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A HYBRID METHOD FOR
INVERSE BOUNDARY VALUE PROBLEMS

FOR AN INCLUSION IN
SEMI-INFINITE TWO-DIMENSIONAL DOMAINS

ROMAN CHAPKO AND NADIYA VINTONYAK

ABSTRACT. We consider an inverse Dirichlet boundary
value problem for the Laplace equation that consists of the
reconstruction of the shape of a bounded domain contained
within a semi-infinite region from Cauchy data observed on a
part of the infinite boundary. The numerical solution of this
problem is obtained by a hybrid method with the correspond-
ing integral equations of the first kind derived by a Green’s
function technique. To solve the integral equations we use
Tikhonov regularization with sinc and trigonometric quadra-
tures for integrals with various singularities. The numerical
examples illustrate the feasibility of the hybrid method in the
case of 2D semi-infinite regions.

1. Introduction. In nondestructive testing, one tries to assess
the interior structure of an object from some information measured
on the accessible boundary. Such problems are of particular interest
for the case of unbounded domains. The mathematical modeling of
thermal or electrostatic imaging methods in nondestructive testing and
evaluation leads to inverse boundary value problems for the Laplace
equation. In principle, in these applications inclusions or interior cracks
are detected from overdetermined Cauchy data on the accessible part
of the boundary [1, 2, 14].

For simplicity of our presentation we assume that D1 ⊂ R2 is a semi-
infinite region with boundary Γ and D0 is a simply connected bounded
domain in R2 with boundary Γ0 ∈ C2 such that D0 ⊂ D1. Further,
we denote D := D1 \D0.
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For a given bounded continuous function f on Γ, we consider the
Dirichlet problem for the bounded function u ∈ C2(D)∩C(D) satisfying
the Laplace equation

(1.1) Δu = 0 in D

and the boundary conditions

u = 0 on Γ0 and(1.2)
u = f on Γ.(1.3)

Existence and uniqueness of classical or weak solutions for the direct
boundary value problem (1.1) (1.3) are well established, for example,
in [8]. We assume that the function f is smooth enough to ensure the
existence of the normal derivative of the solution u on Γ.

Now we shall consider the following inverse problem: determine the
boundary Γ0 from the knowledge of the normal derivative

(1.4)
∂u

∂ν
= φ on Σ

under the assumption that f �= 0. Here ν is the outward unit normal
on Γ, Σ ⊂ Γ is a subset with a nonempty interior and φ is a given
(measured) function.

The issue of unique reconstruction of the unknown boundary curve
Γ0 from the Cauchy data on Σ is settled through the following theorem.

Theorem 1.1. Let Γ0 and Γ̃0 be two closed curves contained in the
semi-infinite region D1, and denote by u and ũ the solutions to the
Dirichlet problem (1.1) (1.3) for the interior boundaries Γ0 and Γ̃0,
respectively. Assume that f �= 0 and

∂u

∂ν
=
∂ũ

∂ν
on Σ ⊂ Γ.

Then Γ0 = Γ̃0.

Proof. The proof of the theorem is analogous to the case of bounded
regions, see [10], and is based on Holmgren’s uniqueness theorem,
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the maximum-minimum principle for the Laplace equation and the
analyticity of the solution.

The high instability of the solution with respect to small data pertur-
bations causes ill-posedness of the inverse problem. In order to obtain
reliable approximations of the interior boundary curve regularization
techniques must be applied. Some methods for the reconstruction of
an inclusion in a half plane for the nonstationary heat equation were
considered in [3, 6]. They are based on regularized Newton iterations
in [3] and on Landweber iterations in [6]. The numerical experiments
have exhibited a slow convergence of the Landweber method in the
case of semi-infinite regions. In addition, the solution of direct bound-
ary value problems is required in each iteration step. Furthermore,
this method yields inaccurate reconstructions of those parts of the in-
terior curve that have the boundary of the semi-infinite region on their
opposite side. As disadvantages of the Newton method, we note that
the numerical implementation again requires the solution of a number
of Dirichlet problems (1.1) (1.3) in each iteration and a reasonable a
priori information for the initial approximation.

In this paper we consider a method that can be viewed as a hybrid
of a decomposition method [7] and a Newton method. This method
was first described in [9] and successfully applied for the solution of
various inverse boundary value problems in bounded domains [11]
and for inverse scattering problems [5, 12, 15]. It combines the
advantages of both Newton and decomposition methods. One of its
important properties is that it does not require the solution of direct
boundary value problems in each iteration step in contrast to Newton
and Landweber methods. This reduces the computational cost and
does not lead to a deterioration of the reconstructions as opposed to
the decomposition methods, see Section 5.

