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QUADRATURES FOR
BOUNDARY INTEGRAL EQUATIONS
OF THE FIRST KIND WITH LOGARITHMIC KERNELS

YUESHENG XU AND YUNHE ZHAO

ABSTRACT. We consider boundary integral equations of
the first kind with logarithmic kernels on smooth closed or
open contours in R?. Instead of solving the first kind equa-
tions directly, we propose a fully discrete quadrature method
for the equivalent second kind equations with kernels defined
by Cauchy singular integrals simply using the trapezoidal in-
tegration rules. Convergence of the method is completely ana-
lyzed. It is proved that the order of convergence is O(1/n2*),
where n is the number of nodes in the quadrature formula
and 2k + 2 is the degree of smoothness of the righthand side
function of the equation. Numerical examples are presented
to confirm the theoretical estimate.

1. Introduction. Recently there has been considerable interest
in numerical solutions of boundary integral equations of the first kind
with logarithmic kernels (see [3, 4, 7, 8, 10, 11] and references cited
therein). These equations arise from reformulations of Dirichlet prob-
lems for Laplace’s equation in the plane, using single-layer potentials.
The classical integral equation methods for boundary value problems
usually reduce the boundary value problems into integral equations of
the second kind. This is because the Fredholm theory and collective
compact operator theory provide simple approaches for both theoretical
analysis and numerical analysis for second kind equations. However, in
the last decade, engineers and mathematicians have realized that first
kind boundary integral equation reformulations using the single-layer
potentials allow simple numerical solutions of practical problems since
in many applications the density function of the single-layer potential
of a boundary value problem is the final target of computation.

In this paper we study a Nystrom method for integral equations of
the first kind with a logarithmic kernel

(1.1) /S 9(Q)log|P — QdS(Q) = h(P), PS5,
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240 Y. XU AND Y. ZHAO

with S a smooth closed or open contour in the plane. When S is a
closed contour that bounds a simply connected planar region D, the
usual Dirichlet problem for Laplace’s equation on D, i.e.,

(1.2) Au(P)=0, PeD,
(1.3) u(P) = h(P), P€S,

can be reformulated as equation (1.1) by using single-layer potentials

4 uP)= [o@uoelP-Qlas@Q).  PeD.

When S is an open arc, the boundary value problem

(1.5) Au(P)=0, PecR*S,
(1.6) w(P)=h(P), PEeS,
(1.7) PSSEZ |u(P)| < oo

also leads to equation (1.1) by again using single-layer potentials.

The existence-uniqueness of the solution of equation (1.1) and its
behavior were investigated by Yan and Sloan [13]. Many different nu-
merical methods for equation (1.1) with a closed curve have appeared
in the literature. A spectral Galerkin method using trigonometric poly-
nomials was proposed by Mclean [7]. A discrete Galerkin method using
the trapezoidal quadrature rule for the method of Mclean was studied
by Atkinson [3], where the discrete Galerkin method was applied di-
rectly to first kind equation (1.1) while the analysis of the method was
done by reformulating the first kind equation as an equivalent integral
equation of the second kind with kernels defined by Cauchy singular
integrals. A modified quadrature method with convergence rate O(h?)
was presented by Saranen [10]. A fully discrete collocation method
using trigonometric polynomials was considered by Mclean, Profidorf
and Wendland in [8]. A collocation method was also proposed by Yan
[12]. A discrete Galerkin method was also applied to solving equation
(1.1) with .S an open arc by Atkinson and Sloan [4].

Motivated by the second kind equation reformulation used in [7, 3]
and [4] for analysis, we develop a fully discrete quadrature method for
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the second kind equations using the trapezoidal rules and a modified
quadrature formula for Cauchy singular integrals of Sidi and Israeli
[11]. High order of convergence is proved by studying the regularity
of the integral kernel for the integral equations of the second kind.
The kernels themselves of the equivalent second kind equations are
defined by Cauchy singular integrals and it is shown in Lemma 3.2
that the kernels are in fact smooth. The smoothness of the kernels
and the periodicities of the kernels and unknown functions enable us
to use trapezoidal rules and obtain a quadrature method with high
order of convergence. The strength of this method is that it is a fully
discrete method which allows simple numerical computation for finding
the density function of single-layer potentials, taking advantage of the
simplicity of analysis for integral equations of the second kind. Some
quadrature methods for integral equations with Cauchy singular kernels
were proposed in [9].

