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ON THE SOLUTION OF THE
GENERALIZED AIRFOIL EQUATION

SUSUMU OKADA AND SIEGFRIED PROSSDORF

1. Introduction. In the present paper we consider the singular
integral equation

! m\T 1
y [ A0y O ) el ay
1
+ l/ k(z,y)f(y)dy =g(z), —-1<z<]1,
T™J-1

where m, k and g are given functions, f is an unknown solution, and
the first integral has to be interpreted in the Cauchy principal value
sense. Equation (1.1) arises from the two-dimensional oscillating airfoil
in a wind tunnel with subsonic flow (see, for example, [4]) and has
applications in diffraction theory and two-dimensional elasticity theory
(see, for example, [16, 21]).

The analytical as well as the numerical solutions of equation (1.1)
have been studied by many authors [1-3, 6-16, 18-21, 23-27, 29,
30, 32]. (Some of these papers only deal with the case m = 0.)
M. Schleiff [29] solved equation (1.1) for k = 0 and m, f € L2, where
Eg is the space of square integrable functions on the interval (—1,1)
with the Chebyshev weight o(z) = (1 — 22)/2. Using those results, he
constructed a Fredholm integral equation of the second kind equivalent
to equation (1.1). In the present paper we extend Schleiff’s results to
the cases of spaces L2 and of weighted Sobolev-type spaces with weights
w(z) = (1 — z2)*(1 + z)?, where |a| = |8] = 1/2 (Section 3). These
solvability results then give rise to establishing a numerical procedure
for which stability and error estimates in a scale of Sobolev-type norms
as well as in weighted uniform norms will be proved (Section 4).

2. Preliminaries. Throughout this paper let A denote the Lebesgue
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measure in the open interval 2 = (—1,1). Those functions on 2 which
coincide outside a Lebesgue null set will be regarded as equal.

Define functions ¢ and o on 2 by
(2.1) o(z) = (1—2>)Y? and o(z) = (1—z)" Y2 (142)/?, z € Q.

Let w always stand for any one of the functions g, 1/, o and 1/c. Let
7~ lw) denote the indefinite integral of the function 71w with respect
to A. Asin [2], let £2, denote the space £L2(7 1w)) of complex-valued
square integrable functions with respect to the measure 7~ 'w\. Then
L2 becomes a Hilbert space with inner product

(Fl9)u / fgwd\,  fige L

The associated norm on L2 is denoted by || - ||,. The following
relationships are then clear:

(i) £3,, C L2(N) C L3;
(i) El/g C L2 C L2 and
(iii) £3,, € £3,, C L3

Furthermore, we have

(2.2) Lic () £

0
1<r<4/3

Let f € £'(\). Then the Cauchy principal value

Hf(“;glﬁo(/ />w_

exists for A-almost every x € Q and the resulting function Hf is -
measurable (see [5, Theorem 8.1.5], for example). So we have a linear
operator H from the space £!()\) into the space of all A\-measurable
functions. The following lemma is a special case of the Khvedelidze
theorem, which can be found in [15, Theorem 1.2] or [24, Theorem
I1.3.1], for example.
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Lemma 2.1. Let w = g, 1/p, o or 1/o. Then H(L2%) C L2 and
the restriction H,, of H to the Hilbert space L2 is a continuous linear
operator from L2, into itself. Furthermore, (1/w)H (wf) € L2, for every
fer:.

A continuous linear operator S from a Banach space X into X is
called a Noether (Fredholm) operator if its range R(S) = S(X) is closed
and if both the dimension of its null space A'(S) = S~({0}) and the
co-dimension of R(S) in X are finite. The index ind (S) of such an
operator S is defined as

ind (S) = dim N(S) — codim R(S).

Lemma 2.2. The following statements hold.

(i) The operator H, : Lg — Eg s a surjection with null space
N(H,) ={c/o:cec C},

and

H,'({g}) = —(1/0)H(0g) + N(H,), g€ L}
In particular, ind (H,) = 1.
(ii) The operator Hy,, : .Cf/g — .Cf/g is an injection with range

R(Hy),) ={g9 € L}, : (9]1)1/, = 0},

and
Hyg=—0H(g/0),  g€R(Hiy).

In particular, ind (H,/,) = —1.

(ili) Let w = o or 1/o. Then the operator H, : L2 — L2 is a
bijective isometry, and

H,'g=—(1/w)H(wg), g€cLy.

In particular, ind (H,,) = 0.
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Proof. Statement (i) follows from the fact that the restriction of H to
the Banach space £L"(A), 1 < r < 4/3, (cf. (2.2)) has the same property
as H, (see [17, Theorem 13.9] or [26, Proposition 2.4], for example).

Statement (ii) can be proved as in the case of the restriction of H to
the Banach space £7()\), 2 < r < o0, (see [17, Theorem 13.9] or [26,
Proposition 2.6], for example).