Our goal in this paper is the extension, mostly numerically, of this
hybrid method to semi-infinite regions in R2. The convergence of the
hybrid method has only been observed through our numerical experi-
ments. Theoretical investigations on the convergence and applications
to other boundary conditions will be the topic of our future research.
Note, that the main difficulty in applying the hybrid method for the
three-dimensional case is the need of an efficient solver for the corre-
sponding two-dimensional integral equations.
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We consider the following cases of semi-infinite regions:

(i) the strip

(1.5) Ds
1 := {x ∈ R2 : x1 ∈ R, 0 < x2 < a, a > 0},

(ii) the half strip

(1.6) Dhs
1 := {x ∈ R2 : x1 > 0, 0 < x2 < a, a > 0},

(iii) the upper half plane

(1.7) Dhp
1 := {x ∈ R2 : x2 > 0}

and the quadrant

(1.8) Dq
1 := {x ∈ R2 : x1 > 0, x2 > 0}.

The plan of the paper is as follows. In Section 2 we describe the
numerical solution of the direct boundary value problem (1.1) (1.3)
via boundary integral equations of the first kind. For the integral
representation of the solution, we use single-layer potentials with the
Green function for the respective semi-infinite region. The computation
of normal derivatives on the boundary curves is considered in Section 3.
The main aspects of applying the hybrid method to our inverse problem
are described in Section 4. Finally, in Section 5, results of numerical
experiments are presented.

2. A Green’s function technique for the solution of the
direct problem. The special features of the domain D determine our
numerical method for the solution of the direct problem (1.1) (1.3).
Since D is an unbounded domain, the most efficient numerical method
is the application of the indirect variant of the boundary integral
equation approach. Using the single-layer potential approach with the
Green’s function G for the domain D1, we can seek the solution of the
direct problem in the form

u(x)=
1
ωπ

∫
Γ0

ϕ(y)G(x, y) ds(y)− 1
ωπ

∫
Γ

f(y)
∂G(x, y)
∂ν(y)

ds(y),(2.1)

x ∈ D,
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with an unknown density ϕ on Γ0. Here the coefficients are ωπ = 2π
in the case of the domain (1.5) and ωπ = 4π in the case of the domains
(1.6) (1.8).

Green’s function for the Laplace equation in the semi-infinite region
D1 can be introduced as

G(x, y) = − ln |x− y|2 + g(x, y),

where g is a harmonic and regular function in D1 such that G satisfies
the homogeneous boundary condition (1.2) with respect to x. For the
semi-infinite regions (1.5) (1.8), the function g has the form (see, e.g.,
[13])

gs(x, y) := ln
{ch[π(x1 − y1)/a] − cos[π(x2 + y2)/a]} |x− y|2

ch[π(x1 − y1)/a] − cos[π(x2 − y2)/a]
, x �= y,

ghs(x, y) := gs(x, y) + ln
ch[π(x1 + y1)/a] − cos[π(x2 − y2)/a]
ch[π(x1 + y1)/a] − cos[π(x2 + y2)/a]

, x �= y,

ghp(x, y) := ln [(x1 − y1)2 + (x2 + y2)2],

gq(x, y) := ln
[(x1 + y1)2 + (x2 − y2)2][(x1 − y1)2 + (x2 + y2)2]

(x1 + y1)2 + (x2 + y2)2
,

respectively. Here chx := (exp(x)+exp(−x))/2 is the hyperbolic cosine
function. Note that the behavior of Green’s function at infinity for
semi-infinite regions implies the boundedness of the solution in the
form (2.1).

By the classical results on the continuity of single-layer potentials and
the properties of Green’s function, the problem (1.1) (1.3) is reduced
to the integral equation

(2.2)
1
ωπ

∫
Γ0

ϕ(y)G(x, y) ds(y) =
1
ωπ

∫
Γ

f(y)
∂G(x, y)
∂ν(y)

ds(y), x ∈ Γ0,

of the first kind.

Theorem 2.1. For any given bounded piecewise continuous func-
tion f , the integral equation (2.2) possesses a unique solution ϕ ∈
H−1/2(Γ0).
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Proof. This theorem is the extension of the classical results from [8]
for the first kind integral equation of potential theory in Sobolev spaces
to the semi-infinite case. The restrictions on the boundary function f
and the behavior of the normal derivative of Green’s function for semi-
infinite regions at infinity ensure the existence of the integral on the
righthand side in (2.2).

We assume that the boundary curve Γ0 is given through a parametric
representation

Γ0 := {x(t) = (x1(t), x2(t)) : 0 ≤ t ≤ 2π},
where x : R → R2 is C2 and 2π-periodic with |x′(t)| > 0 for all t.
Then we can transform (2.2) into the parametric form

1
ωπ

∫ 2π

0

μ(τ)
[
− ln

(
4
e

sin2 t− τ

2

)
+ L(t, τ)

]
dτ = w(t),(2.3)

t ∈ [0, 2π],

with the 2π-periodic kernel

L(t, τ) := G(x(t), x(τ)) + ln
(

4
e

sin2 t− τ

2

)
for t �= τ,

the righthand side

w(t) :=
1
ωπ

∫
Γ

f(y)
∂G(x(t), y)
∂ν(y)

ds(y), t ∈ [0, 2π]

and the density μ(t) := ϕ(x(t))|x′(t)|.
Note that the kernel L has the diagonal term

