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ALMOST SURE CONVERGENCE OF SOLUTIONS
OF LINEAR STOCHASTIC VOLTERRA EQUATIONS

TO NONEQUILIBRIUM LIMITS

JOHN A.D. APPLEBY, SIOBHÁN DEVIN, AND DAVID W. REYNOLDS

ABSTRACT. We consider a linear stochastic Volterra equa-
tion and obtain the stochastic analogue to work by Krisztin
and Terjéki for convergence and integrability in the almost
sure case. We determine sufficient conditions on the resolvent,
kernel and noise for the solutions to converge to an explicit
nonequilibrium limit, and for the difference between the solu-
tion and the limit to be square integrable. It is proved that the
conditions on the resolvent and the kernel are necessary. Nec-
essary and sufficient conditions for almost sure convergence
are provided in the scalar case. The results are applied to a
biological model, and the effect that a weakly singular kernel
has on the convergence of the solution is examined.

1. Introduction. We study the asymptotic convergence of the
solution of

dX(t) =
(

AX(t) +
∫ t

0

K(t − s)X(s) ds

)
dt(1.1a)

+ Σ(t) dB(t), t > 0,

X(0) = X0,(1.1b)

to a nonequilibrium limit. Here, the solution X is an n × 1 vector-
valued function on [0,∞), A is a real n × n matrix, K is a contin-
uous and integrable n × n matrix-valued function on [0,∞), Σ is a
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continuous and integrable n × d matrix-valued function on [0,∞) and
B(t) = (B1(t), B2(t), . . . , Bd(t)), where each component of the Brown-
ian motion is independent. The initial condition X0 is a deterministic
constant vector.

The solution of (1.1) can be written in terms of the solution of the
resolvent equation

R′(t) = AR(t) +
∫ t

0

K(t − s)R(s) ds, t > 0,(1.2a)

R(0) = I,(1.2b)

where the n× n matrix-valued function R is known as the resolvent or
fundamental solution of (1.2). The representation of solutions of (1.1)
in terms of R is given by the variation of constants formula

X(t) = R(t)X0 +
∫ t

0

R(t − s)Σ(s) dB(s), t ≥ 0.

The case where the solutions of (1.2) are neither integrable, nor
unstable, has been considered by Krisztin and Terjéki [10]. They
considered the convergence of solutions of (1.2) to a nonequilibrium
limit. In addition to determining necessary and sufficient conditions
under which R(t) converges to a limit R∞ as t → ∞ they determined
an explicit formula for R∞.

In the stochastic case the asymptotic convergence of solutions of (1.1)
to the trivial solution has been studied by Appleby and Riedle [2],
Mao [11] and Mao and Riedle [12]. Appleby, Devin and Reynolds
[1] is the first paper that we know of to consider the convergence of
solutions of (1.1) to a nonequilibrium limit. The paper [1] considers
the mean square case and details necessary and sufficient conditions on
the resolvent, kernel, noise and tail of the noise for the convergence of
solutions to an explicit limiting random variable, and for the difference
between the solution and the limit to be square integrable.

In this paper analogous results are proved in the almost sure case.
Establishing the necessary and sufficient conditions on the resolvent,
kernel and noise is complicated by the fact that X∞ is not adapted.
Nonetheless, it is shown that the sufficient conditions for convergence
and integrability in the mean square case also suffice in the almost
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sure case. However, showing that these conditions are necessary is
not as straightforward as in the mean square case. This is due to the
fact that we can no longer avail of the simplifying effect that taking
expectations has on a random variable. Consequently, we cannot show
that the condition on the tail of the noise is necessary. However, in
the scalar case, for a class of noise perturbations which violate this
condition, we can show that although the solution still converges to a
nontrivial limit the difference between the solution and the limit is not
square integrable.

An epidemiological model is studied in Section 4. The results men-
tioned above are exploited to highlight conditions under which the dis-
ease will become endemic, which is the interpretation when solutions
settle down to a nontrivial and indeed nonequilibrium limiting value.

The behavior of Volterra equations with weakly singular kernels
has been studied by several authors including Miller and Feldstein
[13] and Brunner et al. [4, 5]. We briefly examine in Section 8 the
effect of a weakly singular kernel of algebraic or logarithmic type on
the convergence and integrability of the solution. It is found that
singularities of this type have no effect on the convergence of the
solution.

2. Mathematical preliminaries. We introduce some standard
notation. We denote by R the set of real numbers. Let Mn×d(R)
be the space of n × d matrices with real entries. The transpose
of any matrix A is denoted by AT and the trace of a square ma-
trix A is denoted by tr (A). Further, denote by I the identity ma-
trix in Mn×n(R) and denote by diag (a1, a2, . . . , an) the n × n ma-
trix with the scalar entries a1, a2, . . . , an on the diagonal and 0 else-
where. We denote by ei the ith standard basis vector in Rn. We
denote by 〈x, y〉 the standard inner product of x and y ∈ Rn.
Let ‖ · ‖ denote the Euclidian norm for any vector x ∈ Rn. For
A = (aij) ∈ Mn×d(R) we denote by ‖ · ‖ the norm defined by
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‖A‖2 =
n∑

i=1

( d∑
j=1

|aij |
)2

,

and we denote by ‖ · ‖F the Frobenius norm defined by

‖A‖2
F =

n∑
i=1

d∑
j=1

|aij |2.

Since Mn×d(R) is a finite-dimensional Banach space the two norms
‖ · ‖ and ‖ · ‖F are equivalent, thus we can find universal constants
0 ≤ d1(n, d) ≤ d2(n, d) such that

d1‖A‖ ≤ ‖A‖F ≤ d2‖A‖, A ∈ Mn×d(R).

If J is an interval in R and V is a finite-dimensional normed space, we
denote by C(J, V ) the family of continuous functions φ : J → V . The
space of Lebesgue integrable functions φ : (0,∞) → V will be denoted
by L1((0,∞), V ) and the space of Lebesgue square integrable functions
η : (0,∞) → V will be denoted by L2((0,∞), V ). Where V is clear
from the context we omit it from the notation. We denote by C the
set of complex numbers, the real part of z in C being denoted by Re z
and the imaginary part by Im z. If A : [0,∞) → Mn×n(R), the Laplace
transform of A is formally defined to be

Â(z) =
∫ ∞

0

A(t)e−zt dt.

The convolution of F and G is denoted by F ∗G and defined to be the
function given by

(F ∗ G)(t) =
∫ t

0

F (t − s)G(s) ds, t ≥ 0.

We now make our problem precise. The n-dimensional equation given
by (1.1) is considered. We assume that the function K : [0,∞) →
Mn×n(R) satisfies

(2.1) K ∈ C([0,∞), Mn×n(R)) ∩ L1((0,∞), Mn×n(R)),
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and the function Σ : [0,∞) → Mn×d(R) satisfies

(2.2) Σ ∈ C([0,∞), Mn×d(R)).

Due to (2.1) we may define K1 in C([0,∞), Mn×n(R)) by

(2.3) K1(t) =
∫ ∞

t

K(s) ds, t ≥ 0,

so that this function defines the tail of the kernel K.

