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RESOLVENT ESTIMATES FOR ABEL INTEGRAL
OPERATORS AND THE REGULARIZATION OF

ASSOCIATED FIRST KIND INTEGRAL EQUATIONS

R. PLATO

ABSTRACT. In this paper resolvent estimates for Abel
integral operators are provided. These estimates are applied
to deduce regularizing properties of Lavrentiev’s m-times it-
erated method as well as iterative schemes (with the discrep-
ancy principle as corresponding parameter choice or stopping
rule, respectively) for solving the corresponding Abel integral
equations of the first kind.

1. Introduction.

1.1. Introductory remarks. Various applications lead to Abel integral
equations of the first kind Au = f∗, where

(1.1) (Au)(ξ) =
β1−α

Γ(α)

∫ a

ξ

ηβ−1u(η)
(ηβ − ξβ)1−α

dη, ξ ∈ [0, a],

or

(1.2) (Au)(ξ) =
β1−α

Γ(α)

∫ ξ

0

ηβ−1u(η)
(ξβ − ηβ)1−α

dη, ξ ∈ [0, a],

(with 0 < α < 1, 0 < a < ∞, 0 < β, and with Γ denoting Euler’s
gamma function), see Subsection 1.2 for one of these applications.

In this paper we provide resolvent estimates for Abel integral op-
erators (1.1) and (1.2) (operating from X into X for the spaces
X = Lp([0, a], ξβ−1 dξ), p ∈ [1,∞], and X = C[0, a], respectively),
i.e., we provide norm estimates of (λI + A)−1 for specific λ ∈ C, with
I denoting the identity operator in the underlying space X.
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As a preparation, in Section 2 specific resolvent estimates for the
operators

(V1u)(ξ) :=
∫ a

ξ

ηβ−1u(η) dη, ξ ∈ [0, a],(1.3)

(V2u)(ξ) :=
∫ ξ

0

ηβ−1u(η) dη, ξ ∈ [0, a],(1.4)

are presented (for the mentioned spaces X). In Section 3 we consider
for 0 < α < 1 the fractional powers V α

j of Vj , j = 1, 2, and we (a) shall
see that they coincide with Abel integral operators (1.1) and (1.2),
respectively, and (b) provide the mentioned resolvent estimates for V α

j ,
j = 1, 2, respectively, cf., Theorems 3.2 and 3.4.

In Section 4, the derived resolvent estimates then are applied for
solving numerically (ill-posed) Abel integral equations of the first kind.
More specifically, parametric as well as iterative methods are considered
in that section, and for the discrepancy principle as parameter choice
strategy or stopping rule, respectively, convergence results are stated.
Finally, for specific methods like Lavrentiev’s m-times iterated method
and an iterative implicit scheme, several numerical experiments are
presented.

1.2. The Radon transform for radially symmetric functions. In this
subsection we present an application where an Abel integral equation
arises. This example is taken from Gorenflo and Vessella [7].

The two-dimensional Radon transform R maps a function ψ : R2 →
R into the set of integrals of ψ along the lines Lθ,s, θ ∈ [0, 2π], s ≥ 0,
i.e.,

(Rψ)(θ, s) :=
∫

Lθ,s

ψ(x) dx

=
∫ ∞

−∞
ψ(sx(θ) + tx(θ)⊥) dt,

where

Lθ,s := {sx(θ) + tx(θ)⊥ : t ∈ R},
x(θ) := (cos θ, sin θ)T , x(θ)⊥ := (− sin θ, cos θ)T ,
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FIGURE 1. Illustration for the Radon transform.

see Figure 1 for an illustration of the situation. If the support of ψ lies
in the closed unit disk

D := {x ∈ R2 : |x|2 ≤ 1}
(with | · |2 denoting the Euclidean norm in R2), and if ψ moreover is a
radially symmetric function, i.e., for some function u : [0, 1] → R one
has

ψ(x) = u(|x|2), x ∈ D,

(this is a realistic assumption for the spectroscopy of cylindrical gas
discharges) then (Rψ)(θ, s) = 0 for s > 1, and

(Rψ)(θ, s) = 2
∫ 1

s

ru(r)
(r2 − s2)1/2

dr, s ∈ [0, 1].

This implies that g := Rψ is also radially symmetric and that the
support of g lies in D, and then for

f(s) := g(θ, s), s ∈ [0, 1],
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the resulting equation Au = f is an Abel integral equation of the first
kind (up to a scalar multiple).

2. Sectorial operators, and integration. In the first part
of this section we classify different resolvent conditions for arbitrary
linear operators in general Banach spaces. In the second part of this
section specific resolvent estimates for the operators V1 and V2 (see
(1.3) and (1.4), respectively) are presented (with respect to the spaces
X = C[0, a] and X = Lp([0, a], ξβ−1 dξ), p ∈ [1,∞]).

2.1. Sectorial operators. Throughout this subsection let X be a
complex Banach space. For technical reasons in the following definition
unbounded operators are admitted, although our main subject are
bounded operators (with unbounded inverses).