Ls(t, t) = ln
2a2 {1 − cos [(2π/a)x2(t)]}

π2e|x′(t)|2 ,

Lhs(t, t) = Ls(t, t) + ln
ch [(2π/a)x1(t)] − 1

ch [(2π/a)x1(t)] − cos [(2π/a)x2(t)]
,

Lhp(t, t) = ln
1

e|x′(t)|2 + ghp(x(t), x(t)),

Lq(t, t) = ln
1

e|x ′(t)|2 + gq(x(t), x(t))
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for the regions (1.5) (1.8), respectively. The function on the righthand
side can be written as

(2.4) w(t) :=
1
ωπ

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑2
l=1

∫ ∞
−∞ fs

l (τ)Hs
l (t, τ) dτ for Ds

1,∑2
l=1

∫ ∞
0 fhs

l (τ)Hhs
l (t, τ) dτ

+
∫ a

0 f
hs
3 (τ)Hhs

3 (t, τ) dτ for Dhs
1 ,∫ ∞

−∞ fhp(τ)Hhp(t, τ) dτ for Dhp
1 ,∑2

l=1

∫ ∞
0 f q

l (τ)Hq
l (t, τ) dτ for Dq

1.

Here the functions Hs
l , Hq

l , l = 1, 2, Hhs
l , l = 1, 2, 3, and Hhp are

obtained by the parameterization of the normal derivative of Green’s
function on the corresponding parts of the boundary Γ for the regions
(1.5) (1.8). They are smooth functions and fs

l , f q
l , l = 1, 2, fhs

l ,
l = 1, 2, 3, and fhp represent the given boundary functions.

For example, in the case of a half strip the kernels Hhs
l , l = 1, 2, 3, in

(2.4) have the representations

Hhs
1 (t, τ) :=

(2π/a) sin [(π/a)x2(t)]
ch [(π/a)(x1(t) + τ)] − cos [(π/a)x2(t)]

− (2π/a) sin [(π/a)x2(t)]
ch [(π/a)(x1(t) − τ)] − cos [(π/a)x2(t)]

,

Hhs
2 (t, τ) :=

(2π/a) sin [(π/a)x2(t)]
ch [(π/a)(x1(t) + τ)] + cos [(π/a)x2(t)]

− (2π/a) sin [(π/a)x2(t)]
ch [(π/a)(x1(t) − τ)] + cos [(π/a)x2(t)]

,

Hhs
3 (t, τ) :=

(2π/a) sh [(π/a)x1(t)]
ch [(π/a)x1(t)] − cos [(π/a)(x2(t) + τ)]

− (2π/a) sh [(π/a)x1(t)]
ch [(π/a)x1(t)] − cos [(π/a)(x2(t) − τ)]

.

Here shx := (exp(x) − exp(−x))/2 is the hyperbolic sine function.

For the full discretization of the integral equation of the first kind
(2.3) with a logarithmic singularity we apply a collocation method to-
gether with quadrature rules [4, 8] based on trigonometric interpola-
tion. For this purpose we choose an equidistant mesh by setting

(2.5) ti := iπ/M, i = 0, . . . , 2M − 1, M ∈ N
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and use the quadrature rules

(2.6)
1
2π

∫ 2π

0

f(τ) dτ ≈ 1
2M

2M−1∑
j=0

f(tj)

and

(2.7)
1
2π

∫ 2π

0

f(τ) ln
(

4
e

sin2 t− τ

2

)
dτ ≈

2M−1∑
j=0

Rj(t) f(tj)

with weight functions

Rj(t) := − 1
2M

{
1 + 2

M−1∑
m=1

1
m

cosm(t− tj) +
cos(t− tj)

M

}
.

These quadrature formulas are obtained by replacing f by its trigono-
metric interpolation polynomial and then integrating exactly [8]. In
the case of periodic analytic functions f we obtain exponential conver-
gence.

For the numerical calculation of the integrals in (2.4) we first trans-
form the integrals over the intervals (0,∞) and (0, a) to integrals over
R. For this we perform the substitutions

(2.8)
∫ ∞

0

f(τ) dτ =
∫ ∞

−∞
f(eτ )eτ dτ

and

(2.9)
∫ a

0

f(τ) dτ = a

∫ ∞

−∞
f

(
a

e−τ + 1

)
e−τ

(e−τ + 1)2
dτ.

Then the quadrature rule

∫ ∞

−∞
f(τ) dτ ≈ h∞

M1∑
i=−M1

f(ih∞),M1 ∈ N, h∞=
c√
M1

,(2.10)

c > 0,
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can be applied. This quadrature formula is obtained by replacing f
by a sinc approximation, see [16], and then integrating exactly. In the
case of analytic functions f satisfying f(t) = O(e−c|t|) for |t| → ∞
and some positive constant c, the quadrature (2.10) has exponential
convergence. In the case of the substitution (2.9), note that if the
function f satisfies the property |f(z)| < c|z|α|a − z|β, z ∈ (0, a)
for some positive constants c, α and β, then we have exponential
convergence [16] for the quadrature (2.10). Analogously, in the case of
the substitution (2.8) algebraic decay of the function f at infinity also
ensures exponential convergence.