Let (B(t))t≥0 denote d-dimensional Brownian motion on a complete
probability space (Ω,FB,P) where the filtration is the natural one
FB(t) = σ{B(s) : 0 ≤ s ≤ t}. Here we define by σ{c} the smallest
σ-algebra which contains the family of subsets c. We define the
function t �→ X(t; X0, Σ) to be the unique continuous adapted process
which satisfies the initial value problem (1.1). Results concerning the
existence and uniqueness of solutions may be found in [3, Theorem
2E] or [14, Chapter 5] for example. Under the hypothesis (2.1), it is
well known that (1.2) has a unique continuous solution R, which is
continuously differentiable. Moreover, if Σ is continuous, then for any
deterministic initial condition X0, the unique almost surely continuous
solution to (1.1) is given by

(2.4) X(t; X0, Σ) = R(t)X0 +
∫ t

0

R(t − s)Σ(s) dB(s), t ≥ 0.

Where X0 and Σ are clear from the context, we omit them from the
notation X(t; X0, Σ).

We also consider a deterministically and stochastically perturbed
version of (1.2),

dX(t) =
(

AX(t) +
∫ t

0

K(t − s)X(s)ds + f(t)
)

dt(2.5a)

+Σ(t)dB(t), t > 0,

X(0) = X0,(2.5b)

with A, K, Σ and B defined as before. We assume that the function
f : [0,∞) → Rn satisfies

(2.6) f ∈ C([0,∞),Rn) ∩ L1((0,∞),Rn).
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We define the function t �→ X(t; X0, Σ, f) to be the unique solution of
the initial value problem (2.5). Moreover, if Σ and f are continuous,
then for any deterministic initial condition X0 there exists a unique
almost surely continuous solution to (2.5) given by

X(t; X0, Σ, f) = R(t)X0 +
∫ t

0

R(t − s)f(s) ds(2.7)

+
∫ t

0

R(t − s)Σ(s) dB(s),

where t ≥ 0. Where X0, Σ and f are clear from the context we omit
them from the notation.

We denote E[X2] by EX2 except in cases where the meaning may be
ambiguous. We now define the notion of convergence in mean square
and almost sure convergence.

Definition 2.1. The Rn-valued stochastic process (X(t))t≥0

converges in mean square to X∞ if

lim
t→∞E‖X(t) − X∞‖2 = 0,

and we say that the difference between the stochastic process (X(t))t≥0

and X∞ is integrable in the mean square sense if∫ ∞

0

E‖X(t) − X∞‖2 dt < ∞.

Definition 2.2. If there exists a P-null set Ω0 such that for every
ω /∈ Ω0 the following holds

lim
t→∞X(t, ω) = X∞(ω),

then we say X converges almost surely to X∞, and we say that the
difference between the stochastic process (X(t))t≥0 and X∞ is square
integrable in the almost sure sense if∫ ∞

0

‖X(t, ω)− X∞(ω)‖2 dt < ∞.
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In this paper we are particularly interested in the case where the
random variable X∞ is nonzero almost surely.

3. Discussion of main results. The main results of the paper are
presented in this section. We discuss necessary and sufficient conditions
for asymptotic convergence of the solution of (1.1) to a nontrivial limit
and the integrability of this solution in the almost sure case.

In the deterministic case Krisztin and Terjéki [10] considered the nec-
essary and sufficient conditions for asymptotic convergence of solutions
of (1.2) to a nontrivial limit and the integrability of these solutions.
Before stating their main result, we define the following notation intro-
duced in [10] and adopted in this paper. We let M = A +

∫ ∞
0

K(s) ds
and T be an invertible matrix such that T−1MT has Jordan canonical
form. Let ei = 1 if all the elements of the ith row of T−1MT are
zero, and ei = 0 otherwise. Put P = Tdiag (e1, e2, . . . , en)T−1 and
Q = I − P .

Theorem 3.1. Let K satisfy

(3.1)
∫ ∞

0

t2‖K(t)‖ dt < ∞.

The resolvent R of (1.2) satisfies

(3.2) R(·) − R∞ ∈ L1((0,∞), Mn×n(R)),

if and only if

det [zI − A − K̂(z)] = 0 for Re z ≥ 0 and z = 0,

and

det
[
P − M −

∫ ∞

0

∫ ∞

s

PK(u) du ds

]
= 0.

Krisztin and Terjéki consider the case where R − R∞ exists in
the space of L1 functions. However, for stochastic equations it is
more natural to consider the case where R − R∞ lies in the L2

space of functions. In [1] the convergence of solutions of (1.1) to a
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nonequilibrium limit was considered and the following theorem was
obtained.

Theorem 3.2. Let K satisfy (2.1) and

(3.3)
∫ ∞

0

t‖K(t)‖ dt < ∞,

and let Σ satisfy (2.2) and

(3.4)
∫ ∞

0

‖Σ(t)‖2 dt < ∞.

If the resolvent R of (1.2) satisfies

(3.5) R(·) − R∞ ∈ L2((0,∞), Mn×n(R)),

then the solution X of (1.1) satisfies limt→∞ X(t) = X∞ almost surely,
where

X∞ = R∞

(
X0 +

∫ ∞

0

Σ(t) dB(t)
)

a.s.

and X∞ is almost surely finite.

In this theorem the existence of the first moment of K is required
rather than the existence of the second moment of K as in Theorem 3.1.

The following theorem was proved in [1]; it details necessary and
sufficient conditions for convergence in mean square.

Theorem 3.3. Let K satisfy (2.1) and (3.3), and let Σ satisfy (2.2).
The following are equivalent.

(i) The function Σ satisfies (3.4), and there exists a constant matrix
R∞ such that the solution R of (1.2) satisfies (3.5) and

(3.6)
∫ ∞

0

t‖R∞Σ(t)‖2 dt < ∞.

(ii) For all initial conditions X0 there is an almost surely finite
FB(∞)-measurable random variable X∞(X0, Σ) with E‖X∞(X0, Σ)‖2 <



ALMOST SURE CONVERGENCE 413

∞ such that the unique continuous adapted process X(·; X0, Σ) which
obeys (1.1) satisfies

(3.7) lim
t→∞E‖X(t; X0, Σ) − X∞(X0, Σ)‖2 = 0

and

(3.8) E‖X(·; X0, Σ) − X∞(X0, Σ)‖2 ∈ L1((0,∞),R).

The sufficient conditions for the asymptotic convergence of the solu-
tion X of (1.1) to a nontrivial limit X∞, and for the integrability of
X − X∞ in the almost sure sense are considered in Theorem 3.4. As
in the mean square case, we find that conditions (3.4) and (3.5) are
required for convergence; in addition, (3.6) is required for integrability.

Theorem 3.4. Let K satisfy (2.1) and (3.3), and let Σ satisfy (2.2).
If Σ satisfies (3.4) and if there exists a constant matrix R∞ such that
the solution R of (1.2) satisfies (3.5), then for all initial conditions
X0 there is an almost surely finite FB(∞)-measurable random variable
X∞(X0, Σ) such that the unique continuous adapted process X(·; X0, Σ)
which obeys (1.1) satisfies

(3.9) lim
t→∞X(t; X0, Σ) = X∞(X0, Σ) a.s..