In Section 2 we review the reformulations of equation (1.1) as integral
equations of the second kind with kernels defined by Cauchy singular
integrals for both closed curves and open arcs. In Section 3 we study
the regularity properties of the kernels of the integral equations of the
second kind and develop a quadrature method using the trapezoidal
rule for these equations. In Section 4 we establish the fully discrete
quadrature method for equation (1.1). Using the theory of collectively
compact operators, we prove the main result of this paper that the
order of convergence for the method is O(1/n?*), where n is the number
of nodes used in the quadrature formula and 2k + 2 is the degree of
smoothness of the righthand side function in equation (1.1). In Section
5 we demonstrate some of our theory with two numerical examples: one
for closed curves and one for open arcs. The numerical results confirm
the theoretical estimate of convergence. Through these examples, we
also illustrate the numerical evaluation of the single-layer potentials.

2. Preliminaries. In this section we follow the reformulation in
[3] and [13] to describe integral equations of the second kind with
kernels defined by Cauchy singular integrals which are equivalent to
equation (1.1).

We first consider the case when S is a smooth closed curve. Let
HY := HY[0,2n] denote the Sobolev space of functions p € L2[0, 2]
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with the property

(oo}

D> 1+ m?)am|* < oo,

m=—0o0

where
L e mds | = 0,1
A = — e , m|=0,1,...,
27T 0 p

and 0 < ¢ < 0o. As in [3], we assume S has a C* parameterization

(2.1) r(s) = (£(s),n(s)),  0<s<2m,
with
(2.2) Ir'(s)| # 0, 0<s<2m.

Following the development in [3], we rewrite equation (1.1) as

(2.3) —%/0 " o) log|r(t) — r(s)|ds = f(t),  0<t<om
with
(2.4) p(s) = g(r(s)r'(s)l,  f(t) = —%h(r(t))-

We decompose the lefthand side of equation (2.3) into two terms, the
first term corresponding to the integral equation for boundary curve
being a circle and the second term representing the perturbation from
a circle for an arbitrary boundary curve. That is,

(2.5) Ap+Bp=f,

where
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with
(2.8)
b(t,s) = { (—=1/m)log|e'/?[r(t)—r(s)]/(2sin[(t—5)/2)]| t—s # 2mn

’ (—1/7)log|e'/?r'(t)] t—s = 2mm,
for m = 0,41,+£2,... . The function b is 27-periodic in both variables
and it is C*°.

We assume furthermore that the transfinite diameter Cg of the
boundary S is not equal to 1. It has been proved in [13] that if S
is smooth and simple and Cs # 1, then C = A+ B : H? — H! is
one-to-one and onto for any ¢ > 0. It follows that (2.5) has a unique
solution in H? if f € H?™!. It is known (for example, see [7] or [3])
that the inverse of A : H? — H9"! exists and

(2.9) At =-DH+J=-HD+J,
with o
Dolt) =70 Tots) = 5- [ ooyt
27 T
(2.10) (Hp)(s) = 7% /0 cot {ST] p(o) do.

Applying A~! to both sides of equation (2.5) leads to the following
integral equation of the second kind

(2.11) (I+A™'B)p=A""f.

Clearly (2.5) and (2.11) are equivalent. It follows that (I + A=1B)~!:
HY — HY exists.

Now we regard A~ 1B as an operator mapping C,[0, 27r] — C,[0, 2],
the space of 2m-periodic continuous functions on [0,27]. It will be
shown later (see Lemma 3.2) that the operator A~'B can be repre-
sented as an integral operator with a smooth kernel. Hence A~'B
is a compact operator on C,[0,27]. Because of the smoothness of
b(t,s) as defined in (2.8), the operator B is compact from H° into
H4 for all ¢ > 0 (see [18]). Thus A !B is a compact operator from
HY into H® since A=' : H' — H° is bounded. It follows, by not-
ing the existence of (I + A™'*B)~! : H® — H, that —1 is not an
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eigenvalue of A™'B as an operator on H". Since Cp[0,27] C H, we
conclude that —1 is not an eigenvalue of A~1B : C,[0,27] — C,|0, 27]
either and, by noting the compactness of A™*B : C}[0, 27r] — C,[0, 27],
(I+A7'B)=': Cy[0,27] — C,|0,27] exists. Hence (2.11) has a unique
solution on Cp[0, 27| for any f such that A= f € C,[0, 27] and this solu-
tion is the solution of (2.5). In particular, if f € C¥*2[0, 27] where k is
any positive integer, then it can be easily proved that A= f € C}f [0, 27]
and then, by noting that A~'Bp € C;°|0, 2] for any p € C,[0, 2] since
B:H° — HY for any ¢ > 2 and A~ ! : H? — H? ! we conclude that
p € CF0, 2x].