Definition 2.1. We call a (possibly unbounded) linear operator
B : X ⊃ D(B) → X weakly sectorial, if (0,∞) ⊂ ρ(−B) and

(2.1) ‖(tI +B)−1‖ ≤M0/t, t > 0,

with some M0 ≥ 1, and then we use the notation

M0(B) := inf {M0 : (2.1) is valid for M0}.

Here ρ(−B) is the resolvent set of −B, i.e., ρ(−B) = {λ ∈ C :
λI+B : X ⊃ D(B) → X is a one-to-one mapping onto X, (λI+B)−1 ∈
L(X)}, and L(X) denotes the space of bounded linear operators in X.
Moreover, ‖ · ‖ in (2.1) denotes the corresponding operator norm.

It is significant to consider weakly sectorial operators since we can
define fractional powers for them, cf., Section 3, and moreover for the
numerical solution of equations with an underlying weakly sectorial
operator we can consider Lavrentiev’s method, cf., Section 4. Weakly
sectorial operators coincide with ‘weakly positive’ operators introduced
in Pustyl’nik [20]. Our notation is justified by the fact that weakly
sectorial operators A fulfill a resolvent condition over a (small) sector,
cf., Lemma 2.3. First, however, we introduce the sector Σθ ⊂ C,

Σθ := {λ = reiϕ : r > 0, |ϕ| ≤ θ}, θ ∈ [0, π],
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and moreover we introduce the notation ‘sectorial with angle θ0.’

Definition 2.2. A linear operator B : X ⊃ D(B) → X is sectorial
with angle θ0 ∈ (0, π], if for any 0 ≤ θ < θ0 one has ρ(−B) ⊃ Σθ as
well as the estimate

(2.2) ‖(λI +B)−1‖ ≤Mθ/|λ|, λ ∈ Σθ,

for some Mθ ≥ 1. Then we use the notation

Mθ(B) := inf {Mθ : (2.2) is valid for Mθ}.

If the linear operator B is sectorial with angle θ0 and moreover has
a dense domain, then B is of type (π − θ0,M0(B)) (in the sense of
Tanabe [24, Definition 2.3.1]).

As mentioned above, weakly sectorial operators are sectorial with
some angle (this is, e.g., Lemma 6.4.1 in Fattorini [3]):

Lemma 2.3. Let the linear operator B : X ⊃ D(B) → X be weakly
sectorial. Then B is sectorial with angle θ0 := arcsin(1/M0(B)).

For the proof of Lemma 2.3 we refer to [3]. In the proofs of
Propositions 2.7 and 2.8, respectively, we shall use the following lemma
and the corresponding Corollary 2.6.

Lemma 2.4. Suppose that A ∈ L(X) has a trivial nullspace N (A),
and let 0 < θ0 ≤ π. Then A is sectorial with angle θ0 if and only if A−1

is sectorial with angle θ0, and then Mθ(A) ≤Mθ(A−1)+1, 0 ≤ θ < θ0.

Proof. If A−1 is sectorial with angle θ0, then for any 0 ≤ θ < θ0 and
any λ ∈ Σθ, λI +A is a one-to-one mapping onto X, and

(2.3) (λI +A)−1 =
1
λ
I − 1

λ2

(
A−1 +

1
λ
I

)−1

,

and then it follows immediately that A is sectorial with angle θ0 (and
Mθ(A) ≤ Mθ(A−1) + 1, 0 ≤ θ < θ0). The reverse implication follows
similarly.
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Definition 2.5. We call a (possibly unbounded) linear operator
B : X ⊃ D(B) → X strictly sectorial , if there is an 0 < ε ≤ π/2 such
that B is sectorial with angle π/2 + ε.

If the linear operator B is strictly sectorial and has a dense domain,
then −B is the infinitesimal generator of a semigroup {T (t)}t≥0 ⊂
L(X) that can be extended on a sector Σε (for a small ε > 0) to an
analytical, uniformly bounded semigroup, cf., Tanabe [24, Theorem
3.3.1]).

We shall see in Section 3 that Abel integral operators, cf., (1.1) and
(1.2) are strictly sectorial (with respect to various function spaces), and
we shall moreover see that for the numerical solution of ill-posed equa-
tions in general spaces with an underlying strictly sectorial operator
one can apply iterative methods, cf., Section 4.

As an immediate consequence of Lemma 2.4 we have:

Corollary 2.6. Suppose that A ∈ L(X) has a trivial nullspace N (A).
Then A−1 is strictly sectorial if and only if A is strictly sectorial.

2.2. Integration operator, and a modification. As a preparation
for Section 3, in this subsection specific resolvent estimates for the
integration operators V1 and V2 are presented (for the spaces X =
C[0, a] and X = Lp([0, a], ξβ−1 dξ), p ∈ [1,∞]).

2.2.1. The case X = C[0, a]. For 0 < a < ∞, let X = C[0, a]
be the complex space of complex-valued continuous functions on [0, a],
supplied with the maximum norm ‖ · ‖∞. The latter symbol then is
used also for the corresponding operator norm.