Moreover, if the function Σ also satisfies (3.6), then

(3.10) X(·; X0, Σ) − X∞(X0, Σ) ∈ L2((0,∞),Rn) a.s..

We now state the necessary conditions for the asymptotic convergence
of the solution X of (1.1) to a nontrivial limit X∞, and for the square
integrability of X − X∞ in the almost sure sense.

Theorem 3.5. Let K satisfy (2.1) and (3.3), and let Σ satisfy (2.2).
Suppose for all initial conditions X0 there is an almost surely finite
FB(∞)-measurable random variable X∞(X0, Σ) such that the unique
continuous adapted process X(·; X0, Σ) which obeys (1.1) satisfies (3.9)
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and (3.10). Then there exists a constant matrix R∞ such that the
solution R of (1.2) satisfies (3.5) and the function Σ satisfies (3.4) and

(3.11)
∫ ∞

0

∥∥∥∥
∫ ∞

t

R∞Σ(s) dB(s)
∥∥∥∥

2

dt < ∞ a.s..

We have stated that conditions (3.4) and (3.5) are both necessary and
sufficient for convergence and square integrability. However, we have
not succeeded in showing that (3.6) is a necessary condition. By taking
expectations it is clear that (3.6) implies (3.11) but it is not immediate
that (3.11) implies (3.6). We conjecture that these two conditions are
equivalent and that (3.6) is in fact a necessary condition for almost sure
convergence and integrability. In order to support this conjecture we
consider (1.1) in the scalar case and state the following theorem.

Theorem 3.6. Let n = d = 1, K satisfy (2.1) and (3.3), Σ satisfy
(2.2) and (3.4), and suppose there exists a nontrivial constant R∞ such
that the scalar solution R of (1.2) satisfies (3.5). Suppose the function
Σ satisfies

(3.12) Σ(t)2 > 0, t ≥ 0,

and

(3.13) lim sup
t→∞

Σ(t)2

(
∫ ∞

t
Σ(s)2 ds)2

< ∞.

Then for all initial conditions X0 there is an almost surely finite
FB(∞)-measurable random variable X∞(X0, Σ) such that the unique
continuous adapted process X(·; X0, Σ) which obeys (1.1) satisfies (3.9)
but

(3.14) X(·; X0, Σ) − X∞(X0, Σ) /∈ L2((0,∞),R) a.s.

In this theorem we have assumed that Σ is square integrable. However
(3.13) ensures that ∫ ∞

0

t|Σ(t)|2 dt = ∞.
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Of course, if
∫ ∞
0

t|Σ(t)|2 dt < ∞, then Theorem 3.4 guarantees that
X − X∞ ∈ L2(0,∞) almost surely. Hence, we are able to prove that
although the solution tends to a limit in the almost sure sense the
difference between the solution and the limit is not square integrable.

In the scalar case, and for certain families of noise intensity, Theorems
3.4 and 3.6 complement one another. Consider, for example, the family
of noise intensities which behave asymptotically polynomially in the
sense that limt→∞ Σ(t)2t2β = c, where c and β are positive constants. If
β > 1/2, then Σ is square integrable so we see that limt→∞ X(t) = X∞
almost surely using Theorem 3.2. Now, if β > 1 it is clear from
Theorem 3.4 that X−X∞ ∈ L2(0,∞) almost surely. If 1/2 < β ≤ 1 the
noise term Σ is not square integrable but condition (3.13) is satisfied
and so Theorem 3.6 states that X − X∞ /∈ L2(0,∞) almost surely.

Analogous results may be obtained in the case where the equation
is both stochastically and deterministically perturbed. The following
theorem places sufficient conditions under which solutions tend to a
nonequilibrium limit.

Theorem 3.7. Let K satisfy (2.1) and (3.3), let Σ satisfy (2.2)
and (3.4), and let f satisfy (2.6). Suppose the resolvent R of (1.2)
satisfies (3.5). Then the solution X(t; X0, Σ, f) of (2.5) satisfies
X(·; X0, Σ, f) → X∞(X0, Σ, f) almost surely, where

(3.15) X∞(X0, Σ, f) = R∞

(
X0 +

∫ ∞

0

f(t) dt+
∫ ∞

0

Σ(t) dB(t)
)

a.s.

and X∞ is almost surely finite. Moreover, if Σ satisfies (3.6) and f
satisfies

(3.16)
∫ ∞

0

t‖R∞f(t)‖ dt < ∞,

then

(3.17) X(·; X0, Σ, f) − X∞(X0, Σ, f) ∈ L2((0,∞),Rn) a.s.

This theorem has applications in the study of infinite-delay equations.
In particular, it provides useful insights into the epidemiological model
examined in Section 4.
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Theorem 3.8 deals with the convergence of solutions to a nontrivial
limit in the scalar case. This theorem illustrates the necessity of (3.4)
for convergence, a fact which is not obvious in the finite-dimensional
case.

Theorem 3.8. Suppose that n = d = 1, Σ is non-trivial, K obeys
(2.1), (3.3) and

(3.18) A +
∫ ∞

0

K(s) ds = 0.

The following are equivalent.

(i) There exists a unique continuous FB-adapted process X which
obeys (1.1) and an FB(∞)-measurable and almost surely finite random
variable X∞ such that (3.9) holds.

(ii) The function Σ obeys (3.4), the function K obeys

(3.19) 1 +
∫ ∞

0

sK(s) ds = 0,

and there exists a constant R∞ such that the solution R of (1.2) satisfies

lim
t→∞R(t) = R∞.

The proofs of Theorems 3.4 and 3.5 may be found in Section 5, the
proof of Theorem 3.6 is located in Section 6 and Theorems 3.7 and 3.8
are proved in Section 7.

4. Application. In this section we consider the following epidemi-
ological model:

dx(t) =
(

g(x(t)) −
∫ t

−∞
w(t − s)g(x(s)) ds

)
dt(4.1a)

+ Σ(t) dB(t),
x(t) = φ(t), t ≤ 0.(4.1b)
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Here the solution x(·; φ, Σ) is a scalar function on [0,∞), the function g
is a scalar linear function satisfying g(x) = αx for some constant α > 0,
w is a positive scalar weighting function satisfying∫ ∞

0

w(s) ds = 1,

Σ is a continuous and square integrable scalar function on [0,∞),
(B(t))t≥0 denotes one-dimensional Brownian motion on a complete
filtered probability space (Ω,F ,FB(t)t≥0,P) where the filtration is the
natural one FB(t) = σ{B(s) : 0 ≤ s ≤ t} and the initial function φ
satisfies

(4.2) sup
t≤0

|φ(t)| ≤ φ̄.

Various authors have considered similar models in the deterministic
case where x(t) represents the population at time t. Cooke and
Yorke [7] proposed the nonlinear delay-differential equation x′(t) =
g(x(t)) − g(x(t − L)) as a model for the growth of an epidemic where
g(x(t)) represents the birth rate when the current population is x(t),
while death is certain at an age of L time units. A generalization
of this model was considered by Haddock and Terjéki [9], in which a
convolution term was incorporated to allow for deaths at a distribution
of ages. Indeed, Burton [6] extended their model and considered

x′(t) =
∫ t

t−L

p(s − t)g(x(s)) ds −
∫ t

−∞
q(s − t)g(x(s)) ds,

in which both births and deaths are distributed. Here, death can
occur at any time while the number of births is related to the number
of conceptions which occurred up to L time units ago. A simple
calculation illustrates that this equation is fundamentally the same
as the deterministic version of (4.1) when appropriate conditions are
imposed on the functions p and q. Many more authors have considered
biological models of this type. We direct the interested reader to [6]
for a comprehensive list of references.