We will use the notation f(7)(s,t) and g(*7*)(s,t,u) to denote the
partial derivatives. For example, f (0.1) denotes the partial derivative
of f with respect to the second variable. It follows from (2.7) and (2.9)
that operator A~!'B has the form

(A~'Bp)(t) = %P.V. /0 o [“T"} ( /0 7 H19 (0, 9)(s) ds> do
o [ ([ o stots)as) ao

where ‘P.V.” denotes the Cauchy principal value of the integral and it
is defined by

P.V. bLt)tdtzlim[/:_s&dt—i— b Mdt].

a S — e—0 s —t S_._ssft

We will omit the prefix P.V., it being understood that the principal
value is to be taken when appropriate.

We now consider the case where S is a smooth open arc in RZ.
Let HZ[0,27] denote the subspace of HY[0,27] which consists of even
functions, where ¢ > 0. Following the development given in [13] and
adopting the notation used in [4], we let

(2.12) r(z) = ((),n(z), -1<z<l,

where r(z) is C* and |r'(z)| # 0, —1 < 2 < 1. We make the additional
change of variable ¢ = cos™!(z), —1 < # < 1. When S is a smooth
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open arc, equation (1.1) can be written as

- %/Oﬂg(r(coss))r'(cos )/ sin s log [r(cos t) — r(cos s)| ds
= —h(r(cost)), 0<t<m
Let
(2.13) p(t) = g(r(cost))|r'(cost)||sint],
(2.14) f£(t) = —%h(r(cost)).

Then p and f are even 27-periodic functions on R, and the integral
equation can be written as

(2.15) 1 /7r p(s)log|r(cost) — r(coss)|ds = f(t), 0<t<2r.
m™Jo

Note that r(cost) € C°°(R). Similarly to the case when S is closed we
split the lefthand side of equation (2.15) as

(2.16) (Ae + Be)p = f,
where

(2.17)
(Aep)(t) = —% /0 p(s) log[2e™* | cost — cos s|] ds,

(218)  Bup(t) = / " p(s)belt, ) ds,

and
(2.19)
(—=1/m)log|(e/2)(a(t) — a(s))/(2cost — cos s)|
bo(t, s) = t—s,t+ s # 2wm,

(—=1/m)log |(e/2)r'(cost)|
t—sort+s=2mm,
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with a(t) = r(cos(t)) and m an arbitrary integer. Note that b.(¢, s) is
C®°, 2m-periodic, and even, with respect to each variable.

It has been shown in [13] that C, = A, + B, : H? — H4"! is one-to-
one and onto for any ¢ > 0 if S is smooth and simple and Cg # 1. It
follows that (2.16) has a unique solution in H2[0, 27| if f € HZ1[0, 27].
It is known that the inverse of A, : HY — H9™! exists for any g > 0,
and it can be shown that A_! = —HD + J. Thus, we have from (2.16)

(2.20) p+A-'B.p=A'f.

It is obvious that (2.16) and (2.20) have the same solution in HZ[0, 27].
We regard AZ'B. : C,.[0,21] — C,[0,27], a subspace of even
functions in C,[0,27]. By using arguments similar to those used in
the case when S is a closed arc, one can show that (I + A_1B.)"!:
Cp.el0,2m] — C,[0,2n] exists. Hence, for any f such that A;1f €
Cp,e[0, 27| equation (2.20) has a unique solution in Cp ([0, 27], and this
solution is the solution of equation (2.16). Moreover, if f € C5t2[0, 2]
where k is any positive integer, then the solution p of equation (2.20)
is in CF [0, 27].