Proposition 2.7 (Integration in C[0, a]). Let β > 0 be real, and
let X = C[0, a]. Then the Volterra integral operators V1 ∈ L(X) and
V2 ∈ L(X) (defined by (1.3) and (1.4), respectively) are sectorial with
angle π/2, and this angle π/2 is best possible, i.e., Vj is not strictly
sectorial for j = 1, 2. One has M0(Vj) = 2, j = 1, 2, and in fact

(2.4) lim
t→0+

‖t(tI + Vj)−1‖∞ = 2, j = 1, 2.
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Proof. We present the proof for V1 only, since the same technique
applies to prove the assertion for V2 (this proof in fact is carried out in
[19]). V1 obviously is well-defined and in L(X), with ‖V1‖∞ = aβ/β.
Moreover, V1 is inverse to the (unbounded) operator B : X ⊃ D(B) →
X defined by

(Bf)(ξ) := −ξ−(β−1)f ′(ξ), ξ ∈ [0, a], f ∈ D(B),(2.5)
D(B) := {f ∈ X : f(a) = 0,(2.6)

f is absolutely continuous on [0, a],

ξ 
−→ ξ−(β−1)f ′(ξ) ∈ X}.
We observe moreover that for λ ∈ C and u ∈ X the equation

(2.7) (λI +B)f = u

has the unique solution

(2.8) f(ξ) =
∫ a

ξ

ηβ−1e−λ(ηβ−ξβ)/βu(η) dη, ξ ∈ [0, a].

We next show that B is weakly sectorial with M0(B) ≤ 1, i.e.,
(0,∞) ⊂ ρ(−B) and

(2.9) ‖(tI +B)−1‖∞ ≤ 1/t, t > 0.

To this end we fix t > 0 and take any u ∈ X and f ∈ D(B) such that
(2.7) is valid (with λ = t). For ξ ∈ [0, a], we then obtain (see (2.8) with
λ = t)

t|f(ξ)| ≤
(
t

∫ a

ξ

ηβ−1e−t(ηβ−ξβ)/β dη

)
· ‖u‖∞

= (1 − e−t(aβ−ξβ)/β) · ‖u‖∞
≤ ‖u‖∞
= ‖(tI +B)f‖∞,

and taking the supremum over ξ ∈ [0, a] yields (2.9).

We conclude then from (2.9) and Lemma 2.3 that B is sectorial with
angle π/2, and then Lemma 2.4 yields that also V1 = B−1 is sectorial
with angle π/2, and M0(V1) ≤ 2.
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We next show that (2.4) holds, i.e., that indeed M0(V1) = 2. To this
end we fix s > 0 and observe that for u, f ∈ X, one has (I+ sV1)u = f
if and only if

(2.10) u(ξ) = f(ξ) − s

∫ a

ξ

ηβ−1e−s(ηβ−ξβ)/βf(η) dη, ξ ∈ [0, a],

for a reasoning see (2.3) (with λ = s−1, and with A replaced by
V1), and see moreover (2.7) and (2.8) (with λ = s, and with f
and u interchanged). Now for small ε > 0 take some f ∈ C[0, a],
‖f‖∞ = 1, such that f(0) = 1 and f(η) = −1, η ∈ [ε, a], and then for
u = (I + sV1)−1f one has, see (2.10),

‖(I + sV1)−1‖∞ ≥ |u(0)|
≥ 1 + s

∫ a

ε

ηβ−1e−sηβ/β dη

− s

∫ ε

0

ηβ−1e−sηβ/β dη

= 2e−sεβ/β − e−saβ/β.

We find (2.4) then by taking ε = ε(s) sufficiently small and letting
s→ ∞.

We finally show that B (and then also V1) is not strictly sectorial.
To this end, for arbitrary real t, let u(η) := eitηβ/β, η ∈ [0, a]. Then the
equation

(itI +B)f = u

has the unique solution, see (2.7) and (2.8) with λ = it,

f(ξ) = eitξβ/β ·
(
aβ

β
− ξβ

β

)
, ξ ∈ [0, a],

hence ‖f‖∞ = aβ/β, ‖u‖∞ = 1, and this shows that B, and then also
V1, is not strictly sectorial.

Remarks. 1. Estimate (2.9) in fact means that B in (2.5) is
accretive, while (2.4) shows that its inverse V1 is not accretive, see
deLaubenfels [1] for a similar example. It is open, however, whether
supn≥0 ‖(I + sV1)−n‖∞ <∞ is valid for any s > 0.
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FIGURE 2. Boundary of Λε(−V1) for ε = 0.4, 0.2, 0.1, 0.05, and for
X = C[0, 1], β = 1.

2. It follows, as in the proof of Proposition 2.7, that under the
given situation one has ρ(−V1) = C\{0}, and for λ �= 0 one gets (for
notational convenience let a = 1 and β = 1)

‖(λI + V1)−1‖∞ =
{

1/|λ| + (1 − e−Re λ/|λ|2)/(Reλ) if Reλ �= 0,
1/|λ| + 1/|λ|2 if Reλ = 0,

so that it is possible to compute the ε-pseudospectra Λε(−V1), ε > 0.
For an arbitrary A ∈ L(X) in a general Banach space X those sets
Λε(A) are defined by

Λε(A) := {λ ∈ ρ(A) : ‖(λI −A)−1‖ ≥ ε−1} ∪ σ(A), ε > 0,

where σ(A) := C\ρ(A) denotes the spectrum of A. ε-pseudospectra are
considered in various papers, see, e.g., Reddy, Trefethen [21] for very
recent results on that topic; the ε-pseudospectra for −V1 are illustrated
in Figure 2.