Statement (iii) has been shown in [30, p. 149] for the case when
w = o. The case that w = 1/ can be proved similarly. O

Let s > 0. We shall now define a linear subspace L2 ; of L2 as in [2,
Section 2]. Let
() = 21/2 sin[(n + 1) arccos x]j veQ,

sin(arccos z)

for each n = 0,1,2,.... Namely, 2="/2u,, n = 0,1,2,..., are the
Chebyshev polynomials of the second kind. Then {u,} is a complete
orthonormal sequence in the Hilbert space £2. Now let L2 | denote the
linear subspace of Eg consisting of those functions f on 2 such that

oo

D (14 0)*|(flun)l® < co.

n=0
The vector space ACZ’S becomes a Hilbert space with the inner product
given by
o0

(Fl9)es = Z(l + n)zs(f|un)g(g|un)g, f9¢e Ez,s'

n=0

The associated norm on £2 ; will be denoted by || - [|,. Clearly the
Hilbert space EZ’S is continuously embedded into Eg. It is worth noting
that the definition of £ | is dependent on {u,}>2, so that another
complete orthonormal sequence in ‘CZ may define a different linear

subspace of L2.

Let to = 1 and let t,(z) = 2'/2? cos(narccosz) for every =z € Q and
every n = 1,2,.... So tg, 27 1/2t;, 27/2t,, ..., are the Chebyshev
polynomials of the first kind. Moreover, let

cos[(n + 271) arccos z]

Pn(@) = cos(2~!arccos z)
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e [(n+2") arccos ]
sin[(n + 27 ") arccos x
qn () = . 1
sin(2~! arccos z)
for every z € Q2 and every n =0,1,2,... . The so-defined functions p,,

and ¢g,,n =0,1,2,..., are the Chebyshev polynomials of the third and
fourth kind, respectively.

If s >0andif w=1/p, o or 1/o, then we define the Hilbert space
Eﬁ,vs with inner product (-|-)w,s by using {t»}52¢, {Pn}toro or {gn}olo,
respectively, as in the definition of ngs.

Observe that {u, 32, {tn}sg, {Pn}>, and {g,}32, are unique
complete orthonormal sequences of polynomials, with positive leading
coefficients, having the property:

deg u,, = degt,, = degp,, = deggq, = n, n=0,1,2,...,

in the Hilbert spaces EQQ, Ef/g, L2 and E%/U, respectively.

Given a distribution v on €, its derivative in the distribution sense
will be denoted by Dv. According to [2, pp. 196-197], the space Eﬁ,vs
can be expressed as follows.

Lemma 2.3. Let w =9, 1/p, o or 1/o. Let s be a positive integer.
Then a function f € L2 belongs to L2, . if and only if ¢’ D’ f is again

w,s

an element of L2 for every j = 1,2,...,s. Furthermore, the norm
| - llw,s on L3, is equivalent to the norm:

s o 1/2
f%%(}jmﬂyﬂﬁ> , fec2,
=0

Definition 2.1. Let w =g, 1/p, 0 or 1/0. Let s > 0. Define

T T e RV S}

Equip the vector space (1/w)£f/w , with the norm so that the linear
map f — (L/w)f, f € L',f/w & from L',f/w , onto (l/w)ﬁf/w s becomes
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an isometry; in particular, (1/w)L? Jw,s is then a Banach space because

s P2
so is El/ms.

The Banach space (1/w)L? Jw,s 18 continuously embedded into L2
and

(2.3) Hy((1/w)L), ) C L2, s> 0.

This inclusion has been shown in [2, Lemma 4.1]. Its proof is based on
the following result which is a special case of [33, (25)].

Lemma 2.4. The following identities hold:
(i) H(pup) =tpt1,n=0,1,2,....
(ii) H(to/o0) =0 and H(t,/0) = —up—1,n=1,2,....

(iil) H(Upn) = _q’(h n = 07 1,2, PP
(iv) H(gn/0) = pp, n =0,1,2,... .

If w=y9,1/p,00r 1/o and s > 0, then let
(24) Hw)s : (l/w)ﬁf/w,s — ‘szu,s
denote the restriction of H,, to (l/w)ﬁf/w < see (2.3). The following
lemma has essentially been given in [2, Lemma 4.2 (ii)] and its proof
follows from Lemma 2.4.

Lemma 2.5. Let s > 0. Let w = g, 1/p, 0 or 1/o. Then
the linear operator H,, s given by (2.4) enjoys the same property as
Hy, : L2 — £2 in Lemma 2.2.

Let AC(€2) denote the space of complex-valued, continuous functions
f on Q for which there is an absolutely continuous function g on the
closed interval [—1,1] such that f(z) = g(z) for every = € Q.

Let w = g, 1/0, o or 1/o. Let f € £2. By (2.2), the function Lf
defined by

(Lf)() = =t / ) nly—aldy, weq
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belongs to AC(2) and D(Lf) = H f; see [17, Section 13|, for example.
In particular, Lf € £2 because AC(2) C L2.

Lemma 2.6. The following identities hold.