Notice that A_;! = —HD + J. It follows that

1 2m _ ™
(A_'B.p)(t) = —/ cot [t_a} / b1 (g, 5)p(s) ds do
2 0 2 0
1 2 pm
+ / be(o,8)p(s) ds do, p € Cpel0,27].
2 Jo Jo

Since p € C,.[0,27] and b, is 2m-periodic and even with respect to
each variable, we conclude

s 1 s
/ b0 (g, 5)p(s) ds = = b9 (g, 5)p(s) ds
0

2.,
1 2
= 5/ b9 (o, 5)p(s) ds,
0

™ 1 ™ 1 27
/ be(o,8)ds = = / be(o,8)ds = = / be(o, s) ds.
0 2 2 Jo

and



QUADRATURES FOR BOUNDARY INTEGRAL EQUATIONS 247

Therefore,

2m o 27
(A Bep)(t) = 4i/ cot [tTU] / b0 (o, 5)p(s) ds do
m™Jo 0

1 2w 27
+ o / b. (0, s)p(s)dsdo, p € Cpel0,2m].
0

™ Jo

Now, combining two cases together, we consider integral equations in
the form
(2.21)

olt) + /0 " ot {FTU] /0 B0 (0. 5)p(s) ds do
+/27T /27f b1 (o, s)p(s) dsdo

0 0

In the case of closed contours, we let

(2.22) bi(t,s) = 2ib(t,s), ts € [0,2n],
71'

and seek the solution of equation (2.21) in Cp[0,27]. In the case of
open arcs, we let

1
(2.23) bi(t,s) = 4—be(t, s), t,s € [0,2n],
T

and seek the solution of equation (2.21) in Cp [0, 27].

In operator form, this equation is written as
(2.24) p+Kp=f,

where
(Kp)(t) = /0 > ot [tT"] /0 B0 (5. 5)p(s) ds do
+ / - / T b (0,)pls) ds do

0 0

(2.25)
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and

(2.26) f(t) = % /0% cot [IS_TJ] f'(0)do + % :W (o) do.

This is an integral equation of the second kind. Since equation (2.24)
is equivalent to (1.1), we will develop numerical methods for equation
(2.24) and use equation (2.4), respectively (2.13), to obtain an approx-
imate solution of (1.1) when S is closed, respectively open.

3. A quadrature method using the trapezoidal rule. The
goal of this section is to develop a quadrature method for equation
(2.24) by using the trapezoidal rule and to analyze the convergence of
the method. For this purpose, we first study the regularity of integral
operator K. The following lemma is useful for our development; it
allows us to interchange the order of integrations of the first term in
the righthand side of equation (2.25). This lemma may be proved by
using a general argument of convolution operators with a logarithmic
kernel. However, for the benefit of the reader, we provide an elementary
proof.

Lemma 3.1. Let p € Cp[0,27] and by € C'[(—o0,00) x (—00,00)].
Then

(3.1) /0 " ot [%] < /0 " by (o, t)p(t) dt) do
= /027r </027r cot [%]bl(o, £) d0>p(t) dt.

Proof. We prove (3.1) by modifying the proof for (7.3) in [6]. Let

1(s) :/Ozwcot [8;": (/0% b1 (o, D)p(t) dt> do,  sel0,2n],

and

i(s) _/:W </02W cot —S;U}bl(a,t) da>p(t) dt, selo,2m]
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Let s be an arbitrary, fixed number in (0, 27). For an arbitrary number

7] > 0 we write
2m
] ( b1 (o, t)p(t) dt> do,
0

o= ([T e[
o= LU [ L) (o [ ara

Because the first and third terms of equations (3.2) and (3.3) are
ordinary integrals, interchange of the order of integrations is allowable.
Hence, the first and third terms of (3.2) are equal to the corresponding
terms of (3.3), respectively. Consequently, we have

|1(s) = 1(s)| < 11(s)] + 1 12(s)],

L(s) = / _:" cot F_T"] < /0 b () dt> do
12(3):/02” (/S;ncot {S 5 ]bl(o t)do) (t) dt.
(

We next estimate both |I1(s)| and |I2(s)|. To this end, we denote

bi(s, o) = cot [S_T"] (s — o) /0 " b1 (a, t)p(t) dt.

and

(33

where

and

Since

cot [S_T"} (s—0) € CF == C®{(s,0) : |s — 0| < m,5 € [0,2n]}

we conclude by € C1 := C'{(s,0) : |s — 0| < m, s € [0,2x]}. Hence,

S+”b150
S—

/S+"b150 — by (s, s)d
o

S —0

~ S+T]
+ bl(sas) / do

—n s§—0O
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Using the formula

s+n d
(3.4) / 7 —o,

—n s — 0

and the mean value theorem, we obtain

(3.5) ()| < max B0 (s,0)](2n),

|s—o|<m,s€[0,27]

for any n € (0, 7).