The following theorem, the proof of which may be found in Section 7,
considers the conditions under which the solution of our model con-
verges to a nontrivial limit.
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Theorem 4.1. Let w satisfy

w ∈ C([0,∞),R) ∩ L1((0,∞),R)

and

(4.3)
∫ ∞

0

t|w(t)| dt < ∞.

Let Σ satisfy (2.2) and (3.4) where n = d = 1, and let φ satisfy (4.2).
Suppose the resolvent R of (1.2) satisfies (3.5). Then the solution
x(·; φ, Σ) of (4.1) satisfies x(·; φ, Σ) → x∞(φ, Σ) almost surely, where

x∞(φ, Σ)

= R∞

(
φ(0) +

∫ ∞

0

∫ 0

−∞
w(t − s)φ(s) ds dt +

∫ ∞

0

Σ(t) dB(t)
)

a.s.

and x∞ is almost surely finite. Moreover, if Σ satisfies (3.6) and w
satisfies

(4.5)
∫ ∞

0

t2|w(t)| dt < ∞,

then

(4.6) x(·; φ, Σ) − x∞(φ, Σ) ∈ L2((0,∞),Rn) a.s.

The function w represents the distribution of deaths within a popu-
lation. It is evident from Theorem 4.1 that the growth of a population
is influenced by the decay rate of w, that is, if the first moment of w
exists, then the population will converge to a finite limit.

5. Conditions for asymptotic convergence and integrability
in the almost sure sense. In this section we begin by considering
sufficient conditions for asymptotic convergence of solutions of (1.1) to
a nontrivial random variable in the almost sure sense. The necessity
of these conditions is also considered. Two technical lemmas used
in the proof of Theorem 3.5 are presented. Lemma 5.1 concerns the
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structure of X∞. This enables us to prove Lemma 5.2 which concerns
the necessity of (3.4) for stability of the system. Consequently, we
need only assume the continuity of the noise intensity Σ to ensure the
existence of solutions at the outset. Lemma 5.2 in turn allows us to
show the necessity of (3.11); the proof of this inference may be found
in the proof of Theorem 3.5 below.

Lemma 5.1. Let K satisfy (2.1) and (3.3). Suppose that for all
initial conditions X0 there is an almost surely finite random variable
X∞(X0, Σ) such that the solution t �→ X(t; X0, Σ) of (1.1) satisfies
(3.9) and (3.10). Then

(5.1)
(

A +
∫ ∞

0

K(s) ds

)
X∞ = 0 a.s..

Lemma 5.2. Let K satisfy (2.1) and (3.3). Suppose for all initial
conditions X0 there is an almost surely finite FB(∞)-measurable ran-
dom variable X∞(X0, Σ) such that the solution t �→ X(t; X0, Σ) of (1.1)
satisfies (3.9) and (3.10). Then Σ satisfies (3.4).

We defer the proof of Lemmas 5.1 and 5.2 to Section 7.

Proof of Theorem 3.4. From Theorem 3.2 we know that X∞ is almost
surely finite and (3.9) holds if (3.3), (3.4) and (3.5) hold.

We know from Theorem 3.3 that
∫ ∞
0 E‖X(t) − X∞‖2 dt < ∞ since

(3.4), (3.5) and (3.6) hold. Fubini’s theorem allows us to interchange
the order of integration of this term; thus, E[

∫ ∞
0

‖X(t)−X∞‖2 dt] < ∞.
If the expectation of a non-negative random variable is finite, then the
random variable itself is almost surely finite; applying this here means
that (3.10) holds.

Proof of Theorem 3.5. We begin by proving (3.5). Consider the
n + 1 solutions Xj(t) of (1.1) with initial conditions Xj(0) = ej for
j = 1, . . . , n and Xn+1(0) = 0 where e1, . . . , en is the standard
basis. Note that Xj(t) = R(t)ej + μ(t) and Xn+1(t) = μ(t) where
μ(t) =

∫ t

0
R(t − s)Σ(s) dB(s). Since Xn+1(t) → Xn+1(∞) as t → ∞,
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this implies that μ(t) → μ(∞). Now, since R(t)ej = Xj(t) − Xn+1(t)
for j = 1, . . . , n, we see that R(t) → R∞. Thus, for j = 1, . . . , n, we
can write

(R(t) − R∞)ej = (Xj(t) − Xn+1(t)) − (Xj(∞) − Xn+1(∞))
= (Xj(t) − Xj(∞)) − (Xn+1(t) − Xn+1(∞)).

Since (3.10) holds, we see that (R(·) − R∞)ej ∈ L2(0,∞) for j =
1, . . . , n, hence (3.5) holds.

In order to show (3.4) holds, we apply Lemma 5.2.

Finally, we turn to (3.11). Expressing the solution of (1.1) using vari-
ation of parameters, subtracting X∞ from both sides and rearranging
the equation, we obtain

(5.2)
∫ ∞

t

R∞Σ(s) dB(s) = (R(t) − R∞)X0

+
∫ t

0

(R(t − s) − R∞)Σ(s) dB(s) − (X(t) − X∞).

The first term on the righthand side of (5.2) is in L2(0,∞) due to the
above argument. Using the fact that (3.4) and (3.5) hold, we see that

(5.3) E
[∫ ∞

0

∥∥∥∥
∫ t

0

(R(t − s) − R∞)Σ(s) dB(s)
∥∥∥∥

2

dt

]

=
∫ ∞

0

∫ t

0

‖(R(t − s) − R∞)Σ(s)‖2 ds dt < ∞.

If the expectation of a random variable is finite, then the random
variable itself is finite almost surely which means that the second term
is in L2(0,∞). The third term on the righthand side of (5.2) is in
L2(0,∞) using (3.10), thus (3.11) holds. This completes our proof.

6. On the necessity of condition (3.6) for convergence and
integrability of solutions. We make use of Lemmas 6.1 and 6.2 in
the proof of Theorem 3.6. The proof of these lemmata is deferred to
Section 7.
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Lemma 6.1. Let n = d = 1, and let B be a standard Brownian
motion on the filtered probability space (Ω,F , (FB(t))t≥0,P). Then,
for any constant c > 0,

(6.1)
∫ ∞

c

B(t)2t−2 dt = ∞ a.s..

Lemma 6.2. Let n = d = 1, let the function Σ satisfy (2.2), (3.4),
(3.12) and (3.13), and let B be a standard Brownian motion on the
filtered probability space (Ω,F , (FB(t))t≥0,P). Then

(6.2)
∫ ∞

0

( ∫ ∞

t

Σ(s) dB(s)
)2

dt = ∞ a.s..