2.2.2. The case X = Lp([0, a], ξβ−1 dξ). For real β > 0 and
1 ≤ p < ∞, let Lp([0, a], ξβ−1 dξ) be the complex space of complex-
valued, measurable functions u on [0, a], such that |u|p is integrable
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with respect to the measure ξβ−1 dξ, and this space is supplied with
the norm

‖u‖p :=
( ∫ a

0

|u(ξ)|pξβ−1 dξ

)1/p

, u ∈ Lp([0, a], ξβ−1 dξ).

Similarly, by L∞([0, a], ξβ−1 dξ) we denote the complex space of
complex-valued, measurable functions u on [0, a] which are essentially
bounded with respect to the measure ξβ−1 dξ, and then ‖u‖∞ denotes
the essential supremum of |u| with respect to the measure ξβ−1 dξ.

If β = 1 then we use the simplified notation Lp([0, a]). We have the
following analog of Proposition 2.7.

Proposition 2.8 (Integration in Lp). Let β > 0 and let X =
Lp([0, a], ξβ−1 dξ) for some 1 ≤ p ≤ ∞. The operators V1 ∈ L(X) and
V2 ∈ L(X) (defined by (1.3) and (1.4), respectively) are sectorial with
angle π/2, and one has M0(Vj) ≤ 2, j = 1, 2.

Remark. If X = L2([0, a], ξβ−1 dξ), then in fact one has M0(V1) =
M0(V2) = 1; a reasoning is given in Halmos [10, Solution 150] (for the
case a = 1, β = 1 and for V2; the general case follows similarly).

Proof of Proposition 2.8. Throughout the proof, “=” in X means
equality almost everywhere. We again give the proof for V1 only, and
to this end we consider

(Bf)(ξ) := −ξ−(β−1)f ′(ξ), ξ ∈ [0, a], f ∈ D(B),
D(B) := { f ∈ X : f is absolutely continuous on

[0, a], f(a) = 0, ξ 
−→ ξ−(β−1)f ′(ξ) ∈ X}.(2.11)

In the sequel we shall show (a) that V1 ∈ L(X) (then it follows
immediately that in fact B = V −1

1 ) and (b) that B is weakly sectorial
with M0(B) ≤ 1. To this end for (arbitrary but fixed) t ≥ 0 and u ∈ X
we consider

(2.12) f(ξ) :=
∫ a

ξ

ηβ−1e−t(ηβ−ξβ)/βu(η) dη, ξ ∈ [0, a],
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and we shall estimate ‖f‖p in terms of ‖u‖p. For that we define

f̃(ξ̃) := f((βξ̃)1/β), ξ̃ ∈ [0, ã],

ũ(η̃) := u((βη̃)1/β), η̃ ∈ [0, ã],

where
ã := aβ/β.

Note that

(2.13) ‖f̃‖Lp([0,ã]) = ‖f‖p, ‖ũ‖Lp([0,ã]) = ‖u‖p

(where ‖ψ‖Lp([0,ã]) denotes the Lp-norm of ψ : [0, ã] → C with respect
to the Lebesgue measure). From the definition of f̃ and ũ and from
(2.12) we formally obtain

(2.14) f̃(ξ̃) =
∫ ã

ξ̃

e−t(η̃−ξ̃)ũ(η̃) dη̃, ξ̃ ∈ [0, ã].

An application of Young’s inequality for convolutions

(2.15)
‖k ∗ ψ‖

Lp(R)
≤ ‖k‖

L1(R)
· ‖ψ‖

Lp(R)
,

k ∈ L1(R), ψ ∈ Lp(R),

(see, e.g., Reed and Simon [22, Chapter IX.4]; here, ‖φ‖
Lq(R)

denotes
the Lq-norm of φ : R → C with respect to the Lebesgue measure), with

(2.16) k(s) :=
{
ets if s ∈ [−ã, 0],
0 if s /∈ [−ã, 0],

and

(2.17) ψ(η̃) :=
{
ũ(η̃) if η̃ ∈ [0, ã],
0 if η̃ /∈ [0, ã],

then yields f̃ ∈ Lp([0, ã]). In the case t = 0 we find from (2.14) (2.17)
that

‖f̃‖Lp([0,ã]) ≤ ã‖ũ‖Lp([0,ã]),
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and (2.13) then implies that V1 ∈ L(X), and then it is obvious that
V1 = B−1. In the case t > 0 it is also obvious that f in (2.12) is the
unique solution of the equation

(2.18) (tI +B)f = u,

and we obtain from (2.14) (2.17) that

t‖f̃‖Lp([0,ã]) ≤ ‖ũ‖Lp([0,ã]),

which in conjunction with (2.13) shows that B is weakly sectorial with
M0(B) ≤ 1.

The rest of the proof is similar to that of Proposition 2.7: Lemma 2.3
and the estimate M0(B) ≤ 1 imply that B is sectorial with angle π/2,
and then Lemma 2.4 yields that also V1 = B−1 is sectorial with angle
π/2, and M0(V1) ≤ 2.