We now turn our attention to |Iz(s)|. Denote
bi(s,0,t) = cot [%} (s — o)by(0o,t).

Again, since cot[(s — 0)/2](s — o) € C§°, we conclude that
by € CH{(s,0,t): |s — o| <7, s € [0,27],t € [0,2n]}.

Then, using a similar technique, we find

2w S+’7b (s,0,t
nel=| [ ( 22 4o oty

‘/2“[ s+77blsat) b(sst)d
o

s—o
- stn g
+b1(5,5,t)/ 7 }p(t) dt‘.
5oy S5—O
By formula (3.4) and the mean value theorem, we have
(3.6) L) < am max (B0 (5,0, llplloon,
s€|o, 27r],
te[0,27]

for any n € (0,7). It follows that |I(s) — I(s)| < Mn for a constant
M > 0 and for any n € (0,7). The case when s = 0 or 27 can be
similarly handled. o



QUADRATURES FOR BOUNDARY INTEGRAL EQUATIONS 251

Applying the formula in Lemma 3.1 to the first term of (K p)(t) given
by equation (2.25) yields

w0 - | " (/ 7 ot 57| o)) oty

(3.7) Moo
4 /0 < /0 bl(a,s)dcr)p(s)ds.

Let

(3.8) k(t, ) = /0 " ot [t_TJ]bgl’O)(a,s) do,

and

(3.9) I(s) = /0 b0, 5) do.

With the notation we write
27 27

(3.10) (Kp)(t) = / k(t, $)p(s) ds + / Us)p(s)ds,  te0,2n].
0 0

In the next lemma we study the regularity of kernel k(t, s).

Lemma 3.2. Let by € C}'"?[(—00,00) x (—00,00)]. Then k €
O(—o00,00) * (00, 00)].

Proof. By the definition of the Cauchy principal value, for an
arbitrary positive number 7, we write

t—n t—
k(t,s) = lim cot | —Z [p{1:0) (0,8)do
0 2 !

n—0

2m t—o (1,0)

+/ cot {T] by (o, s) da].
t+n

Note that the two integrands on the righthand side of this equation

are smooth. Hence, the two integrals are ordinary integrals. Using
1,0)

integration by parts and the periodicity of bg , we conclude that

k(t,s) = 2 lim log | sin 2| B (¢ + . ) = "7 (¢ = . )]
2
t —
+ 2/ log sin —~ b?*") (0,5)do.
0




252 Y. XU AND Y. ZHAO

Applying the mean value theorem to bgl’o) we see that there exists 6

with 0 < 6 < 1 for which
bgl’o) (t+mn,s)— b§1’°) (t—m,s) = ng’O) (t —n+260n,s)(2n).

Since nlog |sin(n/2)| — 0 as n — 0 and b§2’°) is bounded, we conclude
that the first term in kernel k(¢, s) vanishes. Consequently,

2
k(t,s) = 2/ log | sin[(t — 0)/2]|b§2’0) (0,8)do, t,s €0, 2n].
0
We change variables and obtain

t
k(t, s) = 2 / log | sin(o/2)[539 (t — o, s) dor.
t

—27

Since by € CJ't?[(—o0,00) X (—00,00)], b§2’°) (0,s) is 2m-periodic in
both variables o and s. Hence, the integrand in the righthand side is
2m-periodic in the variable o. This periodicity implies that

2
k(t, s) = 2 / log | sin(o/2) 52V (t — o, s) dor.
0

Again, since by € CJ'T?[(—00,00) X (—00,00)], we obtain k €
Cp'[(—00,00) x (—00,00)]. O

Lemma 3.2 guarantees that the kernels of operators K are C'*° 2m-
periodic functions in both variables. The smoothness and periodicity of
kernels k(t, s) and the unknown p(s) allow us to use the trapezoidal rule
to develop a quadrature method for equation (2.24) with high order of
convergence.

