl) �= 0 for
sl > 0 only in the method of initial values if ξl = 0.

Now replace h by h/k, k = 1, 2, . . . , and keep ‖α1‖ = 1. Then
‖g0‖∞ remains bounded which means that f(t1j), j = 1, . . . ,m, and
hjy(j)(0)/kj or hjf (j)(0)/kj , j = 0, . . . , d, are bounded, too, in the
process k → ∞. Thus, (4.5) gives

‖f‖Cd1 [0,T ] ≤ const kd1 .

On the other hand
‖αkN‖ ≥ (1 + δ)kN−1

which yields that (4.2) cannot be satisfied. The proof is complete.

Let us now discuss the case where all eigenvalues of M are in the
closed unit disk but one of them, say µ, belongs to the unit circle and
has different algebraic and geometric multiplicities. Suppose λ = 0 and
f is such that rn = 0, n ≥ 1. Then αn+1 = Mnα1 and, from the
Jordan decomposition M = P−1JP we see that αn+1 = P−1JnPα1.
The matrix Jn has at least one element nµn−1. Thus, in the practical
calculations, inevitable round-off errors in α1 generate an increasing
term which spoils possible stable behavior of the iteration process for
some good function f . Actually, this instability is weak and cannot be
observed (see the numerical tests, the case d = 1, m = 2, c1 = 0.5,
c2 = 1). If there is a Jordan block of dimension k > 2 corresponding
to µ, then Jn contains the elements of order nk−1 and the influence
of round-off errors increases. But in practice only relatively low order
splines are used and this phenomena does not take place (for example,
in the case d = 1, m = 2 the eigenvalue µ = 1 having geometric
multiplicity 2 may have maximal algebraic multiplicity 3). Thus, the
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method is practically stable if and only if all eigenvalues of M are in
the closed unit disk.

5. Convergence. For any f ∈ Cd1 [0, T ], the test equation (3.1)
has the unique solution y ∈ Cd1 [0, T ]. Let u ∈ Sd

m+d(∆n) be the
approximate solution of (3.1). Here we are interested in the convergence
of u to y in L∞(0, T ) in the process h→ 0.

Proposition 6. The spline collocation method is convergent for the
test equation (3.1) if and only if it is stable.

Proof. The “only if” part can be proved by a standard argument
based upon the principle of uniform boundedness.

Suppose that the method is stable. Take yh ∈ Sd1
m+d(∆N ) such that

yh → y in Cd1 [0, T ]. Let

(5.1) gh(t) = yh(t) − λ
∫ t

0

yh(s) ds, t ∈ [0, T ].

Then

u(t) − yh(t) = λ

∫ t

0

(u(s) − yh(s)) ds+ f(t) − gh(t),

t ∈ X(N),

(here the set X(N) is supposed to contain also t0j , j = 1, . . . , d, in the
case of additional initial collocation) and with the help of (4.4)

u(j)(0) − y(j)h (0) = y(j)(0) − y(j)h (0)

=
j∑

k=0

λj−k(f (k)(0) − g(k)
h (0)), j = 0, . . . , d1,

(the additional initial collocation needs only j = 0). By the stability

‖u− yh‖L∞(0,T ) ≤ const ‖f − gh‖Cd1 [0,T ].

But (3.1) and (5.1) yield ‖f−gh‖C[0,T ] → 0. After that the differentia-
tion of (3.1) and (5.1) give ‖f (j)−g(j)h ‖C[0,T ] → 0, j = 0, . . . , d1, which
completes the proof.
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6. Examples. In this section we investigate special cases of d
and m.

Case d = −1, m ≥ 1. Then V = V0 = C and the eigenvalue µ = 1
has algebraic and geometric multiplicitym. Thus, the method is stable.
Let us point out here the special case m = 1. Then the method gives
u as a piecewise constant function with the values

un =
1

1 − λhc1

(
f(tn1)+

λh

1 − λhc1
n−1∑
k=1

(
1 + λh(1 − c1)

1 − λhc1

)n−k−1

f(tk1)
)
.

Using the inequalities |1+λh(1−c1)| ≤ 1+K1h and |1−λhc1| ≥ 1−K2h
for some positive K1 and K2, we get

∣∣∣∣1 + λh(1 − c1)
1 − λhc1

∣∣∣∣
n−k+1

≤
(

1 +K1h

1 −K2h

)N

−→ e(K1+K2)T .

Thus, u is bounded (uniformly in N) for any f ∈ C[0, T ].

It is well known, see, e.g., [2], that the collocation in S−1
m (∆N ) applied

to the general equation (2.1) converges for any choice of parameters ci.

Case d = 0, m = 1 (space S0
1(∆N ), linear splines). We have

V =
(

1 0
1 c1

)
, V0 =

(
1 1
1 c1

)
,

and the equation det (V0 − µV ) = 0 besides µ = 1 has the solution
µ = 1 − 1/c1. The method is stable if and only if 1/2 ≤ c1 ≤ 1.