3. Fractional powers of weakly sectorial operators. We shall
consider fractional powers V α ∈ L(X), α ≥ 0, of weakly sectorial
operators V ∈ L(X) (with X being an arbitrary complex Banach
space) since Abel integral equations are of type V α

j u = f∗ (with Vj ,
j = 1, 2, as in (1.3) and (1.4), respectively, and for specific spaces
X and 0 < α < 1). We moreover consider fractional powers of
weakly sectorial operators A ∈ L(X) since in Theorem 4.1 (where
the regularization properties of certain parameter choices and stopping
rules for a class of methods are stated) we can admit then a fractional
degree of smoothness for a solution u∗ ∈ X of Au = f∗.

3.1. Properties of fractional powers. Throughout this subsection let
X be a complex Banach space.

Definition 3.1. Let V ∈ L(X) be weakly sectorial.

(a) For 0 < α < 1, fractional powers V α ∈ L(X) are defined by

(3.1) V αu :=
sinπα
π

∫ ∞

0

sα−1(sI + V )−1V u ds, u ∈ X.

(b) For arbitrary α > 0 we define V α ∈ L(X) by

V α := V α−�α	V �α	,
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where �α� denotes the greatest integer ≤ α.

If V ∈ L(X) is weakly sectorial, then in fact the integral in (3.1)
exists, and we have also V α ∈ L(X) then. An introduction to
fractional powers of operators can be found, e.g., in the monographs by
Krein [12] and Tanabe [24]. They contain also the following classical
result (see Subsection 1.5.8 in [12], or Theorem 2.3.1 in [24]) that
provides sufficient conditions for operators to be strictly sectorial, see
also Corollary 3.3.

Theorem 3.2. Let V ∈ L(X) be sectorial with angle θ0 ∈ (0, π].
Then for any 0 < α < 1, V α is sectorial with angle (1−α)π+αθ0, and

(3.2) M0(V α) ≤M0(V ).

The proof of Theorem 3.2 is based upon a representation for (λI +
V α)−1 that one has on a smaller sector:

(λI + V α)−1 =
sin πα
π

∫ ∞

0

sα(sI + V )−1

s2α + 2λsα cosπα+ λ2
ds,

λ ∈ int Σ(1−α)π.

Here int Σ(1−α)π denotes the interior of Σ(1−α)π. We state the following
important corollary which is an immediate consequence of Theorem 3.2.

Corollary 3.3. If V ∈ L(X) is sectorial with angle π/2, then V α is
strictly sectorial for any 0 < α < 1.

3.2. Fractional integration. In the following theorem V α
1 and V α

2 are
explicitly given (with respect to various spaces), and in fact they are
(generalized) Abel integral operators, with the classical case obtained
for α = 1/2, β = 1.

Theorem 3.4. Let β > 0. In X = C[0, a] or X = Lp([0, a], ξβ−1 dξ),
1 ≤ p ≤ ∞, for the operators V1 and V2, defined by (1.3) and (1.4),
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respectively, one has for 0 < α < 1,

(V α
1 u)(ξ) =

β1−α

Γ(α)

∫ a

ξ

ηβ−1u(η)
(ηβ − ξβ)1−α

dη,

(V α
2 u)(ξ) =

β1−α

Γ(α)

∫ ξ

0

ηβ−1u(η)
(ξβ − ηβ)1−α

dη,

ξ ∈ [0, a], u ∈ X,

where in X = Lp, “=” means equality almost everywhere. Moreover,
V α

j is strictly sectorial, and M0(V α
j ) ≤ 2, j = 1, 2.

Proof. Again we give the proof for V1 only. The inverse operator of
V1 is (Bf)(ξ) = −ξ−(β−1)f ′(ξ), ξ ∈ [0, a], f ∈ D(B) (for the domain
of definition of B see (2.6) and (2.11), respectively), hence one has for
u ∈ X

V α
1 u =

sinπα
π

∫ ∞

0

sα−1(I + sB)−1u ds

=
sinπα
π

∫ ∞

0

t−α(tI +B)−1u dt,

therefore we get (see (2.7), (2.8) and (2.18), (2.12), respectively)
(3.3)

(V α
1 u)(ξ) =

sin πα
π

∫ ∞

0

t−α

∫ a

ξ

e−t(ηβ−ξβ)/β · ηβ−1u(η) dη dt

=
sin πα
π

∫ a

ξ

(
β

ηβ − ξβ

)1−α( ∫ ∞

0

s−αe−s ds

)
· ηβ−1u(η) dη

=
β1−α

Γ(α)

∫ a

ξ

ηβ−1u(η)
(ηβ − ξβ)1−α

dη, ξ ∈ [0, a],

where for X = Lp, “=” again means equality almost everywhere;
and interchanging the order of integration in (3.3) is justified by the
integrability condition on u. Finally, it follows from Propositions 2.7
and 2.8 as well as Theorem 3.2 and Corollary 3.3 that V α

1 is strictly
sectorial with M0(V α

1 ) ≤ 2.