() Lito/o) = —(n2ty = —(2 V2 2ue; L(tafo) = —t; =
—2 Y ug; and L(tn/0) = —tn/n=2"Yup 2 —u,)/n, n =2,3,....
(i) L(ouo) = —27[(v2In2)ty — t2/2]; and
L(ouy) = =27ty /n —tuya/(n+2)], n=1,2,... .
(if) L{opo) = (2 — n2)go — 2 gy and
L(opn) =27 gn-1/n = qu/n(n+1) = gui1/(n+ )], n =1,2,....
(iv) L(go/o) = (27! —In2)po + 27 'p1; and
L(gn/o) = =27 [pn—1/n+pu/n(n+ 1) = pug1/(n+ 1)), n=1,2,....

Proof. Statement (i) can be found in [28, p. 138], for instance.
Statement (ii) follows from (i) because oup = (v/2ty — t3)/(20) and
oup, = (tn, —tni2)/(20) for every n = 1,2, ... . Statement (iii) has been
given in [1, Corollary 3.3] and (iv) can be proved similarly. o

Let L, : £2 — L2 denote the linear operator which assigns Lf to
each functlon f € L%, when w = g, 1/p, 0 or 1/o. By [29, Satz
(Theorem) 2] the operator L, is continuous. For the remaining cases:
w = 1/p, 0, 1/0, the continuity of L,, follows from the closed graph
theorem because £, C L2.

Proposition 2.1. Let s > 0. Let w = o, 1/p, o or 1/o.
Then L., maps the subspace (1/w)£f/w7s of L',w s into L2, ) and the
linear map Ly s : (l/w)El/w s = L2 .41 which assigns Ly f to each
fe (1/w)£f/w . 18 continuous.

Proof. In view of Definition 2.1, the statement is a direct consequence
of the following inequalities:

() 1L/ QN2 i1 < /DI s £ € L2
(i) 12D gapn < (B(1+32)/2) £, f € L2,
(i) [Z(F /)2 o1 <200+ 22F)f2,, f € £2,,; and
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(V) IL(o )T )1 < 200+ 22FFIZ,, £ € L3
A routine calculation based on Lemma 2.6 will derive these inequali-
ties. O

Remark 2.1. In the case when w = o, the statement of Proposition 2.1
has been given in [2, Lemma 5.1 (iv)], without stating constants as
above.

Remark 2.2. Let s > 0. The restriction of L, to (1/9)[1%/@ & defines

. . . . 2
a continuous linear operator with values in £] Joys+1° In fact,

||L(f/g)“%/g,s+l < 4||f||%/g,s’ f € E%/g,s'

Remark 2.3. The main reason for considering Jacobi weights w(z) =
(1 —z)*(1 + z)? with |a| = |3] = 1/2 is that in this case the operator
H,,+mL,, behaves like the finite Hilbert transform H,, (see Lemma 2.2,
Proposition 3.1 and Theorems 3.1 and 3.2). This allows us in Section 4
to present error estimates for a numerical method based on Chebyshev
polynomials and a discretization of the equivalent Fredholm integral
equation of the second kind. Note that the aforementioned Jacobi
weights are the most frequently used ones in applications.

3. The unperturbed generalized airfoil equation. Let 2 =
(—1,1). Let w stand for any one of the functions g, 1/9, o and 1/0 on
Q as in Section 2. The main aim of this section is to solve, in £2, the
singular integral equation

(3.1) (Hy +mLy)f =g

for a given g € £2, when m € L2.

In the case when w = p, the integral equation (3.1) has already been
solved by M. Schleiff [29]. We shall deduce the remaining cases from
his result, by using the fact that £2 C Eg. Let m € [,f,. The Volterra
operator V' on EQQ is defined by

x

(3.2) (V) (z) = /lfd)\, req,
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for every f € L£2. Then V(L) C AC(Q). Define a linear operator
M, : Eg — [,g by

1
M,f = f+ m(Vf +rt [ )2+ arcing) dy)

for every f € Eg. Furthermore, define functions a and b on 2 by

a(z) = exp[—(Vm)(z)] and b(ac):/ a/od\

for every = € (, respectively. It is clear that M, is continuous.
Moreover, M, is invertible.

Lemma 3.1 [29, pp. 83-84]. The linear operator M, : L’g — L',Z s a
surjective isomorphism, and its inverse is of the form

W7o =g ma)[vio/a) - ([ wrma)( [ aren) }

for every g € Cz. In particular,

We are now ready to present Schleiff’s result in [29], which shows
that the operator H, + mL, behaves like H, (see Lemma 2.2).

Proposition 3.1. Let m € Ez. Then the linear operator

H, +mL, : L’g — Eg is a continuous surjection such that its null

space N'(H, +mL,) is spanned by the function ® defined by
(3.3) ® = [1 - (In2)H (oM, 'm)](1/0).
Moreover,

(3.4) (HQ + mL@)il({g}) = *(I/Q)H(QMEIQ) +N(Hg + ng)
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for every g € E?,. In particular,

ind (H, + mL,) = 1.

Lemma 3.2. Let w = 1/p, o or 1/o and m € L2. Then L2, is
invariant under M, and the restriction My, of M, to L2 defines an
isomorphism from the Banach space L2 onto L2, and M,' coincides
with the restriction of My to L2,.