Proof of Theorem 3.6. Using the fact that K satisfies (2.1), (3.3),
the fact that R satisfies (3.5) and the fact that Σ satisfies (2.2) and
(3.4), we can apply the scalar version of Theorem 3.2 to obtain (3.9).
We now show that (3.14) holds. Subtract X∞ from both sides of (1.1)
to obtain

X(t)−X∞=(R(t) − R∞)X0+
∫ t

0

(R(t−s)−R∞)Σ(s) dB(s)(6.3)

−
∫ ∞

t

R∞Σ(s) dB(s).

Although the first term on the righthand side of (6.3) is square inte-
grable as (3.5) holds, and the second term is in L2(0,∞) almost surely
as (3.4) and (3.5) hold, it is clear from Lemma 6.2 that X(·) − X∞ /∈
L2(0,∞), as (6.2) holds. This completes our proof.

7. Proofs. In this section we give the proofs of results which were
postponed earlier in the paper.

Proof of Theorem 3.7. The solution X(t; X0, Σ) of (1.1) satisfies
(2.4), and the solution X(t; X0, Σ, f) satisfies (2.7); thus,

X(t; X0, Σ, f) = X(t; X0, Σ) +
∫ t

0

R(t − s)f(s) ds, t ≥ 0.
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As t → ∞, we know from Theorem 3.2 that X(t; X0, Σ) → X∞(X0, Σ).
Also, from our assumptions,

lim
t→∞

∫ t

0

R(t − s)f(s) ds = R∞
∫ ∞

0

f(s) ds,

and so X(t; X0, Σ, f) → X∞(X0, Σ, f) where X∞(X0, Σ, f) is given by
(3.15).

We now prove (3.17). Consider

(7.1) X(t; X0, Σ, f) − X∞(X0, Σ, f)=(X(t; X0, Σ) − X∞(X0, Σ))

+
∫ t

0

(R(t − s) − R∞)f(s) ds −
∫ ∞

t

R∞f(s) ds.

Consider the righthand side of (7.1). We know that X(t; X0, Σ) −
X∞(X0, Σ) ∈ L2(0,∞) using Theorem 3.4. An L2(0,∞) term con-
volved with an L1(0,∞) term lies in the space of L2(0,∞) functions and
so the second term on the righthand side of (7.1) must lie in L2(0,∞).
Finally, (3.16) guarantees that the last term on the righthand side of
(7.1) is in L2(0,∞). Combining the arguments given in this paragraph,
we see that (3.17) must hold. This completes our proof.

Proof of Theorem 3.8. We begin by proving that (i) implies (ii). Let
Y be the process defined by

(7.2) Y (t) = X0 +
∫ t

0

Σ(s) dB(s), t ≥ 0.

Then Z = X − Y obeys Z(0) = 0 and

Z ′(t) = AZ(t) +
∫ t

0

K(t − s)Z(s) ds + f(t), t > 0,

where f(t) = AY (t) + (K ∗ Y )(t). Now, with K1 as defined in (2.3), if
we define p by p(t) = (K1 ∗ Z)(t) for t ≥ 0, we have

−p′(t) = −
∫ t

0

K ′
1(t−s)Z(s) ds−K1(0)Z(t) = (K∗Z)(t)+AZ(t), t > 0.
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Hence, Z ′(t) = −p′(t) + f(t), for t > 0 and so, by integration, we get
Z(t) + p(t) = Z(0) + p(0) +

∫ t

0
f(s) ds, t ≥ 0. Therefore,

X(t) + (K1 ∗ X)(t) = Y (t) + (K1 ∗ Y )(t) +
∫ t

0

f(s) ds, t ≥ 0.

Finally, by reversing the order of integration, we get

∫ t

0

f(s) ds =
∫ t

0

AY (s) ds +
∫ t

0

∫ t

u

K(s − u) dsY (u) du

=
∫ t

0

(
A +

∫ t−s

0

K(v) dv

)
Y (s) ds

= −(K1 ∗ Y )(t),

so

(7.3) X(t) + (K1 ∗ X)(t) = Y (t), t ≥ 0.

By (2.3) and (3.3), K1 is integrable, and so, as X(t) → X∞ as t → ∞,
it follows that

(7.4) lim
t→∞Y (t) = X∞

(
1 +

∫ ∞

0

sK(s) ds

)
, a.s..

Therefore, it follows by the definition of Y that

lim
t→∞

∫ t

0

Σ(s) dB(s) exists a.s. and is a.s. finite,

from which Σ ∈ L2(0,∞) automatically follows. We now prove that
(3.19) holds by providing a proof by contradiction. Using (7.4), we see
that

X0 +
∫ ∞

0

Σ(s) dB(s) = X∞

(
1 +

∫ ∞

0

sK(s) ds

)
a.s..

We suppose that

1 +
∫ ∞

0

sK(s) ds = 0,
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then ∫ ∞

0

Σ(s) dB(s) = −X0 a.s..

But ∫ ∞

0

Σ(s) dB(s) ∼ N
(

0,

∫ ∞

0

Σ(s)2 ds

)
,

and X0 is purely deterministic; this is only possible if X0 and Σ are
both zero. As we excluded this trivial case by assumption, it is clear
that (3.19) holds. Finally, in the proof of Theorem 3.5, we provide an
argument to show that R(t) → R∞ < ∞ as t → ∞ when (3.3) and
(3.9) hold.

We now show that (ii) implies (i). Consider (7.3). From [8, Theorem
2.3.5], we know that X can be expressed as

(7.5) X(t) = Y (t) −
∫ t

0

r(t − s)Y (s) ds,

where the function r satisfies r +K1 ∗ r = K1. Letting t → ∞, the first
term on the righthand side of (7.5) becomes

(7.6) Y (∞) = X0 +
∫ ∞

0

Σ(s) dB(s).

From [8, Theorem 2.4.1], we know that r ∈ L1(0,∞) if 1 + K̂1(z) = 0
for Re z ≥ 0. We show in the sequel that 1 + K̂1(z) = 0 for Re z ≥ 0,
thus we can integrate r + K1 ∗ r = K1 over [0,∞) and rearrange the
equation to obtain

∫ ∞

0

r(s) ds =
(

1 +
∫ ∞

0

K1(s) ds

)−1 ∫ ∞

0

K1(s) ds.

Using this we see that the second term on the righthand side of (7.5)
becomes

(7.7) lim
t→∞

∫ t

0

r(t − s)Y (s) ds

=
(

1 +
∫ ∞

0

K1(s) ds

)−1 ∫ ∞

0

K1(s) dsY (∞).
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Again, letting t → ∞ we see that (7.5) becomes

X∞ = Y (∞) −
∫ ∞

0

r(s) dsY (∞)

=
(

1 +
∫ ∞

0

K1(s) ds

)−1

Y (∞)

=
(

1 +
∫ ∞

0

K1(s) ds

)−1(
X0 +

∫ ∞

0

Σ(t) dB(t)
)

by combining (7.6) and (7.7).

We now show that 1 + K̂1(z) = 0 for Re z ≥ 0. If z = 0, then

1 + K̂1(0) = 1 +
∫ ∞

0

sK(s) ds = 0

from our assumptions. For Re z ≥ 0 and z = 0, we have

1 + K̂1(z) =
1
z
(z − A − K̂(z)).

A proof by contradiction is provided to show that this is nonzero.
Suppose that there exists z0 = 0, Re z0 ≥ 0 such that z0−A−K̂(z0) = 0.
Thus, ez0t is a solution of

y′(t) = Ay(t) +
∫ ∞

0

K(s)y(t − s) ds.