Case d = 0, m = 2 (S0
2(∆N )). By Proposition 4, µ = 1 is a

solution of det (V0 − µV ) = 0 of geometric multiplicity 2. The third
solution µ(c1, c2) = 1 − (c1 + c2 − 1)/c1c2 shows that if c1 + c2 ≤ 1
the method is unstable. Suppose c1 + c2 > 1. Then 1/2 < c2 ≤ 1. As
µ(c1, 1) = 0, only the possibility 1/2 < c2 < 1 needs some analysis.
Then 1 − c2 < c1 < c2. As µ(1 − c2, c2) = 1, 0 < µ(c2, c2) < 1 and
µ(c1, c2) is strictly decreasing in c1, we conclude that 0 ≤ µ(c1, c2) < 1
for c1 + c2 > 1 which yields the stability.
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Case d = 1, m = 1 (S1
2(∆N ), quadratic splines). Here the geometric

multiplicity of µ = 1 as solution of the equation det (V0 − µV ) = 0
is 1. We also get c21ν

2 − (2c1 + 1)ν + 2 = 0 with ν = 1 − µ. From
ν = (1+2c1±(1+4c1(1−c1))1/2)/2c21, we see that ν > 0 and thus µ < 1.
For c1 = 1, there are eigenvalues µ = 0 and µ = −1 corresponding to
ν = 1 and ν = 2. The function ϕ(c1) = (1+2c1+(1+4c1(1−c1))1/2)/2c21
is decreasing (ϕ′(c1) < 0) and hence for c1 < 1, we get ν > 2 and
µ < −1. Thus the method is stable if and only if c1 = 1.

Case d = 1, m = 2 (S1
3(∆N ), Hermite cubic splines). Now the

equation det (V0−µV ) = 0 has a root µ = 1 of geometric multiplicity 2
and also gives

(6.1) ν2c21c
2
2 + ν((c1 + c2)(1 − 2c1c2) − (c2 − c1)2)

+ 2(c1 + c2)2 − 3(c1 + c2) + 1 − 2c1c2 = 0,

with, as before, ν = 1 − µ. Taking here c1 = c2 = 1, we obtain
(ν − 1)2 = 0. Consequently, if c1 < c2 and (c1, c2) is in a certain
neighborhood of (1,1) then the method is stable. For example, taking
c2 = 1 and using (6.1), we get the eigenvalues µ = 0 and µ = (1−c1)/c1.
Thus, the method with c2 = 1 is stable if and only if c1 > 1/2. Detailed
analysis shows that the stability domain is strictly contained in the set
{(c1, c2) : 0 < c1 < c2 ≤ 1, c1 + c2 > 3/2}. In the following table we
list some eigenvalues µ corresponding to c1 and c2:

c1 0.75 0.7 0.6 0.55
c2 0.82 0.8 0.9 0.95
µ 1.027 1.386 1.276 1.165

Case d = 2, m = 1 (S2
3(∆N ), cubic splines). The equation det (V0 −

µV ) = 0 here gives, besides the root µ = 1 of geometric multiplicity 1,
the equation

(6.2) ϕ(c1, ν) ≡ ν(c31ν2 − 3c21ν + c1(6 − 3ν))− (ν2 − 6ν + 6) = 0

with ν = 1 − µ. For c1 = 1, we get the roots µ = 0, µ = −2 +
√

3 and
µ = −2 −√

3. Let ν0 = 3 +
√

3 (it corresponds to µ = −2 −√
3). We



152 P. OJA

know that ν2
0 − 6ν0 + 6 = 0. By direct calculation we get

ϕ(c1, ν0) = 3ν0c1(1 − c1)(2c1(1 − ν0) + 2 − ν0) < 0

for c1 < 1. Then, as ϕ(c1, ν) → ∞ when ν → ∞, we see that there is
always a root ν of (6.2) such that ν > ν0. For example, if c1 = 1/2,
we have ν = 22.95. Hence the method with cubic splines is always
unstable.

Case d = 0, m ≥ 1, cm = 1. By Proposition 4, µ = 1 is a root
with geometric multiplicity m for the equation det (V0 − µV ) = 0. In
addition, the direct calculation gives a root µ = 0. Thus, in this case
the method is stable which is in accordance with the cases m = 1 and
m = 2.

7. Numerical tests. We chose the initial function f(t) = cos t and
λ = 1 in the equation (3.1) on the interval [0, 1]. This equation has
the exact solution y(t) = (sin t+ cos t+ et)/2 and was already used in
[1] (see also [2]) as a test equation. As an approximate value of ‖u‖∞
we actually calculated max1≤n≤N max0≤k≤10 |un(tn−1+(k/10)h)|. The
results are presented in the following tables.