Remarks. 1. It is an immediate consequence of Propositions 2.7 and
2.8 as well as Theorem 3.2 that V α

1 and V α
2 in fact are sectorial with
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angle (1 − α)π + απ/2 (for 0 < α < 1). Similar resolvent estimates for
V α

2 (for the specific case β = 1 and X = L2([0, 1]), and in terms of the
numerical range) can be found in Gohberg and Krein [5, Chapter V.6],
and also in Gohberg and Krein [6, Appendix, Section 6].

2. A different proof of M0(V α
2 ) ≤ 2 (for 0 < α < 1, β = 1 and

X = Lp([0, a]), 1 ≤ p ≤ ∞) is given in Gorenflo and Yamamoto [8].

3. It follows immediately from the remark that follows Proposition 2.8
and from (3.2) that for X = L2([0, a], ξβ−1 dξ) and 0 < α ≤ 1 we have
in fact M0(V α

j ) = 1, j = 1, 2. This in fact means that V α
1 and V α

2

are accretive, cf., also Gerlach and v.Wolfersdorf [4] and the literature
cited therein (where V 1/2

2 for β = 1 and a = 1 is considered).

4. Recently Malamud [14] has shown that certain analytic pertur-
bations of the kernel associated with V α

2 lead to integral operators Ṽ α
2

that are similar to V α
2 and which are therefore also strictly sectorial.

4. Regularization methods.

4.1. A class of methods. A common approach for numerically solving
linear ill-posed problems in Hilbert spaces is to regularize the normal
equations, see the recent monographs and surveys by Engl [2], Groetsch
[9], Hanke and Hansen [11], Louis [13] and Murio [15] and their
bibliographies. The approach in [18] (and in [19]) is to avoid the
normalization process, and also other than L2-spaces are admitted,
and the main tool are resolvent conditions. In the next two subsections
we review some basics of the approach in [18, 19]; we start with a
general setting and consider the equation

(4.1) Au = f∗,

where A ∈ L(X) is some (arbitrary) weakly sectorial operator with
respect to a Banach space X. We moreover assume that the right-hand
side f∗ ∈ R(A) in (4.1) is known only approximately; more precisely,
fδ ∈ X and a noise level δ > 0 are given, i.e.,

(4.2) f∗ ∈ R(A), fδ ∈ X, ‖f∗ − fδ‖ ≤ δ,

where R(A) denotes the range of A. For the approximate solution of
(4.1) we consider general methods

(4.3) uδ
r := Grf

δ for r ≥ 0,
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where Gr ∈ L(X), r ≥ 0, is designed to approximate the inverse of A (if
it exists) as r → ∞. For iteration methods of type (4.3), r corresponds
to the number of iterations, and for parametric methods of type (4.3),
γ = r−1 is a regularization parameter.

In the next subsection we shall propose a strategy to find an rδ ≥ 0
such that uδ

rδ
≈ u∗ (for some solution u∗ ∈ X of (4.1)). First, however,

we introduce

(4.4) Hr := I −GrA, r ≥ 0,

and impose the following conditions on Gr and Hr, r ≥ 0:

AGr = GrA for r ≥ 0,(4.5)
‖HrA

p‖ ≤ γpr
−p for r > 0, 0 ≤ p ≤ p0,(4.6)

‖Gr‖ ≤ γ∗r for r ≥ 0,(4.7)

with constants γp and γ∗, and with ‘qualification’ p0 > 0 (its value can
be p0 = ∞; and p in (4.6) takes (finite) real values). We next present
three examples for methods of type (4.3) that fulfill (4.5) (4.7).

4.1.1. The iterated method of Lavrentiev. For a weakly sectorial
A ∈ L(X) (see (2.1) for the definition) we consider (for fixed integer
m) Lavrentiev’s m-times iterated method which for

γ = r−1

generates a uδ
r ∈ X by

(4.8)
(A+ γI)vn = γvn−1 + fδ, n = 1, 2, . . . ,m

uδ
r := vm

with v0 = 0. It is easy to see that uδ
r ∈ X in (4.8) is of the form (4.3)

with

Gr = r
m∑

j=1

(I + rA)−j,

and Hr in (4.4) takes the form

Hr = (I + rA)−m.
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Relations (4.5) and (4.7) quite obviously are fulfilled, and (4.6) with
finite qualification p0 = m is a consequence of

sup
0≤p≤1, r≥0

‖(I + rA)−1(rA)p‖ <∞,

see, e.g., Tanabe [24, Lemma 2.3.3] and its proof for the latter estimate.

Lavrentiev’s iterated method (for unbounded weakly sectorial opera-
tors A in Banach spaces, in general) is considered, e.g., in Schock and
Phóng [23] where certain a priori parameter choices are provided.

4.1.2. The Richardson iteration. For strictly sectorial operators
A ∈ L(X), a first iteration method of type (4.3) is the Richardson
iteration which for μ > 0 (small enough) generates iteratively the
sequence

(4.9) uδ
r+1 = uδ

r − μ(Auδ
r − fδ), r = 0, 1, 2, . . . .

Here uδ
r ∈ X in (4.9) is of the form (4.3) with

Gr = μ

r−1∑
j=0

(I − μA)j

(for initial vector uδ
0 = 0), and Hr in (4.4) then takes the form

Hr = (I − μA)r.