Thus, after the application of the quadrature rules (2.6) and (2.7)
in the integral equation (2.3) and the quadrature rule (2.10) for the
computation of the integrals on the righthand side (2.4), we collocate
at the quadrature points (2.5) to obtain the system of linear equations

2π
ωπ

2M−1∑
j=0

μ̃j

{
Rj(ti) +

1
2M

L(ti, tj)
}

= w̃(ti),(2.11)

i = 0, . . . , 2M − 1,

where μ̃j ≈ μ(tj) and w̃ is the approximation of (2.4).

A convergence and error analysis for this numerical scheme is de-
scribed in [4] in a Hölder space setting and in [8] in a Sobolev space
setting. This analysis exhibits the dependence of the convergence rate
on the smoothness of the boundary curve Γ0, i.e., the proposed method
belongs to the algorithms without “saturation effect.”

Finally, for the solution of the direct boundary value problem
(1.1) (1.3), we have the approximation

(2.12) ũ(x) =
2π
ωπ

· 1
2M

2M−1∑
j=0

μ̃j G(x, x(tj)) − w̃D(x), x ∈ D,

where w̃D is calculated analogously to (2.4).

3. The computation of normal derivatives on the boundaries.
For the numerical implementation of the inverse problem, we need
approximations for the normal derivative of the solution of problem
(1.1) (1.3) on the boundaries Γ0 and Γ. From the jump relations for
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the normal derivative of the single- and double-layer potentials in (2.1),
see [8], we have

(3.1)
∂u

∂ν
(x) =

1
2
ϕ(x) +

1
ωπ

∫
Γ0

ϕ(y)
∂

∂ν(x)
G(x, y) ds(y)

− 1
ωπ

∫
Γ

f(y)
∂2

∂ν(x)∂ν(y)
G(x, y) ds(y), x ∈ Γ0

and

(3.2)
∂u

∂ν
(x) =

1
ωπ

∫
Γ0

ϕ(y)
∂

∂ν(x)
G(x, y) ds(y)

− 1
ωπ

∫
Γ

f(y)
∂2

∂ν(x)∂ν(y)
G(x, y) ds(y), x ∈ Γ.

After a straightforward calculation of the first and second normal
derivatives of Green’s function G on the boundary Γ0 of the inclusion
and on the boundary Γ of the corresponding semi-infinite region,
parameterization and application of the quadrature rules as in the case
of the integral equation (2.2), we obtain approximations for the fluxes
(3.1) and (3.2).

Let us consider in detail the case when the domain D1 is a half
strip (1.5). Then the boundary Γ = Γ1 ∪ Γ2 ∪ Γ3, where Γ1 :=
{x̂1(t) = (t, 0) : 0 < t < ∞}, Γ2 := {x̂2(t) = (t, a) : 0 < t < ∞},
Γ3 := {x̂3(t) = (0, t) : 0 < t < a}. Concerning formula (3.1), we have
the parametric form for the normal derivative on Γ0 given by

∂u

∂ν
(x(t)) =

μ(t)
2|x ′(t)| +

1
ωπ

∫ 2π

0

μ(τ)T0(t, τ) dτ(3.3)

− 1
ωπ

∫ ∞

0

f1(τ)T1(t, τ) dτ

− 1
ωπ

∫ ∞

0

f2(τ)T2(t, τ) dτ

− 1
ωπ

∫ a

0

f3(τ)T3(t, τ) dτ, t ∈ [0, 2π],

where fi(t) := f(x̂i(t)), i = 1, 2, 3, and μ is the solution of (2.3).
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Here

T0(t, τ) :=
4∑

i=1

T
(i)
0 (t, τ),

where

T
(1)
0 (t, τ) := (π/a)x′

1(t) sin[(π/a)(x2(t)−x2(τ))]
{ch[(π/a)(x1(t)+x1(τ))]−cos[(π/a)(x2(t)−x2(τ))]}|x′(t)|

− (π/a)x′
2(t) sh[(π/a)(x1(t)+x1(τ))]

{ch[(π/a)(x1(t)+x1(τ))]−cos[(π/a)(x2(t)−x2(τ))]}|x′(t)| ,

T
(2)
0 (t, τ) := (π/a)x′

1(t) sin[(π/a)(x2(t)+x2(τ))]−(π/a)x′
2(t) sh[(π/a)(x1(t)−x1(τ))]

{ch[(π/a)(x1(t)−x1(τ))]−cos[(π/a)(x2(t)+x2(τ))]}|x′(t)| ,

T
(3)
0 (t, τ) := (π/a)x′

2(t) sh[(π/a)(x1(t)+x1(τ))]−(π/a)x′
1(t) sin[(π/a)(x2(t)+x2(τ))]

{ch[(π/a)(x1(t)+x1(τ))]−cos[(π/a)(x2(t)+x2(τ))]}|x′(t)| and

T
(4)
0 (t, τ) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(π/a)x′
2(t) sh[(π/a)(x1(t)−x1(τ))]

{ch[(π/a)(x1(t)−x1(τ))]−cos[(π/a)(x2(t)−x2(τ))]}|x′(t)|

− (π/a)x′
1(t) sin[(π/a)(x2(t)−x2(τ))]

{ch[(π/a)(x1(t)−x1(τ))]−cos[(π/a)(x2(t)−x2(τ))]}|x′(t)| , t �= τ ,

x′′
2 (t)x′

1(t)−x′′
1 (t)x′

2(t)
|x′(t)|3 , t = τ .