Using variation of parameters, we see that

(7.8) ez0t = R(t) +
∫ t

0

R(t − s)
∫ ∞

s

K(u)ez0(s−u) du ds.

We consider the cases where Re z0 > 0 and Re z0 = 0 separately.
When Re z0 > 0, the real part of the lefthand side of (7.8) tends to
∞ as t → ∞. Now consider the righthand side. The first term on the
righthand side of (7.8) converges to a finite limit as R → R∞ as t → ∞.
Now we consider the second term. Since t �→ ∫ ∞

t
K(u)ez0(t−u) du is

integrable and R(t) → R∞ as t → ∞ their convolution tends to a finite
constant. Thus, the real part of the righthand side approaches a finite
constant while the real part of the lefthand side tends to ∞. This yields
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a contradiction and so 1 + K̂1(z) = 0 for Re z > 0. We now look at
the case when Re z0 = 0. By considering the real part of both sides
of (7.8), we see that the lefthand side is identically equal to zero while
the righthand side is not. This yields a contradiction and so

1 + K̂1(z) = 0 for Re z ≥ 0.

Proof of Theorem 4.1. We begin by splitting the convolution term
as follows

dx(t) = α

(
x(t) −

∫ 0

−∞
w(t − s)x(s) ds −

∫ t

0

w(t − s)x(s) ds

)
dt

+ Σ(t) dB(t).

Clearly −α
∫ 0

−∞ w(t − s)x(s) ds corresponds to f(t) of (2.5) for t ≥ 0.
We see that this term is in L1(0,∞) using (4.3). Thus, we can
apply Theorem 3.7 to show that the solution x(t; φ, Σ) of (4.1) satisfies
x(·; φ, Σ) → x∞(φ, Σ) almost surely, where x∞(φ, Σ) is given by (4.4).

Furthermore, as (4.5) holds, a simple calculation shows that condition
(3.16) of Theorem 3.7 is satisfied and so (4.6) must hold.

Proof of Lemma 5.1. Define the random vector

(7.9) Λ :=
(

A +
∫ ∞

0

K(s) ds

)
X∞.

Writing (1.1) in integral form, adding and subtracting X∞ from both
sides, and then dividing both sides of the equation by t, we obtain

(7.10)
X(t) − X∞

t
=

X0 − X∞
t

+

∫ t

0
A(X(s) − X∞) ds

t

+

∫ t

0

∫ s

0
K(s − u)(X(u) − X∞) du ds

t

−
∫ t

0

∫ ∞
s

K(u) du dsX∞
t

+

∫ t

0
Σ(s) dB(s)

t
+ Λ.

As t → ∞ we see that the term on the lefthand side of (7.10) tends
to zero since (3.9) holds. Now consider the righthand side of (7.10).
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The first term tends to zero as t → ∞ since X0 is a finite deterministic
vector and X∞ is almost surely finite by hypothesis. The second term
tends to zero since (3.10) holds. Consider the third term. Using the
Cauchy-Schwarz inequality,

1
t

∥∥∥∥
∫ t

0

∫ s

0

K(s − u)(X(u) − X∞) du ds

∥∥∥∥
≤

(
1
t2

∥∥∥∥
∫ t

0

∫ s

0

K(s − u)(X(u) − X∞) du ds

∥∥∥∥2)1/2

≤
(

K

t

∫ t

0

∫ s

0

‖K(s− u)‖‖X(u)− X∞‖2 du ds

)1/2

,

where K =
∫ ∞
0 ‖K(t)‖ dt. Using (2.1) and (3.10) we see that the

righthand side of this inequality tends to zero as t → ∞. Thus the
third term on the righthand side of (7.10) tends to zero. Since (3.3)
holds, we see that the fourth term tends to zero as t → ∞. Therefore,
if we take limits on both sides of (7.10), we obtain

(7.11) lim
t→∞

1
t

∫ t

0

Σ(s) dB(s) = −Λ.

We now show that Λ = 0 almost surely. Each individual entry of the
vector (1/t)

∫ t

0 Σ(s) dB(s) is given by

[
1
t

∫ t

0

Σ(s) dB(s)
]

i

=
1
t

d∑
j=1

∫ t

0

Σij(s) dBj(s).

Since Λ is almost surely finite by hypothesis, we know that P[Ci] = 1
where Ci ⊂ Ω is defined by

Ci =
{

ω :
[

lim
t→∞

1
t

∫ t

0

Σ(s) dB(s)
]

i

exists
}

, i = 1, . . . , d.

For each i = 1, . . . , d, define σi ∈ C([0,∞), [0,∞)) by

(7.12) σ2
i (t) =

d∑
j=1

Σ2
ij(t), t ≥ 0,
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and consider the cases when σ2
i ∈ L1(0,∞) and σ2

i /∈ L1(0,∞)
individually. If σ2

i ∈ L1(0,∞), then limt→∞
∑d

j=1

∫ t

0
Σij(s) dBj(s)

exists and is almost surely finite, and so

lim
t→∞

1
t

d∑
j=1

∫ t

0

Σij(s) dBj(s) = 0, a.s..

Thus, if σ2
i ∈ L1(0,∞), then Λi = 0, a.s.

In the case when σ2
i /∈ L1(0,∞), we have that

lim inf
t→∞

d∑
j=1

∫ t

0

Σij(s) dBj(s) = −∞,

lim sup
t→∞

d∑
j=1

∫ t

0

Σij(s) dBj(s) = ∞, a.s.

Therefore

lim inf
t→∞

1
t

d∑
j=1

∫ t

0

Σij(s) dBj(s) ≤ 0,

lim sup
t→∞

1
t

d∑
j=1

∫ t

0

Σij(s) dBj(s) ≥ 0, a.s.

Since limt→∞(1/t)
∑d

j=1

∫ t

0
Σij(s) dBj(s) = Λi a.s., and Λi is almost

surely finite, we have

Λi = lim
t→∞

1
t

d∑
j=1

∫ t

0

Σij(s) dBj(s) = lim inf
t→∞

1
t

d∑
j=1

∫ t

0

Σij(s) dBj(s) ≤ 0,

so Λi ≤ 0, a.s. Similarly,

Λi = lim
t→∞

1
t

d∑
j=1

∫ t

0

Σij(s) dBj(s) = lim sup
t→∞

1
t

d∑
j=1

∫ t

0

Σij(s) dBj(s) ≥ 0,

so Λi ≥ 0, almost surely. Therefore, in the case when σ2
i /∈ L2(0,∞),

we have that Λi = 0, almost surely. Hence, Λi = 0 for all i = 1, . . . , d,
almost surely, and so Λ = 0, almost surely. Thus, (5.1) must hold.
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Proof of Lemma 5.2. By Itô’s rule,

(7.13) ‖X(t)‖2 = ‖X0‖2 + 2
∫ t

0

〈X(s), AX(s) + (K ∗ X)(s)〉 ds

+
∫ t

0

‖Σ(s)‖2
F ds + M(t),

where

(7.14) M(t) = 2
d∑

j=1

n∑
i=1

∫ t

0

Xi(s)Σij(s) dBj(s).

