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INVERTIBILITY AND POSITIVE INVERTIBILITY
OF INTEGRAL OPERATORS IN L∞

M.I. Gil’

ABSTRACT. Integral operators on space L∞[0, 1] are con-
sidered. Invertibility conditions, estimates for the norm of
the inverse operators and positive invertibility conditions are
established. In addition, bounds for the spectral radius are
suggested. Applications to nonselfadjoint differential opera-
tors and integro-differential ones are discussed.

1. Introduction and statement of the main result. A lot of
papers and books are devoted to the spectrum of integral operators.
Mainly, the distributions of the eigenvalues are considered, cf. [6],
[10], [11] and references therein. However, in many applications, for
example, in numerical mathematics and stability analysis, bounds for
eigenvalues and invertibility conditions are very important. But the
bounds and invertibility conditions are investigated considerably less
than the distributions.

In the present paper we consider linear integral operators on space
L∞[0, 1]. The following problems are investigated: invertibility condi-
tions, estimates for the norm of the inverse operator, positive invert-
ibility conditions, and estimates for the spectral radius.

A few words about the contents. In the present section we state the
main result of the paper, Theorem 1.1 on the invertibility of integral
operators. This theorem supplements the well-known results on the
invertibility of linear operators, cf. [5]. Note that the invertibility
conditions of integral operators in space L2 with the Hilbert-Schmidt
and Neumann-Schatten kernels were established in [4].

The proof of Theorem 1.1 is divided into a series of lemmas which are
presented in Sections 2 and 3. In Section 4, by virtue of the main result,
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we establish new estimates for the spectral radius which supplement the
well-known ones, cf. [8]. Section 5 deals with positive invertibility of
integral operators. Section 6 is devoted to applications of the above-
mentioned results to nonselfadjoint differential operators and integro-
differential operators. Besides, our results supplement the well-known
ones, cf. [1], [2], [7] and references therein.

Recall that L∞ ≡ L∞[0, 1] is the space of scalar-valued functions
defined on [0, 1] and equipped with the norm

|h|L∞ = ess sup
x∈[0,1]

|h(x)|, h ∈ L∞.

Everywhere below K̃ is a linear operator in L∞ defined by

(1.1) (K̃h)(x) =
∫ 1

0

K(x, s)h(s) ds, h ∈ L∞,

where K(x, s) is a scalar kernel defined on [0, 1]2 and having the
property

(1.2)
∫ 1

0

ess sup
x∈[0,1]

|K(x, s)| ds < ∞.

Define the Volterra operators

(1.3) (V−h)(x) =
∫ x

0

K(x, s)h(s) ds

and

(1.4) (V+h)(x) =
∫ 1

x

K(x, s)h(s) ds.

Set

w−(s) ≡ ess sup
0≤s≤x≤1

|K(x, s)|, w+(s) ≡ ess sup
0≤x≤s≤1

|K(x, s)|

and

M∞(V±) ≡
∫ 1

0

w±(s) ds.
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Now we are in a position to formulate the main result of the paper.

Theorem 1.1. Let the conditions (1.2) and

(1.5) eM∞(V−)+M∞(V+) < eM∞(V+) + eM∞(V−)

hold. Then operator I−K̃ is boundedly invertible in L∞ and the inverse
operator satisfies the inequality

(1.6) |(I − K̃)−1|L∞ ≤ eM∞(V−)+M∞(V+)

eM∞(V+) + eM∞(V−) − eM∞(V−)+M∞(V+)
.

Note that condition (1.5) is equivalent to the following one:

(1.7) θ(K) ≡ (eM∞(V+) − 1)(eM∞(V−) − 1) < 1.

Besides (1.6) takes the form

(1.8) |(I − K̃)−1|L∞ ≤ eM∞(V−)+M∞(V+)

1 − θ(K)
.

2. Preliminaries. Let X be a Banach space with a norm ‖ · ‖.
Recall that a linear operator Ṽ in X is called a quasinilpotent one if

lim
n→∞

n

√
‖Ṽ n‖ = 0.

For a quasinilpotent operator Ṽ in X, put

j(Ṽ ) ≡
∞∑

k=0

‖Ṽ k‖.

Lemma 2.1. Let A be a bounded linear operator in X of the form

(2.1) A = I + V + W
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where operators V and W are quasinilpotent. If, in addition, the
condition

(2.2) θA ≡
∥∥∥∥

∞∑
j,k=1

(−1)k+jV kW j

∥∥∥∥ < 1

is fulfilled, then operator A is boundedly invertible and the inverse
operator satisfies the inequality

‖A−1‖ ≤ j(V )j(W )
1 − θA

.