Let us introduce the functions:

a+
−(t, τ) :=

2π2

a2|x′(t)| sin
πx2(t)
a

sh
[
π

a
(x1(t) ± τ)

]
,

(b+−)+−(t, τ) :=
2π2

a2|x′(t)|
{

cos
πx2(t)
a

ch
[
π

a
(x1(t) ± τ)

]
± 1

}
,

c+−(t, τ) :=
2π2

a2|x′(t)| sin
[
π

a
(x2(t) ± τ)

]
sh
πx1(t)
a

,

d+
−(t, τ) :=

2π2

a2|x′(t)|
{

1 − ch
πx1(t)
a

cos
[
π

a
(x2(t) ± τ)

]}
.

Then the functions T1, T2 and T3 can be represented in the following
way:

T1(t, τ) :=
x′2(t)a+(t, τ) + x′1(t)(b+)−(t, τ)

{ch[(π/a)(x1(t) + τ)] − cos[(π/a)x2(t)]}2

− x′2(t)a−(t, τ) + x′1(t)(b−)−(t, τ)
{ch[(π/a)(x1(t) − τ)] − cos[(π/a)x2(t)]}2

,

T2(t, τ) :=
x′2(t)a

+(t, τ) + x′1(t)(b
+)+(t, τ)

{ch[(π/a)(x1(t) + τ)] + cos[(π/a)x2(t)]}2

− x′2(t)a−(t, τ) + x′1(t)(b−)+(t, τ)
{ch[(π/a)(x1(t) − τ)] + cos[(π/a)x2(t)]}2
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and

T3(t, τ) :=
x′1(t)c

+(t, τ) + x′2(t)d
+(t, τ)

{ch[(π/a)(x1(t) + τ)] + cos[(π/a)x2(t)]}2

− x′1(t)c−(t, τ) + x′2(t)d−(t, τ)
{ch[(π/a)(x1(t) − τ)] + cos[(π/a)x2(t)]}2

.

For the discretization of (3.3) we use the quadrature rule (2.6) for the
calculation of the integral over the interval (0, 2π). For the calculation
of the integrals over (0,∞) and (0, a), we transform them to integrals
over R using the substitutions (2.8) and (2.9), respectively, and then
we apply the sinc quadrature rule (2.10).

The flux (3.2) on the boundary Γ for the half strip case can be
expressed in the form

∂u

∂ν
(x) =

1
ωπ

∫
Γ0

ϕ(y)
∂G(x, y)
∂ν(x)

ds(y)

− 1
ωπ

3∑
l=1

∂

∂ν(x)

∫
Γl

fl(y)
∂G(x, y)
∂ν(y)

ds(y),

where x ∈ Γk and fk := f |Γk
, k = 1, 2, 3. After a straightforward

calculation of the first and second derivatives of Green’s function and
parameterization, we have

(3.4)
∂u

∂ν
(x̂k(t)) =

1
ωπ

∫ 2π

0

μ(τ)Dk(t, τ) dτ

− 1
ωπ

2∑
l=1

∫ ∞

0

fl(τ)Dl
k(t, τ) dτ − 1

ωπ

∫ a

0

f3(τ)D3
k(t, τ) dτ

for k = 1, 2, 3. The kernels can be represented in the following way:

Dk(t, τ) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2π/a) sin[(π/a)x2(τ)]
ch[(π/a)(t+x1(τ))]−cos[(π/a)x2(τ)]

− (2π/a) sin[(π/a)x2(τ)]
ch[(π/a)(t−x1(τ))]−cos[(π/a)x2(τ)] , k = 1,

(2π/a) sin[(π/a)x2(τ)]
ch[(π/a)(t+x1(τ))]+cos[(π/a)x2(τ)]

− (2π/a) sin[(π/a)x2(τ)]
ch[(π/a)(t−x1(τ))]+cos[(π/a)x2(τ)] , k = 2,

(2π/a) sh[(π/a)x1(τ)]
ch[(π/a)x1(τ)]−cos[(π/a)(t+x2(τ))]

− (2π/a) sh[(π/a)x1(τ)]
ch[(π/a)x1(τ)]−cos[(π/a)(t−x2(τ))] , k = 3,
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D1
1(t, τ) = D2

2(t, τ)

:=
2π2

a2

{
1

ch[(π/a)(t− τ)] − 1
− 1

ch[(π/a)(t+ τ)] − 1

}
,

D2
1(t, τ) = D1

2(t, τ)