Introducing the function Δ defined by Δ(t) = X(t)−X∞, and by using
the fact that∫ t

0

AX(s) + (K ∗ X)(s) ds = X(t) − X0 −
∫ t

0

Σ(s) dB(s),

we have∫ t

0

〈X(s), AX(s) + (K ∗ X)(s)〉 ds

=
∫ t

0

〈Δ(s), A(Δ(s) + X∞) + (K ∗ [Δ + X∞])(s)〉 ds

+ 〈X∞, X(t) − X0 −
∫ t

0

Σ(s) dB(s)〉.

Therefore, by Lemma 5.1, and the definition of K1, we get

(7.15)
∫ t

0

〈X(s), AX(s) + (K ∗ X)(s)〉 ds

=
∫ t

0

〈Δ(s), AΔ(s) + (K ∗ Δ)(s)〉 ds −
∫ t

0

〈Δ(s), K1(s)X∞〉 ds

+ 〈X∞, X(t) − X0 −
∫ t

0

Σ(s) dB(s)〉.

We suppose that

(7.16) lim
t→∞

∫ t

0

‖Σ(s)‖2
F ds = ∞,
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and prove that this is false by contradiction. The quadratic variation
of M is given by

〈M〉(t) = 4
n∑

i=1

d∑
j=1

∫ t

0

(Xi(s)Σij(s))2 ds.

Therefore,

〈M〉(t) ≤ 4
d∑

j=1

∫ t

0

n∑
i=1

Xi(s)2
n∑

i=1

Σij(s)2 ds

≤ 4
∫ t

0

‖X(s)‖2‖Σ(s)‖2
F ds.

If we define
C1 = {ω : lim

t→∞〈M〉(t, ω) = ∞},
then by L’Hôpital’s rule, (7.16) and (3.9), we get

lim sup
t→∞

〈M〉(t)∫ t

0
‖Σ(s)‖2

F ds
≤ 4‖X∞‖2, a.s. on C1.

Therefore, by the law of large numbers for martingales, we get

lim
t→∞

|M(t)|∫ t

0 ‖Σ(s)‖2
F ds

= lim
t→∞

|M(t)|
〈M〉(t) · 〈M〉(t)∫ t

0 ‖Σ(s)‖2
F ds

= 0, a.s. on C1.

On C1, we have that limt→∞ M(t) exists a.s. and is almost surely
finite. Therefore, on account of (7.16), we have

lim
t→∞

|M(t)|∫ t

0 ‖Σ(s)‖2
F ds

= 0, a.s. on C1.

Hence,

lim
t→∞

M(t)∫ t

0
‖Σ(s)‖2

F ds
= 0, a.s..

By applying this result and using (3.9) in (7.13), we now may conclude

(7.17) lim
t→∞

∫ t

0
〈X(s), AX(s) + (K ∗ X)(s)〉 ds∫ t

0
‖Σ(s)‖2

F ds
= −1

2
, a.s.
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We now analyze the limit on the lefthand side above by using the
representation (7.15) and show that its limit must be zero, thereby
inducing a contradiction to the hypothesis that (7.16) holds. Dividing
(7.15) by

∫ t

0
‖Σ(s)‖2

F ds, we get

(7.18)
1∫ t

0
‖Σ(s)‖2

F ds

∫ t

0

〈X(s), AX(s) + (K ∗ X)(s)〉 ds

=
1∫ t

0
‖Σ(s)‖2

F ds

∫ t

0

〈Δ(s), AΔ(s) + (K ∗ Δ)(s)〉 ds

−
∫ t

0 〈Δ(s), K1(s)X∞〉 ds∫ t

0 ‖Σ(s)‖2
F ds

+
〈X∞, X(t) − X0〉∫ t

0 ‖Σ(s)‖2
F ds

− 1∫ t

0 ‖Σ(s)‖2
F ds

〈
X∞,

∫ t

0

Σ(s) dB(s)
〉
.

Assumption (3.10) states that ‖X − X∞‖2 ∈ L1(0,∞) almost surely.
Therefore, as K obeys (2.1), it follows that the numerator in the first
term on the righthand side of (7.18) tends to a finite limit as t → ∞.
Consequently, the first term has zero limit as t → ∞, almost surely.
By (3.9) and (3.10), it follows that for each ω in an almost sure event
t �→ |Δ(t, ω)| is uniformly bounded. As (3.3) holds K1 is integrable, and
so the numerator in the second term on the righthand side of (7.18)
tends to a limit for each outcome in an almost sure set. Hence, the
second term has zero limit as t → ∞, almost surely. Equations (3.9)
and (7.16) guarantee that the third term has zero limit as t → ∞,
almost surely. Thus, by considering the final term on the righthand
side of (7.18), it is evident that

(7.19) lim
t→∞

1∫ t

0 ‖Σ(s)‖2
F ds

∫ t

0

〈X(s), AX(s)+(K ∗X)(s)〉 ds = 0, a.s.

if it can be shown that (7.16) implies

(7.20) lim
t→∞

∫ t

0 Σ(s) dB(s)∫ t

0
‖Σ(s)‖2

F ds
= 0, a.s..

Hence, proving (7.20) provides the desired contradiction to (7.17) in
the shape of (7.19).
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The proof of (7.20) is quite straightforward. Define N(t) =
∫ t

0
Σ(s) dB(s),

for t ≥ 0 and

Ni(t) =
d∑

j=1

∫ t

0

Σij(s) dBj(s), t ≥ 0,

so that Ni(t) = 〈N(t), ei〉. Then each Ni is a local martingale with
square variation

〈Ni〉(t) =
∫ t

0

σ2
i (s) ds, t ≥ 0,

where σi is defined by (7.12). It is easily seen that

(7.21) 〈Ni〉(t) ≤
∫ t

0

‖Σ(s)‖2
F ds.

In the case when limt→∞〈Ni〉(t) = ∞, the law of large numbers for
martingales and (7.21) give

lim
t→∞

|Ni(t)|∫ t

0
‖Σ(s)‖2

F ds
= lim

t→∞
|Ni(t)|
〈Ni〉(t) · 〈Ni〉(t)∫ t

0
‖Σ(s)‖2

F ds
= 0, a.s.

On the other hand, if limt→∞〈Ni〉(t) < ∞, then limt→∞ Ni(t) exists
almost surely and is almost surely finite. Since Σ obeys (7.16), it is
immediate that once more

lim
t→∞

|Ni(t)|∫ t

0 ‖Σ(s)‖2
F ds

= 0, a.s..

Therefore,

lim
t→∞

|Ni(t)|∫ t

0
‖Σ(s)‖2

F ds
= 0, for all i = 1, . . . , d a.s.,

from which (7.20) follows immediately.

Proof of Lemma 6.1. Using integration by parts over [c, t] and Itô’s
lemma, we obtain

(7.22) B2(t)/t − log t = B2(c)/c − log c + 2M(t) − 〈M〉(t),
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where M(t) =
∫ t

c
s−1B(s) dB(s) and the square variation of M is

given by 〈M〉(t) =
∫ t

c s−2B2(s) ds. Define the event D = {ω :
limt→∞〈M〉(t, ω) = L < ∞} and suppose that P[D] > 0. On the
event D we know that limt→∞ M(t, ω) < ∞, and so each term on the
righthand side of (7.22) is finite. This implies that the lefthand side
of (7.22) is finite, which in turn implies that limt→∞ B2(t) = ∞ on
an event D of nonzero probability. This contradicts the Law of the
Iterated Logarithm for standard Brownian motion and so (6.1) holds.