Case d = 0, m = 1 (linear splines). The values of ‖u‖ corresponding
to different c1 are given, and for c1 = 0.4, we added in the last row
|µmax(M +W )|N−1

N 4 8 16 32 64
c1 = 1.0 2.05146 2.05038 2.05012 2.05005 2.05003
c1 = 0.5 2.04432 2.04856 2.04966 2.04994 2.05000

N 4 16 64 256
c1 = 0.4 2.04 2.05 76.5 1.97 · 1033

|µ|N−1 2.31 2.74 · 102 7.58 · 1010 4.86 · 1044
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Case d = 0, m = 2

N 4 8 16 64 4096
c1 = 0.7 2.049939 2.050017 2.050026 2.050028 2.050028
c2 = 1.0
c1 = 0.4 2.048333 2.049603 2.049921 2.050021 2.050028
c2 = 0.6

N 4 8 16 32 64
c1 = 0.2 2.004 1.987 3.18 · 103 5.41 · 1016 2.64 · 1040

c2 = 0.4
|µ|N−1 1.67 · 102 2.09 · 105 3.44 · 1011 9.60 · 1023 7.60 · 1048

Case d = 1, m = 1 (quadratic splines)

N 4 8 16 32 64
c1 = 1.0 2.050080 2.050031 2.050028 2.050028 2.050028
c1 = 0.7 2.050162 2.052011 2.597786 6.02 · 105 1.13 · 1019

c1 = 0.1 2.43 · 102 2.64 · 109 5.70 · 1024 4.50 · 1056 4.61 · 10121

Case d = 1, m = 2 (Hermite cubic splines)

N 4 8 16 64 4096
c1 = 0.7 2.050020 2.050026 2.050028 2.050028 2.050028
c2 = 1.0

N 4 32 256 2048 16384
c1 = 0.5 2.050029 2.050028 2.050028 2.050028 2.050028
c2 = 1.0
|µ|N−1 2.117 2.635 2.708 2.717 2.718

N 4 8 16 32 64
c1 = 0.3 1.99 54.0 9.79 · 108 5.12 · 1024 2.32 · 1037

c2 = 0.7
c1 = 0.1 3.70 · 104 5.05 · 1014 1.66 · 1036 3.04 · 1080 1.67 · 10170

c2 = 0.2
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N 4 8 16 32 64
c1 = 0.75 2.049960 2.050018 2.050026 2.050027 2.050028
c2 = 0.82
|µ|N−1 2.12 2.40 2.55 2.63 4.22

128 256 512 1024 2048 4096
2.050028 2.050028 2.050027 2.243082 3.85 · 1011 5.59 · 1035

23.3 7.15 · 102 6.73 · 105 5.96 · 1011 4.96 · 1023 2.90 · 1047

Case d = 2, m = 1 (cubic splines)

N 4 8 16 32 64
c1 = 1.0 2.0498 2.0491 33.56 3.10 · 1019 3.85 · 1026

c1 = 0.5 3.089 1.42 · 104 4.65 · 1013 8.33 · 1033 4.39 · 1075

c1 = 0.1 3.33 · 105 5.99 · 1016 3.42 · 1040 1.88 · 1089 9.26 · 10187

8. Notes. A thorough treatment of the numerical solution of
Volterra integral equations is given in [2]. The numerical stability of
the polynomial spline collocation method is investigated in [5] with
equidistant collocation points (i.e., cj = j/m, j = 1, . . . ,m) and in
the general setting in [3]. Unfortunately, the proof of the main result
(Theorem 3.3 of [3]) is not correct. In [3], this Theorem 3.3 is also
applied to the particular cases, and stability conditions are obtained
which are disproved by our results (Theorems 4.1, 4.2 (i) and 4.3 (i),
(ii) are not valid).

The collocation with linear, quadratic and cubic splines in the knots
(i.e., c1 = 1) is already treated in [6]. For the test equation (3.1) in the
case of cubic splines the divergence is established.

The special case d = −1, m ≥ 1 is well investigated (see, e.g., [2],
[4]) and the convergence is established for large classes of equations
(including those with weakly singular kernels). Let us mention that the
choice of collocation parameters 0 = c1 < · · · < cm = 1 (hence m ≥ 2)
in these investigations is of special interest. This case corresponds
to our formulation of the problem with d = 0 and the parameters
0 < c̃1 < · · · < c̃m−1 = 1 (i.e., c̃i = ci+1, i = 1, . . . ,m − 1) which is
always stable (see Section 6).
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Let us note that in [7] for the Cauchy problem y′ = f(x, y), y(0) = y0,
the collocation on equidistant partition is considered and it is required
that the spline satisfies the differential equation and its derivatives
up to the order m − 1 at the knots (multiple collocation knots for
m ≥ 2). In particular, it is proved that such a method is divergent
for d ≥ m + 2 and convergent for d ≤ m + 1. We have already made
some efforts to give a similar completely determined partition of the set
of m and d into stability and instability regions and to find out their
dependence on collocation parameters ci. Even for fixed choice of ci,
i = 1, . . . ,m, and for some important particular cases as, for example,
cm = 1, we encountered difficulties in giving an answer because this
needs the solution of a generalized eigenvalue problem.
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