:=
2π2

a2

{
1

ch[(π/a)(t− τ)] + 1
− 1

ch[(π/a)(t+ τ)] + 1

}
,

D3
1(t, τ) :=

4π2 sin(πτ/a) sh(πt/a)
a2(ch(πt/a) − cos(πτ/a))2

, D1
3(t, τ) := D3

1(τ, t),

D3
2(t, τ) :=

4π2 sin(πτ/a) sh(πt/a)
a2(ch(πt/a) + cos(πτ/a))2

, D2
3(t, τ) := D3

2(τ, t),

D3
3(t, τ) :=

2π2

a2

{
1

1 − cos[(π/a)(t− τ)]
− 1

1 − cos[(π/a)(t+ τ)]

}
.

Clearly, we can write the kernels Di
i in the form

Di
i(t, τ) =

2π2

a2

{
Di,1

i (t, τ) −Di,2
i (t, τ)

}
, i = 1, 2, 3.

The numerical calculation of the flux (3.4) causes additional difficul-
ties because of a hypersingularity in the kernels Di,1

i , i = 1, 2, 3. For
this purpose, we apply a subtraction of a singularity via

∫ ∞

0

fi(τ)D
i,1
i (t, τ) dτ =

∫ ∞

−∞
f̂i(τ)D̂i

i(t, τ)
1

(t − τ)2
dτ, i = 1, 2,

and ∫ a

0

fi(τ)D
3,1
3 (t, τ) dτ =

∫ ∞

−∞
f̂3(τ)D̂3

3(t, τ)
1

(t − τ)2
dτ.

Here f̂i(t) := fi(ψi(t)), D̂i
i(t, τ) := Di,1

i (ψi(t), ψi(τ))ψ′
i(τ)(t − τ)2 for

t �= τ , i = 1, 2, 3, with the diagonal terms

D̂i
i(t, t) =

2a2e−t

π2
, i = 1, 2,

D̂3
3(t, t) =

2a(e−t + 1)2

π2e−t
, t ∈ R.
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The functions ψi are given as

ψi(t) :=
{
et for i = 1, 2,
aet/(et + 1) for i = 3.

By partial integration using the behavior of the kernels at infinity we
reduce the Hadamard finite-part integrals to the Cauchy principal value
integrals∫ ∞

−∞
f̂i(τ)D̂i

i(t, τ)
1

(t − τ)2
dτ =

∫ ∞

−∞

(
f̂i(τ)D̂i

i(t, τ)
)′

τ

1
t− τ

dτ,

t ∈ R, i = 1, 2, 3.

For their numerical integration we use the sinc quadrature rule

(3.5)
1
π

∫ ∞

−∞

f ′(τ)
t− τ

dτ ≈
M1∑

i=−M1

f(ih∞)Ri,∞(t), t ∈ R,

where the weight functions have the form

Ri,∞(t) :=
M1∑

k=−M1,k �=i

(−1)(k−i)

k − i
· 1 − cos [(π/h∞)(t− ih∞)]

(π/h∞)(t− ih∞)
.

This quadrature is obtained via an approximation of the derivative
f ′ in (3.5) by the cardinal function [16] and exact integration. The
convergence rate of this formula is O(M3/2

1 e−cM
1/2
1 ), c > 0.

Now applying the corresponding quadrature formulas in (3.4) we re-
ceive an approximate flux on Γk, k = 1, 2, 3. For the numerical calcu-
lation of the integrals over the interval (0, 2π), we use the quadrature
rule (2.6). For the calculation of the integrals without singularities
on (0,∞) and (0, a), we transform them to integrals over R using the
substitutions (2.8) and (2.9), respectively, and then we apply the sinc
quadrature rule (2.10). The integrals with the hypersingularity are
calculated by formula (3.5) after making the corresponding transfor-
mations.

4. Hybrid method for the inverse problem. The inverse
problem (1.1) (1.4) defines the nonlinear operator A that maps the
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boundary Γ0 to the Dirichlet data u on Γ0 for fixed Γ and given Cauchy
data f and φ. Thus, the inverse problem can be written in the form of
a nonlinear equation

(4.1) A(Γ0) = 0.

Assume that the boundary curve Γ0 has the parameterization Γ0 =
{x(t), t ∈ [0, 2π]} with a 2π-periodic function x : R → R2.

For the linearization of the mapping A, we first show differentiability
and develop a representation of the Fréchet derivative of A.

Theorem 4.1. The operator A : C2[0, 2π] → C[0, 2π] is Fréchet
differentiable, and its derivative is given by

A′(x)h = 〈gradu ◦ x, h〉,
where h ∈ C2 is some small perturbation in R2 and 〈· , ·〉 defines the
scalar product in R2.