Proof of Lemma 6.2. Define the event A by

(7.23) A =
{

ω :
∫ ∞

0

( ∫ ∞

t

Σ(s) dB(s)
)2

dt < ∞
}

.

In the sequel we show that

(7.24)
∫ ∞

0

(∫ ∞

t

Σ(s) dB(s)
)2

dt > ε

∫ ∞

c

B3(t)2t−2 dt,

where B3 is standard Brownian motion on the probability triple
(Ω,F ,P), and ε and c are positive constants. From Lemma 6.1 we
see that under our hypotheses the righthand side of (7.24) is infinite,
and hence that P[A] = 0.

We now show that (7.24) holds. Define M(t) =
∫ t

0
Σ(s) dB(s). Then

M is a martingale with square variation 〈M〉(t) =
∫ t

0
Σ2(s) ds. Define

T :=
∫ ∞
0

Σ2(s) ds = 〈M〉(∞). By the martingale time change theorem,
there is a standard Brownian motion B1 such that M(t) = B1(〈M〉(t)).
Using (3.12) and the continuity of Σ, we may define θ : [0, T ) →
[0,∞) : t �→ θ(t) by 〈M〉(θ(t)) = t, t ∈ [0, T ). Thus, because
M(∞) − M(t) =

∫ ∞
t Σ(s) dB(s), we obtain∫ ∞

0

( ∫ ∞

t

Σ(s) dB(s)
)2

dt

=
∫ ∞

0

{
B1(〈M〉(∞)) − B1(〈M〉(t))

}2

dt

=
∫ T

0

(B1(T ) − B1(s))
2 1
〈M〉′(θ(s)) ds

=
∫ T

0

(B1(T ) − B1(T − u))2 Σ(θ(T − u))−2 du.
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Now, the process B2 = {B2(t); 0 ≤ t ≤ T ;FB2(t)} defined by B2(t) =
B1(T ) − B1(T − t), t ∈ [0, T ] is a standard Brownian motion. Hence

(7.25)
∫ ∞

0

( ∫ ∞

t

Σ(s) dB(s)
)2

dt

=
∫ T

0

B2
2(u)Σ(θ(T − u))−2 du

=
∫ ∞

1/T

B2
2(1/v)Σ(θ(T − 1/v))−2v−2 dv

=
∫ ∞

1/T

(vB2(1/v))2 Σ(θ(T − 1/v))−2v−4 dv

=
∫ ∞

1/T

B2
3(v)Σ(θ(T − 1/v))−2v−4 dv,

where B3 defined by B3(t) = tB2(1/t) for t > 0 and B3(0) = 0 is a
standard Brownian motion.

Since θ = 〈M〉−1, we have that
∫ ∞

θ(T−1/v) Σ2(u) du = v−1, so using
(3.13) we see that for v > 1/T

(7.26) v−2Σ(θ(T − 1/v))−2

=
( ∫ ∞

θ(T−1/v)

Σ2(u) du

)2

Σ(θ(T − 1/v))−2 > ε.

Using (7.25) and (7.26), we obtain the inequality in (7.24), where
c = 1/T .

8. Equations with weakly singular kernels. In this section we
consider the behavior of the solution of equation (1.1) when the kernel
is weakly singular. While Miller and Feldstein considered a general
definition for weak singularities in the kernel, Brunner et al. [4, 5]
considered Volterra equations with weakly singular kernels of algebraic
or logarithmic type. In these papers singularities not only in the kernel
itself but also in its derivatives were considered. In keeping with earlier
assumptions made in this paper no new assumptions concerning the
existence of the derivatives of the kernel are made in this section.
Instead, we restrict our investigation to the study of singularities in
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the kernel alone. Consequently, we can adopt an abridged version of
the definition of a weakly singular function used in [5]. We say that
the function K : (0, T ] → Mn×n(R) satisfies

(8.1) K ∈ Wν((0, T ], Mn×n(R)),

if K is continuous on (0, T ] and

‖K(t)‖ ≤ c(K)
{

1 + | log(t)| ν = 0, 0 < t ≤ T ,
t−ν 0 < ν < 1, 0 < t ≤ T .

We do not know of any work concerned with the behavior of stochastic
Volterra equations with weakly singular kernels. Consequently, before
considering the effect of a weakly singular kernel on the results in this
paper, it is necessary to prove that a solution exists under assumption
(8.1).

Theorem 8.1. Let K satisfy (8.1), and let Σ satisfy (2.2). Then
for every T > 0 there is a unique adapted process X(·, X0, Σ) ∈
C([0, T ),Rn) obeying (1.1).

We now provide a sketch the proof of Theorem 8.1. Due to the
presence of the weakly singular kernel, our analysis is simplified if we
consider the following equation

X(t) = X0 +
∫ t

0

[
A +

∫ t−s

0

K(u) du

]
X(s) ds(8.2a)

+ μ(t), 0 < t ≤ T,

X(0) = X0,(8.2b)

where μ(t) =
∫ t

0
Σ(s) dB(s). Using standard arguments, the existence

of an adapted process X ∈ C[0, T ] which satisfies (8.2) can be shown.
Moreover, by applying Fubini’s theorem to (8.2), we can show that
X is in fact a solution of (1.1). A Gronwall-type argument can be
implemented to show that this is in fact a unique process. Again,
standard arguments can be applied to show that X is in fact a unique,
continuous, adapted process on [0,∞).
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A consequence of Theorem 8.1 is that assumption (2.1) may be
replaced by

K ∈ Wν((0,∞), Mn×n(R)) ∩ L1((0,∞), Mn×n(R)), 0 ≤ ν < 1,

in Theorem 3.2. The conclusion of this theorem and its proof is essen-
tially unaltered. The primary reason for this is that the reformulation
of equation (1.1) found in the proof of [1, Theorem 3.2] still holds. In
fact, the structure of the reformulated equation ensures that the type of
singularity considered in the kernel has no influence on the convergence
of the solutions.

The question of integrability of solutions is more delicate and requires
careful analysis. The proof of this result requires the use of the variation
of parameters representation of the solution. It will be necessary to
prove the validity of this formula, which will involve a close examination
of stochastic Fubini theorems, before we can tackle the integrability of
the solution. The authors intend to examine this in future work.

In [5, 13], the extent to which the regularity in the kernel influences
the regularity of the solution of the deterministic equation was investi-
gated. However, the presence of the nondifferentiable Brownian motion
in the stochastic equation prohibits the existence of a derivative in the
solution; indeed it is known that the solution to the stochastic equation
will be Hölder continuous with exponent 1/2. Consequently, we cannot
expect to obtain the same amount of regularity in the solution of the
stochastic equation as obtained in the deterministic case regardless of
the regularity of the kernel. An interesting question is what effect a
stronger singularity in the kernel, for example a singularity in its tail,
has on the behavior of the solution of the stochastic equation.
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