Proof. Tt is clear that M,(L2) C L2 because m € LZ. To show that
the map M,, : L2 — L2 is continuous, let 8 = ||1/w||,,. Given f € L2,
it follows from the Cauchy-Schwarz inequality that

1
[ 1s1ax < sl

and hence
[ Mo fllw < (1 + 287([m|lw) | f]lw-

Thus M,, is continuous on £Z.

It remains to prove that M, *(£3) C £2, and the restriction of M, !
to £2 is continuous. For this part we mainly follow Schleiff’s proof of
Lemma 3.1. Let g € £2 and rewrite Mg_lg in the form

T

(04, *0)e) = o(e) - mi)alo) | [ ta)/a)( [ afoar)ay

—1 —

-/ 1(g<y>/a<y>>( / 1 a/gdA) dy} ( / 11 a/gdx)_l

for every = € 2. Then

1M, *gllw < llgllw + lImll

s [o(a)( [ lalfaar+ [ lljaar)]

o= [sup a(ac)] - {inf a(m)] -

z€Q z€Q

Setting
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and using again the Cauchy-Schwarz inequality, we obtain

1

1M 2 gl < gl + el / gl dA
1

< (L +aprlmlw)lgllw,

which completes the proof. ]

In the subsequent Theorem 3.1, we shall adapt the results of Propo-
sition 3.1 to the case when w = 0. The equalities

H,'h=—(1/0)H(ch)

— (1/0)H(gh) + (1/g)r " / ohd\ herd,

(3.5)

hold in the Banach space £2. In fact, the first equality in (3.5) has
already been given in Lemma 2.2 (iii). The second equality follows
easily from the fact that

(3-6) —o(y)/o(z) + e(y)/e(x) = (z — y)o(y)/e(x)

for all z,y € Q. By (3.5), we have

/1 H;'hd\ = —/1 (1/0)H(ch) dX
(3.7) -t !
:/ ohd), he L2,
because
(3:8) | aromemar=o

which is a consequence of the Parseval identity (cf. [24, Theorem 11.4.4])
and the fact that H(1/9) = 0 (cf. [34, p. 174]). From (3.5) and (3.7) it
follows that

B9 A= (/0r [ HhdA=—(1/0)(eh),
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for every h € L2.

Lemma 3.3. Let m € L. The function ® € L2 defined by (3.3)
belongs to the space L2 if and only if

1
(3.10) 7= (ln 2)/ H'M;'md),
-1
in which case ® = (In2)H,*M_*m and N(H, + mL,) = span{®}.
Proof. By (3.9) applied to h = M 'm, we have

1
® = (1/0) <1 - rl(lnz)/ HalMglmd/\>
-1
+(n2)H, M, m.

o

The statement now follows from the facts that

(3.11) 1o ¢ L3

and
N(H, + mL,) = L2NN(H,+mL,). 0O

The index of the operator H, + mL, is the same as that of H, as
shown in the following theorem.

Theorem 3.1. Let m be a nonzero function belonging to the space
L2. Then the following statements on the continuous linear operator
H, +mLy : L2 — L2 hold.

(i) Suppose that (3.10) holds. Then
N(H, +mL,) = span {H,; "M m}.

Furthermore, a function g € L2 belongs to the range R(H, + mL,) if
and only if

1
(3.12) / H'M;'gd\ =0,
-1
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in which case

(H, + mLy) Y({g}) = H;'M; g + N(H, + mLy,).

(ii) Suppose that (3.10) does not hold. Then H, +mL, is a bijection,
and for a given g € L2,

(813)  (Ho+mLs) g = Hy*M; g+ (cy ln2)m),

where cg is the constant defined by

(3.14) ¢, = </11 aMalgd)\> <7r— (In2) /11 aMalmd)\> _1.

Proof. Recall that @ is the function given by (3.3) which spans
N(H, + mL,); see Proposition 3.1. If g € £2 and ¢ € C, then we
have

1 1
—EH(gMg_lg) ted = —EH[Q(MQ_Ig + (cn2) M 'm)] + g

= H;'M; g + (cIn2)m]

1
(3.15) i1 [c(l - 111_2/ H;lM,;lmdA)
0 T J-1

1t
- —/ H;lMglgdA]
T™J1
by applying (3.9) to h = M, *[g + ¢(In2)m]. Moreover, observe that

(3.16) (Ho+mLo)" ({g}) = L5 N (Hy+mL,) " ({g}),  g€Ls.

(i) Given g € £2 and c € C, it follows from (3.10) and (3.15) that

—(1/e)H(oM, *g) + c® = H; ' M (g + c(In 2)m)

3.17 1
(347 (/g / H Mg dA
-1
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as elements of £2. Hence (3.11) implies that the left-hand side of (3.17)
belongs to £2 if and only if (3.12) holds. Accordingly, given g € £2, it
follows from (3.4), (3.16) and (3.17) that

(3.18) (Hs +mLy)"'({g}) # ¢

if and only if (3.12) holds. Therefore, the second half of statement (i)
has been established. The first half of (i) has already been given in
Lemma 3.3.