Equation (4.5) obviously is valid, and (4.6) with p0 = ∞ as well as
(4.7) are easy consequences of Theorems 4.5.4 and 4.9.3 in Nevanlinna
[16] (for μ > 0 small enough).

4.1.3. An implicit iteration method. For strictly sectorial operators
A ∈ L(X) and for μ > 0 we consider the implicit iteration method

(4.10) (I + μA)uδ
r+1 = uδ

r + μfδ, r = 0, 1, 2, . . . .

Here uδ
r ∈ X in (4.10) is of the form (4.3) with

(4.11) Gr = μ
r∑

j=1

(I + μA)−j
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(for initial vector uδ
0 = 0), and for Hr in (4.4) one has

Hr = (I + μA)−r.

The commutativity condition (4.5) is satisfied trivially, and (4.6) with
p0 = ∞ can be derived by standard results in semigroup theory, see,
e.g., Pazy [17, Theorem 1.7.7] for the case p = 0, and see [17, Theorem
2.5.5] for the case p = 1; the general case p > 0 follows quite similarly
as for the case p = 1, see [18] or [19] for the details. Finally, (4.7)
follows immediately from (4.6) for p = 0 and from (4.11).

4.2. A discrepancy principle. We now suppose that A ∈ L(X) is
weakly sectorial and that (4.2) is valid; we moreover suppose that
{uδ

r}r ⊂ X is of type (4.3) such that conditions (4.5) (4.7) hold (with
Hr as in (4.4)). As a rule for choosing rδ in order to get a good
approximation uδ

rδ
∈ X for some solution u∗ ∈ X of (4.1), we next

introduce a discrepancy principle. To this end, let Δδ
r ∈ X denote the

defect, i.e.,
Δδ

r := Auδ
r − fδ.

Discrepancy principle. Fix a real b > γ0 (where γ0 is as in (4.6)).
Moreover, fix some θ > 0 (for iterative methods of type (4.3) let θ = 1,
since then r can take integer values only), and set r(k) = θk. Stop the
process of calculating uδ

r(k), k = 0, 1, 2, . . . , if for the first time

‖Δδ
r(k)‖ ≤ bδ,

and let rδ := r(kδ), where kδ denotes the stopping index.

The following result theorem can be derived from the results in [18].
Convergence result (4.12) shows that the discrepancy principle defines
a regularization method, and estimate (4.15) provides, under additional
smoothness assumptions, order-optimal convergence rates. Estimates
(4.13) and (4.16) provide some information about the efficiency of the
underlying algorithm.

Theorem 4.1. Let X be a Banach space. Let A ∈ L(X) be weakly
sectorial, and suppose that (4.2) is valid. Let {uδ

r}r be of type (4.3),
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and let conditions (4.5) (4.7) hold (with Hr as in (4.4), and with
qualification p0 > 1). Let rδ ≥ 0 be chosen by the above described
discrepancy principle.

1. If u∗ ∈ R(A) solves (4.1), then

‖uδ
rδ

− u∗‖ −→ 0 as δ −→ 0,(4.12)
rδδ −→ 0 as δ → 0.(4.13)

2. If, moreover, for some real 0 < p ≤ p0 − 1 and z ∈ X,

(4.14) u∗ = Apz, � := ‖z‖,
then with some constants dp, ep > 0 we have the estimates

‖uδ
rδ

− u∗‖ ≤ dp(�δp)1/(p+1),(4.15)

rδ ≤ ep(�δ−1)1/(p+1).(4.16)

The constants dp and ep depend also on b, and R(A) denotes the
closure of R(A).

Remarks. 1. Theorem 4.1 generalizes results obtained for Hilbert
spaces X and symmetric, positive semidefinite operators A ∈ L(X),
see Vainikko [25]. Note that Theorem 4.1 is even important for the
numerical solution of nonsymmetric equations Au = f∗ in Hilbert
spaces X since methods of type (4.3) avoid the normalization A�Au =
A�f∗, where A� ∈ L(X) denotes the adjoint operator of A. The
smoothness condition (4.14) for nonsymmetric equations, however, then
differs from the well-known assumption ‘u∗ ∈ R((A�A)p/2)’, since one
has R((A�A)p/2) �= R(Ap).

2. For Abel integral operators A = V α
1 ∈ L(X), whereX = L2([0, a]),

0 < α ≤ 1 and β = 1, we illustrate the statements in Theorem 4.1, and
to this end for integer k ≥ 1 we denote by W k,2([0, a]) the Sobolev
space of all functions u : [0, a] → C such that u and its distributional
derivatives u(j) of order j ≤ k all belong to L2([0, a]). If

u∗ ∈W k,2([0, a]),

u∗(a) = u′∗(a) = · · · = u
(k−1)
∗ (a) = 0,
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then for p = k/α one has u∗ ∈ R(Ap), and we thus can expect a
convergence rate

‖uδ
rδ

− u∗‖ = O(δk/(k+α)) as δ −→ 0

(with the restriction k ≤ (m − 1)α for Lavrentiev’s m-times iterated
method).