Proof. We have

(2.3) A = I + V + W = (I + V )(I + W ) − V W.

Since W and V are quasinilpotent, the operators I + V and I + W are
invertible.

(2.4) (I + V )−1 =
∞∑

k=0

(−1)kV k, (I + W )−1 =
∞∑

k=0

(−1)kW k.

Thus,

(2.5)
I + V + W = (I + V )[I − (I + V )−1V W (I + W )−1](I + W )

= (I + V )(I − BA)(I + W ),

where

(2.6) BA = (I + V )−1V W (I + W )−1.

But according to (2.4)

(2.7) V (I+V )−1 =
∞∑

k=1

(−1)k−1V k, (I+W )−1 =
∞∑

k=1

(−1)k−1W k.

So

(2.8) BA =
∞∑

j,k=1

(−1)k+jV kW j .
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If (2.2) holds, then ‖BA‖ < 1 and

‖(I − BA)−1‖ ≤ (1 − θA)−1.

So by (2.5) I + V + W is invertible. Moreover, due to (2.3)

(2.9) A−1 = (I + W )−1(I − BA)−1(I + V )−1.

But (2.4) implies

‖(I + W )−1‖ ≤ j(W ), ‖(I + V )−1‖ ≤ j(V ).

Now the required inequality for A−1 follows from (2.9).

Furthermore, take into account that by (2.7)

(2.10) ‖V (I + V )−1‖ ≤
∞∑

k=1

‖V k‖ ≤ j(V ) − 1.

Similarly,

(2.11) ‖W (I + W )−1‖ ≤ j(W ) − 1.

Thus,
θA ≤ (j(W ) − 1)(j(V ) − 1).

So condition (2.2) is provided by the inequality

(j(W )− 1)(j(V ) − 1) < 1.

The latter inequality is equivalent to the following one:

(2.12) j(W )j(V ) < j(W ) + j(V ).

Lemma 2.1 yields

Corollary 2.2. Let V,W be quasinilpotent and condition (2.12) be
fulfilled. Then operator A defined by (2.1) is boundedly invertible and
the inverse operator satisfies the inequality

‖A−1‖ ≤ j(V )j(W )
j(W ) + j(V ) − j(W )j(V )

.
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Let us turn now to integral operator K̃. Under condition (1.2),
operators V± are quasinilpotent due to the well-known theorem V.6.2
[12, p. 153]. Now Corollary 2.2 yields

Corollary 2.3. With the notation

j(V±) ≡
∞∑

k=0

|V k
± |L∞ ,

let the conditions (1.2) and

j(V+)j(V−) < j(V+) + j(V−)

be fulfilled. Then I − K̃ is boundedly invertible in L∞ and the inverse
operator satisfies the inequality

|(I − K̃)−1|L∞ ≤ j(V−)j(V+)
j(V−) + j(V+) − j(V−)j(V+)

.

3. Powers of Volterra operators.

Lemma 3.1. Under condition (1.2), operator V− defined by (1.3)
satisfies the inequality

(3.1) |V k
− |L∞ ≤ Mk

∞(V−)
k!

, k = 1, 2, . . . .

Proof. We have

|V−h|L∞ = ess sup
x∈[0,1]

∣∣∣∣
∫ x

0

K(x, s)h(s) ds

∣∣∣∣ ≤
∫ 1

0

w−(s)|h(s)| ds.

Repeating these arguments, we arrive at the relation

|V k
−h|L∞ ≤

∫ 1

0

w−(s1)
∫ s1

0

w−(s2) . . .

∫ sk

0

|h(sk)| dsk . . . ds2ds1.
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Taking |h|L∞ = 1, we get

(3.2) |V k
− |L∞ ≤

∫ 1

0

w−(s1)
∫ s1

0

w−(s2) . . .

∫ sk−1

0

dsk . . . ds2ds1.

It is simple to see that
∫ 1

0

w−(s1) . . .

∫ sk−1

0

w0(sk) dsk . . . ds1

=
∫ µ̃

0

∫ z1

0

. . .

∫ zk−1

0

dzkdzk−1 . . . dz1 =
µ̃k

k!
,

where
zj = zk(sj) ≡

∫ sj

0

w−(s) ds, j = 1, . . . , k

and

µ̃ =
∫ 1

0

w−(s) ds.

Thus (3.2) gives

|V k
− |L∞ ≤ (

∫ 1

0
w−(s)ds)k

k!
=

Mk
∞(V−)
k!

as claimed.

Similarly, the inequality

(3.3) |V k
+ |L∞ ≤ Mk

∞(V+)
k!