(ii) By Lemma 3.3, the operator H, + mL, is injective. To show its
surjectivity, let g € £2. The left-hand side of (3.15) is an element of
L2 if and only if ¢ equals the constant ¢, given by (3.14); we have used
(3.7) and (3.11). It then follows from (3.4) and (3.16) that H, + mL,
is surjective and that (3.13) holds. O

Remark 3.1. Let m be a nonzero function belonging to Ef/a. Then
statements (i) and (ii) of Theorem 3.1 hold with replacement of the
subscript o by the subscript 1/0. The proof will be almost the same if
we replace o by 1/0. The only exceptional relationships to be modified
are (3.5), (3.6) and (3.7). The modified versions are as follows:

Hy h=—oH(h/o)
(3.5%) e )
= —(1/0)H(oh)—(1/0) hjod\,  heLi,;

-1

(3.6")  —o(z)/o(y)+oe(y)/o(z) = (y—2)/(e(z)o(y)),  z,ye;

1 1

(3.7) 7/ Hy hd\ = 7/ oH(h/o)d\
—1 —1
1

:—/ hjod),  heli,.

-1

Now we shall consider the case when w = 1/p. Of course, we need to
apply Proposition 3.1. For our proof, (3.5) will be replaced by

(35) — oH(h/g) = —(1/0) [H@h)—w-l R

-1

1
_W—lx/lh/gd)\], heLl,,
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where x denotes the identity function on 2. Define continuous linear
functionals o and 8 on the Banach space Ef /o by

1
(a, ) :w’lll(Mﬂth)/gdA

and

1
By =t [ et odn

-1
for every h € L3 /o Tespectively. Then the function ® given by (3.3)
has the form
® = —(In2)oH[(M, ,m)/c]
- [1 = (In2)(8,m)](1/0) — (In2)(a, m)(x/0).

Sirice'ng[(Ml_/lgm)/,Q] € .Cf/g, the function @ belongs to L',%/Q if and
only i

(3.19) 1—(In2){(8,m) =0=(a,m)

by using the fact that neither 1/p nor x/p is an element of £? /o' Now

ifgeﬁf/g and ¢ € C, then

—(1/0)H(eM, ') + c® = —oH[(1/0) M\ (g + c(In 2)m))]

+ [c— (8,9 + c(In2)m)](1/0)
—{a, g+ c(In2)m)(x/ o).

With the above observations, the proof of the following theorem is
straightforward, and we shall leave the details with the reader.

Theorem 3.2. Let m be a nonzero function in the Banach space
E%/Q. Then the following statements on the continuous linear operator

Hl/g + le/Q : E%/g — E%/g hold

i) Suppose that (3.19) holds. Then Hy,,+mLy,, has the null space
/e /e
of dimension one given by

N(Hyjp+mLyy,) = span{gH[(Mf/Zm)/g]}.
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A function g € [,f/g belongs to R(Hy/, + mLy;,) if and only if
(a,g9) =0= (B, g), in which case

(Hijo +mLyyo) " ({9}) = —oH[(M,59) /0] + N (Hi o +mLyy,)

so that codim R(H,/, +mLy/,) = 2.

(ii) Suppose that (3.19) does not hold. Then Hy;,+mLy, is injective
and its range consists of those functions g € Ef/g such that

(1 = (n2)(8,m))(a, g) + (In2){a,m)(B, g) = 0.
For such a function g,
(Hijo+mLuiso) g = —oH[(1/0) My, (g + co(In2)m)],
where cg is the constant determined by the two identities:

¢g(In2)(a,m) + (e, g) = 0 = ¢y(1 — (In2)(8,m)) — (B, 9)-

From the above theorem we can see that
ind (Hl/g) =-1= lnd (Hl/g + le/g),

2
for all m € El/g.

Finally we shall show that H, , + mL, ; has the same properties as
H, + mL, for every s > 0, when m is smooth. Our arguments can
easily be adapted to the remaining cases: w = g, 1/p, 1/0; so we shall
not discuss them here.

Let us fix a positive number s and let r be the smallest positive
integer such that » > s. The Hilbert space E(ZTVS is an intermediate

space between Cgm_l and E?mq. In fact, let A be the linear operator in
the Hilbert space L2 with domain D(A) = £2 ., defined by

o,r—1 o,

Af = (1+n)(flpn)opn,  fED(A).

Then the operator A is self-adjoint, positive and unbounded in L'?w_l.

Moreover, if 0 < 6 < 1, then the intermediate space [£2 Eg,r]e is

o,r—1»
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defined as the domain of the linear operator A*~% in £Z .. Of course,
A'~? has the form

o0

A = () O (flpa)apa,  f € D(A),

n=0

(see [22, Section 2.1 in Chapter 1]). Hence, [£2, _,,L2 ]o = L2 r(1-6)
whenever 0 < 6§ < 1. In particular,

(3.20) (L2, 1, L2 Jisyr = L2

o,r—1 0,8°

By Cy([~1,1]) we denote the space of all r times differentiable
functions u : © — C such that p*DFu has a continuous extension
to the closed interval [—1,1] for each £k = 0,1,...,r. Furthermore,
define a norm on Cy([-1,1]) by

lulley = 1" D ullos,  uwe Cp([~1,1]),
k=0

where || - || denotes the uniform norm. Given m € Cj([~1,1]), let

m[,g,(; = {mf : f S Egﬁ}v

2

which is a linear subspace of L7 .,

for every § € [r —1,7].