Proof. Analogously to [12, 15], we use the definition of the Fréchet
derivative. Let h be sufficiently small to ensure that the parameteri-
zation Γ0,h = {x(t) + h(t), t ∈ [0, 2π]} describes a smooth closed curve
Γ0,h ∈ D1. By using Taylor’s formula,

u(x+ h)(t) = u(x(t)) + 〈gradu(x(t)), h(t)〉 +O(|h|2), t ∈ [0, 2π],

we have

A(x+ h) −A(x) = u ◦ (x+ h) − u ◦ x = 〈gradu(x(t)), h(t)〉 +O(|h|2).
Thus, we obtain

||A(x + h) −A(x) −A′(x)h|| = O(||h||C2 ), ||h||C2 → 0.

The statement of the theorem follows from the definition of the Fréchet
derivative.

We consider the case of starlike boundaries, i.e,

(4.2) Γ0 = {x(t) = (r(t) cos t+ d1, r(t) sin t+ d2) : 0 ≤ t ≤ 2π}
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with center (d1, d2) and an unknown radial function r ∈ C2[0, 2π].
Then the nonlinear equation (4.1) has the following parametric form

(4.3) Â(r) = 0.

The Newton method applied to (4.3) yields the linear equation

(4.4) Â′(r)q + Â(r) = 0

with a fixed function r, a correction term q and the Fréchet derivative
Â′ of the operator Â. Using the results of Theorem 4.1, the operator
Â′ can be represented as

Â′(r)q =
∂u

∂θ
q

with the derivative ∂u/∂θ in the radial direction. It is necessary to
solve the linear equation

(4.5)
∂u

∂θ
q = −u on Γ0

for the correction q in each Newton iteration.

Let us now describe the algorithm of the hybrid method in detail.

1. For a given radial function r, we solve the integral equation of the
first kind

(4.6)
1
ωπ

∫
Γ0

ϕ(y)
∂G(x, y)
∂ν(x)

ds(y)

= φ(x) +
1
ωπ

∂

∂ν(x)

∫
Γ

f(y)
∂G(x, y)
∂ν(y)

ds(y), x ∈ Σ

with unknown density ϕ by the quadrature method. In [5] it was
shown that the normal derivative of the single-layer potential defines
an operator from L2(Γ0) to L2(Γ) that is injective and has dense
range. Thus, the application of Tikhonov regularization to the integral
equation (4.6) is possible.

Connecting formula (4.6) with the investigations that were made in
Section 3, we get the system of linear equations

(4.7)
2π
ωπ

· 1
2M

2M−1∑
j=0

μ̃j

∂G
(
x(t̂i), x(tj)

)
∂ν(x(t̂i))

= F (t̂i),
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where F is a known righthand side, t̂i, i = 0, . . . , M̂ , M̂ ∈ N are
the points of an equidistant mesh on Σ with step size h = |Σ|/M̂ ,
M̂ > 0, and tj , j = 0, . . . , 2M − 1 are the points for the trigonometric
interpolation (2.5).

Since M̂ � 2M − 1 and due to the ill-posedness the overdetermined
system (4.7) is solved by the least squares method with Tikhonov
regularization with some regularization parameter α > 0.

2. The potential approach (2.1) is used to find the function u on
Γ0, taking into account that the kernel G(x(t), x(τ)) has a logarithmic
singularity when t → τ . For the numerical approximation of u on Γ0

we obtain

ũ(x(ti)) =
2π
ωπ

2M−1∑
j=0

μ̃j

{
−Rj(ti) +

1
2M

L(ti, tj)
}
− w̃(ti),

x(ti) ∈ Γ0, i = 0, . . . , 2M − 1.

3. The derivative ∂u/∂θ is computed with the aid of the relation

(4.8)
∂u(x)
∂θ

=
∂u(x)
∂ν

〈θ, ν〉 +
∂u(x)
∂ϑ

〈θ, ϑ〉, x ∈ Γ0,

where ϑ is the unit tangential vector. Here the approximation of
∂u(x)/∂ν on Γ0 is calculated by formula (3.1) and the tangential
derivative ∂u(x)/∂ϑ by trigonometric interpolation

∂ũ

∂ϑ
(x(t)) =

1
|x′(t)|

2M−1∑
i=0

ũ(ti)l′i(t),

where li, i = 0, . . . , 2M − 1 are the trigonometric Lagrange basis
functions [8].

We can evaluate the approximation of ∂ũ/∂θ(sk) at the points sk =
(cos tk, sin tk), k = 0, . . . , 2M − 1, by formula (4.8).

4. For the numerical solution of the linear equation (4.5), a colloca-
tion method is used. We approximate the function q by

q̃ =
K∑

k=1

akqk
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no data noise 3% data noise

FIGURE 1. Reconstruction of the peanut in the upper half plane.

with unknown coefficients ak and given basis functions qk and have to
solve the linear system

(4.9)
K∑

k=1

ak
∂ũ(x(ti))
∂θ(si)

qk(ti) = −ũ(x(ti)), i = 0, . . . , 2M − 1.