4.3. Computational experiments. In this subsection we solve numeri-
cally Abel’s classical integral equation

(4.17) (Au)(ξ) :=
1√
π

∫ ξ

0

(ξ − η)−1/2u(η) dη = f∗(ξ), ξ ∈ [0, 1].

As underlying space we take the complex space

X = L2([0, 1])

supplied with the inner product

〈u, v〉 =
∫ 1

0

u(η)v(η) dη, u, v ∈ L2([0, 1]),

and the corresponding norm is ‖u‖2 = 〈u, u〉1/2, u ∈ L2([0, 1]). Then
one has A = V

1/2
2 (for β = 1 and a = 1), and thus A is strictly sectorial

(see Theorem 3.4).

We always choose perturbed right-hand sides fδ = f∗ + δ · v, where
v ∈ X has uniformly distributed random (real) values so that ‖v‖2 ≤ 1,
and where

δ = ‖f∗‖2 · %/100,

with % noise ∈ {0.33, 1.00, 2.00, 3.00, 10.00} in our implementations.

We carry out Lavrentiev’s (m-times iterated) method as well as the
implicit iteration method. For both methods we have γ0 = 1 in
(4.6) (see the remark that follows Theorem 3.4), thus we can take
b = 1.5 in the definition of the parameter choice/stopping rule. The
iterated method of Lavrentiev is considered with m = 5, and the
corresponding norm of the defect Δδ

r is computed successively for
r = 0, θ, 2θ, 3θ, . . . , θ = 1.0, until it falls below the required level (3/2)δ.
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We next present the results of experiments for two different right-
hand sides. In our first experiment we choose

f∗(ξ) =
√
π

2
ξ, ξ ∈ [0, 1],

and then the solution of (4.17) is given by, cf., Gorenflo and Vessella
[7, Chapter 1.1]

u∗(η) =
√
η, η ∈ [0, 1],

and thus

u∗ ∈ R(Ap) for all 0 < p < 2,(4.18)
u∗ /∈ R(A2).(4.19)

The following tables contain the results for Lavrentiev’s (5-times iter-
ated) method and the implicit method, respectively. Note that due to
(4.19) one cannot derive from Theorem 4.1 that the entries in the third
and fifth column, respectively, stay bounded as % of noise decreases.
On the other hand, however, due to (4.18), it is no surprise that these
entries in our experiments in fact stay bounded.

TABLE 1.

Lavrentiev’s (iterated) method
% noise ‖uδ

rδ
−u∗‖2 ‖uδ

rδ
−u∗‖2/δ

2/3 rδ rδδ
1/3 � flops

10.00 0.1343 0.97 1.0 0.37 0.3e+06
3.00 0.0672 1.09 2.0 0.50 0.5e+06
1.00 0.0245 0.83 2.0 0.34 0.5e+06
0.33 0.0109 0.77 3.0 0.35 0.6e+06

TABLE 2.

Implicit iteration method
% noise ‖uδ

rδ
−u∗‖2 ‖uδ

rδ
−u∗‖2/δ

2/3 rδ rδδ
1/3 � flops

10.00 0.1197 0.86 15 5.57 1.1e+06
3.00 0.0501 0.81 24 5.96 1.6e+06
1.00 0.0246 0.83 35 6.03 2.0e+06
0.33 0.0114 0.80 52 6.19 2.8e+06
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FIGURE 3. Discrepancy principle for Lavrentiev’s method (m = 5); 0.33%
noise (top) and 1.00% noise (bottom).
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FIGURE 4. Discrepancy principle for Lavrentiev’s method (m = 5); 2.00%
noise (top) and 3.00% noise (bottom).
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In the sequel we shall make some comments concerning the underlying
discretization (with no discussion of the corresponding discretization
error). For the implementations, equation (4.17) has been discretized
by a Bubnov-Galerkin method with piecewise constant functions, with
Ψj = χ

[(j−1)h,jh] , j = 1, . . . , N , as basis functions. Here h = 1/N , and
χ

M
denotes the characteristic function corresponding to a set M . We

take N = 128 in fact, and the entries of the corresponding N × N
matrix Ah = (〈AΨj ,Ψi〉) are computed exactly. All computations are
performed in MATLAB on an IBM RISC/6000.

The matrix Ah is in fact a triangular (Toeplitz) matrix, and that
means that for any y ∈ CN , (I+rAh)−1y can be computed very fast for
different values of r; thus for the Volterra integral equation (4.17), the
number of operations for finding rδ for Lavrentiev’s method is rather
small, see the last column of Table 1. Note that the common approach
of normalizing the discretized (nonsymmetric) equation Ahuh = f∗,h

destroys the triangular form of the system.

In our next (and final) experiment we choose

f∗(ξ) =
2√
π

((ξ − 0.2)1/2χ
[0.2,1](ξ) − (ξ − 0.6)1/2χ

[0.6,1](ξ)), ξ ∈ [0, 1];

then
u∗ = χ

[0.2,0.6]

solves (4.17), see again [7, Chapter 1.1]. Figures 3 and 4 illustrate
the results for the (5-times iterated) method of Lavrentiev. The
solid lines correspond to u∗, and the dotted lines correspond to the
approximations that are obtained by the same parameter choice as for
the first right-hand side.
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