Lemma 3.4. Let m € Cj([-1,1]). Then the following statements
hold.

(i) Let = r—1 orr. ThenmL? ; C L2 5 and the L, s-valued linear
operator:
f — mfa f € [’(27,&

is continuous. Moreover,

[mfllos < const - [lmllcy | fllos-

(ii) It follows that mLZ , C L2 | and the L2  -valued linear operator:

o,s

fr— mf, fer?

0,8)
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18 continuous.

Proof. Statement (i) follows from Lemma 2.3 together with Leibnitz’s
formula. Statement (ii) is a consequence of the interpolation theorem
[22, Theorem 5.1 in Chapter 1] because of (i) and (3.20). O

Lemma 3.5. The Hilbert space E?,’S s tnvariant under the Volterra
operator V (see (3.2)) and the restriction of V to L2 . is a continuous

0,8
. 2 ; 2
linear operator from L  into L ;4.

o,s

Proof. The proof is analogous to that of Lemma 3.4 (ii) because of
(3.20). o

Corollary 3.1. Let m € Cy([-1,1]). The restriction M, s of M, to

2 . . . 2
L3 ¢ is an isomorphism onto L7 .

Proof. The proof follows from Lemmas 3.4 and 3.5. O

Let m € Cp([-1,1]). It then follows from Proposition 2.1 and
Lemma 3.4 that mL, ; can be regarded as a continuous linear operator
from (l/o)ﬁf/gys(c L2,) into L2, because L2 ., is continuously
embedded into E%,,S. We are now ready to present the main result
which follows immediately from Theorem 3.1 in view of Corollary 3.1.

Theorem 3.3. Let s > 0. Let r be the smallest positive integer such
that r > s. Suppose that m € C}([~1,1]) is a nonzero function. Then
the linear operator Hy s + mLy s : (l/a)ﬁf/as — L2 is continuous,

and statements (i) and (ii) of Theorem 3.1 hold with replacement of the
subscript o by the subscripts o, s.

4. A numerical procedure. The results of Section 3 allow us to
consider a numerical procedure for solving singular integral equations
of the form

(4.1) (Ho+mL,+K)f =g

where g € Ef, and m € Eg are given functions and K is a given compact



GENERALIZED AIRFOIL EQUATION 89

linear integral operator acting on Ef,.

Fix a positive integer n. Let w = g or 1/p, and let h, be the
corresponding polynomial u,, or ¢,. Let y,;, ¢ = 1,...,n, be the
zeros of h,, which are known to be distinct and belong to the open
interval (—1,1). Define the Lagrangian fundamental polynomials [y, ;,
1=1,2,...,n, by

hn () T Y= Unj
I (y) = = e y e (—=1,1).
i) (Y — Yn,i) W (Yn,i) Ynyi — Yn,j ( )

Jj=1
i

The Lagrangian interpolation projector LY is defined by

n

Ly tur— Zu(ynz)l:fz

i=1

for an arbitrary continuous function w: (-1,1) — C.

Assume that the operator K has the form

1
Ku@) =1 [ Moy ce(-L), well

TJ-1

It is well known that K is a compact operator in L’g if the kernel
function k satisfies the condition

11
/,1 /4 k(z,y)”o(z)/e(y) dy dx < oo.

In the sequel we make the following assumptions about the smoothness
of k. Assume that k(-,y) € ﬁf,,s uniformly with respect to y € (—1,1),
and k(z,-) € Ef/gT uniformly with respect to z € (—1,1), with some
positive real numbers s and r to be specified later; in other words, there

are constants C; and Cy (independent of both z and y) such that
(4.2) 1G9l < Cr and Ik, )10 < Cs

for all z,y € (—1,1). Under the above conditions, the operator
K: Ez — ‘Cz,t is continuous for all ¢t < s and compact for all ¢ < s (see,
for example, [2, Lemma 4.2]).
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In what follows we shall denote by || - ||} Jo,s the norm on the Banach
space Ef/g s = (1/0)L7 ), (see Definition 2.1); that is,
||v||I/g,s = ||QvH1/Q,Sv v e ‘C%/g,s‘

Suppose that s > 1/2 and r > 1/2. Introduce the operator K,, by

Kou(z) = - / LY k(e p)u)dy, e (~1,1),

™)1

for all u € £3. The subscript y in L,l/ » indicates that the interpolation is
realized with respect to the variable y. Given z € (—1,1), the function

k(z,-) € Ef/gT is continuous on (—1,1) by [2, Theorem 2.5] because

r > 1/2, and hence we can define K,u(z) for each u € L2. The so-
defined function K,u on (—1,1) is continuous again by [2, Theorem

2.5] applied to k(-,y) € £2 | with s > 1/2.

Note that by Lemma 2.2 and Proposition 3.1, each solution f € Ez
of the Fredholm integral equation of the second kind

(4.17) ;- éH@M;le) - féﬂ(gMglg)

is a solution of (4.1). Conversely, a solution f of (4.1) which satisfies
fil fdX=0is a solution of (4.1*) because of (3.4) and (3.8).