, k = 1, 2, . . . ,

can be proved. Note that in the case L2 estimates of powers of general
Volterra operators are considered in [3, Section 17.2].

The assertion of Theorem 1.1 follows from Corollary 2.3 and relations
(3.1), (3.3).

4. The spectral radius. Clearly,

λI − K̃ = λ(I − λ−1K̃), λ 	= 0.
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Consequently, if

e(M∞(V−)+M∞(V+))|λ|−1
< e|λ|

−1M∞(V+) + e|λ|
−1M∞(V−),

then due to Theorem 1.1, λI−K̃ is boundedly invertible. Thus, we get

Lemma 4.1. Under condition (1.2), any point λ 	= 0 of the spectrum
σ(K̃) of operator K̃ satisfies the inequality

(4.1) e(M∞(V−)+M∞(V+))|λ|−1 ≥ e|λ|
−1M∞(V+) + e|λ|

−1M∞(V−).

Let rs(K̃) = sup |σ(K̃)| be the spectral radius of K̃. Then (4.1) yields

(4.2) er−1
s (K̃)(M∞(V−)+M∞(V+)) ≥ er−1

s (K̃)M∞(V+) + er−1
s (K̃)M∞(V−).

Clearly, if V+ = 0 or (and) V− = 0, then rs(K̃) = 0.

Theorem 4.2. Under condition (1.2), let V+ 	= 0, V− 	= 0. Then
the equation

(4.3) e(M∞(V−)+M∞(V+))z = ezM∞(V+)+ezM∞ (V−), z ≥ 0

has a unique positive zero z(K). Moreover, the inequality rs(K̃) ≤
z−1(K) is valid.

Proof. Equation (4.3) is equivalent to the following one:

(4.4) (eM∞(V+)z − 1)(ezM∞(V−) − 1) = 1.

In addition, (4.2) is equivalent to the relation

(er−1
s (K̃)M∞(V+) − 1)(er−1

s (K̃)M∞(V−) − 1) ≥ 1.

Hence, the result follows since the left part of equation (4.4) monoton-
ically increases.

To estimate z(K), let us consider the equation

(4.5)
∞∑

k=1

akz
k = 1
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where the coefficients ak are nonnegative and have the property

θ0 ≡ 2max
k

k
√

ak < ∞.

Lemma 4.3. The unique nonnegative root z0 of equation (4.5)
satisfies the estimate z0 ≥ 1/θ0.

Proof. Set in (4.5) z = xθ−1
0 . We have

(4.6) 1 =
∞∑

k=1

akθ
−k
0 xk.

But ∞∑
k=1

akθ
−k
0 ≤

∞∑
k=1

2−k = 1,

and therefore the unique positive root x0 of (4.6) satisfies the inequality
x0 ≥ 1. Hence, z0 = θ−1

0 x0 ≥ θ−1
0 , as claimed.

Note that the latter lemma generalizes the well-known result for
algebraic equations, cf. [9, p. 277].

Rewrite (4.4) as

∞∑
k=1

zkMk
∞(V−)
k!

∞∑
j=1

zjM j
∞(V+)
j!

= 1.

Or ∞∑
k=1

Ckz
k = 1

with

Ck =
k−1∑
j=1

Mk−j
∞ (V−)M j

∞(V+)
j!(k − j)!

.

Due to the previous lemma, with the notation

δ(K) = 2 max
j=1,2,...

j
√

Cj
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we get z(K) ≥ δ−1(K). Now Theorem 4.2 yields

Corollary 4.4. Under condition (1.2), the inequality rs(K̃) ≤ δ(K)
is true.

Corollary 4.4 improves the well-known estimate

(4.7) rs(K̃) ≤ δ̃0(K) ≡ sup
x

∫ 1

0

|K(x, s)| ds

([8, Theorem 16.2]) if δ̃0(K) > δ(K). That is, Corollary 4.4 improves
estimate (4.7) for operators which are “close” to Volterra ones.

5. Nonnegative invertibility. We will say that h ∈ L∞ is nonneg-
ative if h(t) is nonnegative for almost all t ∈ [0, 1]; a linear operator A
in L∞ is nonnegative if Ah is nonnegative for each nonnegative h ∈ L∞.
Recall that I is the identity operator.

Theorem 5.1. Let the conditions (1.2), (1.5) and

(5.1) K(t, s) ≥ 0, 0 ≤ t, s ≤ 1

hold. Then operator I − K̃ is boundedly invertible and the inverse
operator is nonnegative. Moreover,

(5.2) (I − K̃)−1 ≥ I.