Since 2M − 1 � K and due to the ill-posedness the over-determined
system, (4.9) is solved by the least squares method with Tikhonov
regularization. Thus, we minimize the penalized residual

F(a1, . . . , aK) = λ

K∑
k=1

(1 + k2)la2
k

+
2M−1∑

i=0

∣∣∣∣∣
K∑

k=1

ak
∂ũ(x(ti))

∂θ
qk(ti) + ũ(x(ti))

∣∣∣∣∣
2

with some regularization parameter λ > 0 and some moderately large
Sobolev index l. The minimization of F with respect to a1, . . . , aK is
equivalent to solving the normal equations.

5. Numerical examples. In our numerical experiments we
investigate the feasibility of the hybrid method by means of two cases.
First, using synthetic data, i.e., creating the flux φ = ∂u/∂ν by solving
the direct boundary value problem for a known interior radial function,
we test the quality of the reconstruction. In the second case we find the
approximation of the boundary for noisy data. Here random pointwise
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no data noise 3% data noise

FIGURE 2. Reconstruction of the kite in the upper half plane.

errors have been added to the values of φ, with the percentage given
in terms of the L2 norm. We reconstruct inclusions that belong to
the class of starlike boundaries. As an approximating subspace for
the radial functions we choose trigonometric polynomials of degree less
than or equal to K, i.e.,

q̃(t) =
K∑

k=0

ak cos kt+
2K∑

k=K+1

ak sin (k −K)t.

1. The upper half plane case. First we consider the identification of a
peanut-shaped boundary curve Γ0 with the center coordinates d1 = 0
and d2 = 1 in (4.2) and the radial function

(5.1) r(t) =
√

cos2 t+ 0.25 sin2 t, 0 ≤ t ≤ 2π

in the upper half plane x2 > 0. The boundary function on Γ =
{(t, 0), t ∈ R} is

f(t) = exp(−t2), t ∈ R.

For this test we use the following parameters: the number of collo-
cation points M = 16, the number of collocation points for flux mea-
surement M̂ = 6M , the number of sinc quadrature points M1 = 2000,
the degree for the basis trigonometric functions K = 4, the Sobolev
index l = 2. The flux on the boundary of the half plane is calculated
on Σ = {(t, 0),−30 < t < 30}. As an initial guess we choose the circle
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no data noise 3% data noise

FIGURE 3. Reconstruction of the peanut in the half strip.

with radius R = 1. The results after nine iteration steps are presented
in Figure 1. In the case of exact input data we use the regularization
parameters α = 10−9, λ = 0.1, and in the case of noisy data α = 0.001
and λ = 0.5.

In the second example we consider the reconstruction of a kite shaped
boundary curve with the parameterization

(5.2) Γ0 = {x(t) = (0.6 cos t+ 0.39 cos 2t− 0.39 + d1, 0.9 sin t+ d2),
0 ≤ t ≤ 2π}

and the boundary function

(5.3) f(t) = 1, t ∈ R.

The results of the numerical experiments after 19 iteration steps are
shown in Figure 2. Here we use the following parameters: d1 = 0,
d2 = 1.5, M = 16, M̂ = 6M , M1 = 2000, K = 6, l = 2, α = 10−4,
λ = 0.1. The observation boundary Σ is the same as in the previous
case.
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no data noise 3% data noise

FIGURE 4. Reconstruction of the kite in the half strip.

no data noise 3% data noise

FIGURE 5. Reconstruction of the peanut in the strip.

2. Half strip case. Here we also consider two variants of inclu-
sions. First we reconstruct the peanut shaped inclusion with the radial
function (5.1) in the half strip region with d1 = 2.5 and d2 = 1.5 and
the boundary function (5.3). The width of the half strip is a = π.
The necessary parameters are chosen as follows: M = 16, M1 = 500,
K = 6 and l = 2. The flux is given on Σ = Σ1 ∪ Σ2 ∪ Σ2, where
Σ1 := {(t, 0), 0.5 ≤ t ≤ 6} with M̂1 = M , Σ2 := {(t, a), 0.5 ≤ t ≤ 6}
with M̂2 = M and Σ3 := {(0, t), 0.5 ≤ t ≤ 2.5} with M̂3 = M ,
M̂ = M̂1 + M̂2 + M̂3.
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The results after 9 iterations are presented in Figure 3. The regular-
ization parameters are α = 10−6, λ = 10−4 in the case of exact data
and α = 10−4, λ = 10−2 in the case of 3 percent data noise.

For the kite reconstruction in the half strip with the boundary data

f(t) = exp(− sin2 t), t ∈ R

we use α = 0.001, λ = 0.01. The results are presented in Figure 4. The
other parameters are the same as in the previous test.

3. Strip case. For the reconstruction of the peanut in the strip with
d1 = 0 and d2 = 1.5, we use α = 10−9, λ = 0.1 in the case of exact
data and α = 0.01, λ = 0.5 in the case of 3 percent data noise. The
width of the strip is a = 2.5 and the flux is given on Σ := Σ1 ∪ Σ2.
The other parameters are the same as in the case of the half strip. The
results are presented in Figure 5.

As one can observe, the numerical tests indicate a satisfactory bound-
ary reconstruction quality for the inclusions with a reasonable stability
against noisy data.
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