Let II,, denote the space of all polynomials of degree less than or
equal to (n — 1) with complex coefficients. Let g € E;S. We shall seek

2

1/0,s of equation (4.1*). In other words,

an approximate solution f, € L
fn is a solution to the equation

1 1
(4.3) fo — EH(QLﬁMg_lLﬁann) = —EH(QLf;M;Ig)-

It follows from Lemma 2.4 that f,, is necessarily of the form f,, = v, /o
for some v, € II,, and that (4.3) is a fully discretized linear algebraic
system relative to the coefficients of the unknown polynomial v,,.

Introduce the space Ez’o of all functions u € [,Z satisfying f_ll ud\ =
0.
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The range of the operator K,, defined by
~ 1
Knu==H(oLZM,'L¢K,u), u€ L3
4

is contained in £2° because of (3.8). Moreover, it follows from Propo-
sition 3.1 and (3.8) that the operator H, + mL, restricted to £2°
is a bijection from £2° onto L£2. Thus the index of the operator
H, + mL, + K : EZ’O — [,g is 0 because K is compact. So if
H, + mL, + K happens to be injective on Ez’o, then it becomes a
bijection on £2°. For each ¢ € [0, ), let

720

_ A2 2,0
/et — ‘Cl/e,t N ‘Ce :

Theorem 4.1. Let w = o. Assume that the kernel k of the compact
operator K on L% satisfies (4.2) with s > 1/2 and r > s+ 1/2. Let
d denote the smallest positive integer such that d > s, and let m €
C4([-1,1]). Suppose that the homogeneous equation (4.1) possesses
only the trivial solution in L2°, that is, (Hy+mL,+K)~'({0})NL2Y =

{0}, that a function g € Eis is given, and that 0 <t < s.

_Then the singular integral equation (4.1) has a unique solution f in
£*0 Moreover, for all sufficiently large n € N, the system (4.3) is

1/0,8"
uniquely solvable in £ . and the solution f, € [’?,/ogt

1/e:t
frn = vn/o for some v, € II,, and satisfies the error estimate

(4.4) 10 = FIl3/g < comst - n"*lg|,.s-

is of the form

Proof. 1In this proof the symbol ¢ stands for a positive constant
(not always the same) which is independent of n € N. The identity
operators on the various Hilbert spaces to be considered are denoted
by I.

Step 1. Let 0 < § < s. The restriction of Hy 5 + mL, s to ﬁf’/og 5 is

denoted also by H, 5+ mL,,s for simplicity. Since m € C$([-1,1]) and
d > s > d, the operator H, 5 + mL, s is an isomorphism from /:'f’/og 5

onto ﬁfw which can be proved as Theorem 3.3.
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Step 2. We shall show that (4.1) has a unique solution f in L£*?

1/0,s"
The natural embedding Z : [,1 Jos Cg is compact because by

[2, Conclusion 2.3] the natural embedding from L’f/w into .Cf/g is

compact. Since K : £2 — L'Z < 1s continuous by the assumption (4.2),

the map K Z is compact, and hence its restriction to L3P

2
oss is an [,975—

valued compact operator.

Now
ind (Hys + mL, s+ K) =ind (H, s + mL, ) = 0.

The operator

2
—>£gs,

H,s+mL,s +K: [’1/95

which is injective by assumption, is a surjective isomorphism. That is,
(4.1) has a unique solution f in ['1/9 , and

(4.5) 1£115/0,s < 1(He,s +mLg,s + K)7HI - llgle.s-

Step 3. In Steps 3 and 4 we shall establish that the operator

I-K,:L£>°

l/gt—>£

1/0:t

is invertible, which will imply that (4.3) has a unique solution in El Jort"

When 0 < § < s, let M, s denote the restriction of M, to 52915; then
M,s: L’g 5 — L',2 is a surjective isomorphism, which can be proved as
M, s in Corollary 3.1 by using the assumption: m € C’d([ 1,1]) and
d > s > . Applying Lemma 2.4, define an operator A : L — Ef,,t by

Av = (1/0)H(gv), wveL],

Let W: £2°  — 220

Vot Vot be the operator given by

1
Wu =AM, ; Ku, ue£1/g,'

We claim that the operator I — W is a surjective 1som0rphism on

£*0 In fact, H,1 + mL,; is an isomorphism from £*°  onto Eit

1ot /et
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by Step 1. Since K : L2 — L2, is compact by the assumption (4.2),

the operator H,;+mL,;+ K is an isomorphism from ﬁf’/og’t onto Eg’t,

which can be proved as in the second half of Step 2. Now the identity
H&t + mL&t + K= (H&t + ngﬂg)(I — W)

72,0 . .
on L,; establishes our claim.

The operator I — K,, = (I — W) + (W — K,,) becomes invertible for
a large n € N once we show that

(4.6) (W = Kn)ullf g < en=*llullf /g,

for every u € [:?,/og , and n € N. We shall then have

I = Kn) M < W= 1T = W) - [IW = Kal))

provided ||(I — W)~!|| - ||W — K,|| < 1. This is a consequence of the
usual Neumann series argument.