Proof. Relation (2.9) with A = I − K̃, W = V− and V = V+ implies

(5.3) (I − K̃)−1 = (I − V+)−1(I − BK)−1(I − V−)−1

where
BK = (I − V+)−1V+V−(I − V−)−1.

Moreover, by (5.1) we have V± ≥ 0. So due to (2.4), (I − V±)−1 ≥ 0
and BK ≥ 0. Relations (2.7) and (2.8) according to (2.10) and (2.11)
imply

|BK |L∞ ≤ (eM∞(V+) − 1)(eM∞(V−) − 1).



INVERTIBILITY AND POSITIVE INVERTIBILITY 11

But (1.5) is equivalent to (1.7). We thus get |BK |L∞ < 1. Conse-
quently,

(I − BK)−1 =
∞∑

k=0

Bk
K ≥ 0.

Now (5.3) implies the inequality (I − K̃)−1 ≥ 0. In addition, since
I − K̃ ≤ I and (I − K̃)−1 ≥ 0, we have inequality (5.2).

6. Applications.

6.1. A nonselfadjoint differential operator. Consider a differ-
ential operator A defined by

(6.1) (Ah)(x) = − d2h(x)
dx2

+ g(x)
dh(x)
dx

+ m(x)h(x),

0 < x < 1, h ∈ D(A)

on the domain

(6.2)

D(A) = {h ∈ L∞, h′′ ∈ L∞, a0h(0) + b0h
′(0) = 0,

a1h(1) + b1h
′(1) = 0}

ajbj ≡ const, a2
j + b2

j > 0, j = 0, 1.

In addition,

(6.3) the coefficients g, w ∈ L∞ and are complex, in general.

Let an operator S be defined on D(A) by

(Sh)(x) = −h′′(x), h ∈ D(A).

Assume S has the Green function G(t, s), so that

(S−1h)(x) ≡
∫ 1

0

G(x, s)h(s) ds ∈ D(A)

for any h ∈ L∞. Besides,

(6.4)

β∞(S) ≡
∫ 1

0

sup
x

|G(x, s)| ds < ∞ and
∫ 1

0

sup
x

|Gx(x, s)| ds < ∞.
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Thus, A = (I − K̃)S where

(K̃h)(x) = −
(
g(x)

d

dx
+m(x)

)∫ 1

0

G(x, s)h(s) ds =
∫ 1

0

K(x, s)h(s) ds,

with

(6.5) K(x, s) = − g(x)Gx(x, s) − m(x)G(x, s).

According to (6.3) and (6.4), condition (1.2) holds. Take into account
that

|S−1h|L∞ ≤ β∞(S)|h|L∞ .

Since
A−1 = S−1(I − K̃)−1,

Theorem 1.1 immediately implies the following result.

Proposition 6.1. Under (6.3) (6.5), let condition (1.5) hold. Then
operator A defined by (6.1) and (6.2) is boundedly invertible in L∞. In
addition,

|A−1|L∞ ≤ β∞(S)eM∞(V−)+M∞(V+)

eM∞(V+) + eM∞(V−) − eM∞(V−)+M∞(V+)
.

6.2 An integro-differential operator. On domain (6.2), let us
consider the operator

(6.6)

(Eu)(x) = − d2u(x)
dx2

+
∫ 1

0

K0(x, s)u(s) ds, u ∈ D(A), 0 < x < 1,

where K0 is a kernel with the property

(6.7) ess sup
x

∫ 1

0

|K0(x, s)| ds < ∞.

Let S and G be the same as in the previous subsection. Then we can
write E = (I − K̃)S where K̃ is defined by (1.1) with

(6.8) K(x, s) = −
∫ 1

0

K0(x, x1)G(x1, s) dx1.
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So if I − K̃ is invertible, then E is invertible as well. Clearly, under
(6.4) and (6.7), condition (1.2) holds. Since

E−1 = S−1(I − K̃)−1,

Theorems 1.1 and 5.1 yield

Proposition 6.2. Under (6.4), (6.7) and (6.8), let condition (1.5)
hold. Then operator E defined by (6.6) and (6.2) is boundedly invertible
in L∞ and

|E−1|L∞ ≤ β∞(S)eM∞(V−)+M∞(V+)

eM∞(V+) + eM∞(V−) − eM∞(V−)+M∞(V+)
.

If, in addition, G ≥ 0 and K0 ≤ 0, then E−1 is positive. Moreover,

(E−1h)(x) ≥ (S−1h)(x) =
∫ 1

0

G(x, s)h(s) ds

for any nonnegative h ∈ L∞.
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