Step 4. The aim of this step is to prove (4.6). To this end, fix a

function u € E?’/Ogt and a positive integer n. Let J : fq/g,t — Eg be

the natural injection. Define a linear operator D, : L5 — L2, by

Dph= (M, 'K —LZM,'LLK,)h, he Ll
Using the operator A given in Step 3 we have

(W — Kp)u = AD, Ju.

Let h = Ju. Then
(48)  Dyh= M, }(K—LeK,)h+ (I - L2)(M,} — I)LeK,h.

In view of the assumption r > s+ 1/2 > s > 1/2, apply [2, Lemma
4.4] to obtain that, if 0 < ¢ < s, then

(4.9) I(K — LEK)hllps < cn’ *|[hll,.
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Letting 6 = ¢ in (4.9), we have

(4.10) 1M ¢ (K = LEK )l g < en'=*|| M| - [[hll,-

On the other hand, from [2, Theorem 3.4] which requires the assump-
tion (4.2) and s > 1/2, it follows that

(411) lo—Leullpe < cntfollpsy  ve L2,
From (4.9) with § = s, we derive
1L Knhllg,s < cllhl[-
This together with (4.11) gives
(412)  (|(I - LE) (M, ; — DLEK hlor < en'*|My s —I|| - ||hll,-
It then follows from (4.8), (4.10) and (4.12) that
(4.13) IDnhllg < en®*(IIMgp |l + | M5 — II)IAll,-
Therefore we have
IW = Kn)ullijgr < AL - 1 DnJull g
< en" A (Mgl + 1Mgs = INIIN - Ny e

which implies (4.6).

Step 5. Since (4.6) holds for every n € N, there is an N € N such
that I — K, is invertible wherever n > N, as observed in Step 3. Let
b = sup,>y||(I — K,)!| which is finite by (4.6) and (4.7). Fix a
positive integer n satisfying n > N. Let

1|1 -1
fn = _(I - Kn) EH(QLgMQ,sg)
which is the unique solution of (4.3). As noted before, f,, = v, /o for
some v,, € II,, by applying Lemma 2.4. It is easy to see that

fn - f = (I_ Kn)_1<_ éH(QLELMg_,;g) - (I_ Kn)f)

(I - f{n)ilA[(I - ng)Mg;.;‘lg - Dan]
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By (4.11) we have

(4.14) [|(I -Lg)Mg ;g

o < en' ™7 [MgSgllps < en Mgl Ilg

s+

Substituting Jf for h in (4.13) gives that ||[D,J f||o,e < en' 5|l J fll,. It
then follows from (4.5) that

(4.15)  [[Dnd fllge < en'=*||J]| - |(Hg,s + mLgs + K) 7| - llg

lo.s-
From (4.14) and (4.15) we finally obtain

1= S/ < T = K) - AN — L) M, 19l o0
+1Dnd fllet)
< bllAfl(en" " llglle.s)

wherever n > N. This establishes the error estimate (4.4). O

Remark 4.1 [29, Section 4]. The homogeneous equation (4.1) has a
unique solution f € L'Z satisfying

1
/ fdx=nC
1

with given C' € R if k and m fulfill the estimate
(4.16) B < (1+ay/m|m|,) " .

Here

ep - [ 11 / 11 k(e,9)%0(z)/ oly) dy da
- /_11 [/_1116(90,11)/9(31) dyre(w) dx

a=| sw o) | jur a(x)]_l

_l<z<1 —1<z<1

and

with the function a defined in the beginning of Section 3.
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If (4.16) is fulfilled, then the general solution f € L2 of (4.1) satisfies
the estimate

I£1lg < 1= 1+ ev/zllmll) BI7*[(1 + av/@llmll)llgll,
+[Cl(a(n2)[[ml], + (1 + av/@llml|)[|2[lo)]* + 7|C*

where

™

1
h(z) = - / ke)el)dy e (L)

Note that if ¢ > 1/2 then the following estimate holds:

(4.17) 71533&1 lu(z)|/o(x) < const - |[ully/,, if u€ ‘C%/g,t

(see [25, Theorem 7] and [7, equation (35)]). Thus the estimate of
Theorem 4.1 gives an error estimate with respect to the uniform norm.
More precisely,

(4.18) sup |fn(z) — f(z)] < const -ntfs||g||gvs
—1l<z<1

for all ¢ in the open interval (27!, s) under the assumptions of Theo-
rem 4.1. Indeed, for each t € (271, s) the estimate (4.18) follows from
(4.4) and (4.17).

We remark that (4.3) can be considered as an alternative numerical
scheme to the well-known collocation method where an approximate
solution in the form f, = v,/p is sought, of equation (4.1), and the
unknown polynomial v, € II,, is determined by the equation

(4.19) (Hy+LémL,+LEK,)f, =Lg.

The statements of Theorem 4.1 hold on replacing equation (4.3) by
equation (4.19) (see [2] for the case of constant m; for m € C([-1,1]),
the proof is similar to that of Theorem 4.1).
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