To develop the quadrature method, we recall the trapezoidal rule for
the integral

2
/ u(s) ds, u € Cp0, 27].
0
Let n be a positive integer, and let

h =2n/n, s; = ih, 1=0,1,...,n.
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Then the trapezoidal rule is the sum

n

(3.11) T, (u) := hZ”u(si) = hZu(si),

=0

where the double prime notation on the summation means to halve
the first and last terms before summing and the second equality holds
because of the periodicity of u. It is well known [5, page 137] that if
u € C’gk’[O, 27| then

< C/n?.

(3.12) ‘ /0 " u(s) ds — Tp ()

Define a sequence of approximate operators K,, of K by applying the
trapezoidal rule to the two integrals in the definition of the operator
K, ie.,

n

(3.13) (Knp)(8) = b Y [k(E, 55) + U(s)]p(si),

i=1

where p € C,[0,27] if S is a closed contour and p € Cp ([0, 27] if S is an
open contour. Then K, : Cp[0,27] — C,[0,27] if S is a closed contour
and K, : Cp .[0,27] = C) ([0, 27] if S is an open contour. We consider
the approximate equation

(3.14) (I+Kn)pn=F.

To solve equation (3.14), we evaluate both sides of equation (3.14) at
t =s;, for  =1,2,...,n and obtain the linear system of equations

(3.15)  pn(s;) + hZ[k(Sja 5¢) + 1(si)]pn(s:)




254 Y. XU AND Y. ZHAO

Upon solving this system for the values {p,(si),7 = 1,2,...,n} we
have the solution of (3.14) given by

n

pn(t) = —h Z[k(t,sz') +1(si)lpn(s:)

1 [ t—o
(3.16) + o | cot [T] f'(o)do
1 27
— 27r|.
+ or J, f(¢) dt, t € [0, 2m)

In the remaining part of this section we analyze the order of con-
vergence for this method by assuming that both k(s;,s;) and f(s;)
are evaluated exactly. However, since k(s;, s;) and f (sj) are defined
by Cauchy singular integrals, we have to compute these values by us-
ing quadrature formulas. Therefore, the effect of the approximation
of these values has to be taken into account. We will propose a fully
discrete quadrature method in the next section and study the order of
convergence of the method, taking into consideration the effect of error
attributed by the approximation for k(s;,s;) and f(sj).

The following lemma collects properties of the operators K,.

Lemma 3.3. The following statements hold:
(i) {K, :n > 1} is uniformly bounded.
(ii) [|Knp— Kplloo = 0 as n — oo, where p € Cp[0,27], respectively
p € Cpel0,2m], if S is a closed contour, respectively an open contour.

(i) Ifp e Cgk[O, 27|, respectively p € Cg”ce [0,27], when S is a closed
contour, respectively an open contour, then

I1Kp = Knplloo = O(h**).

Proof. By Lemma 3.2, the kernel k(¢, s) is a C* 2m-periodic function
in both variables. Thus, statements (i) and (ii) follow directly from
properties of the trapezoidal rule (for example, see [1]). Statement (iii)
is a consequence of the error estimate (3.12). 0
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The next theorem is one of the main results of this paper, which gives
the order of convergence for the quadrature method developed in this
section.

Theorem 3.4. Let f € C2F*2(0,2n], respectively f € C2%+2(0, 2],
when S is a closed contour, respectively an open contour. Then for any
sufficiently large n, equation (3.14) has a unique solution p, with

(3.17) o= pnllc = O(l/an),

where p, € Cp[0,27], respectively p, € Cp.[0,27], if S is a closed
contour, respectively an open contour.

Proof. We prove the theorem when S is a closed contour only. When
S is an open contour, this proof is still valid if we replace C;[O,ZW]
by C;’e[0,27r]. By a standard argument, we can show that the set
{Kunp : p € Cp[0,27],||pllec < 1,n =1,2,...} is equicontinuous, that
is, for an arbitrarily small € > 0, there exists a § > 0, such that

(Enp)(t) — (Knp)(s)| <e,

whenever ¢, s € [0,27] with |t —s| < § and p € Cp[0, 27] with ||p|/oc <1
and n = 1,2,.... Hence, using Lemma 3.3 and the Arzela-Ascoli
theorem, we conclude that the operators { K, } are collectively compact
operators (see [1] and [2]). Since (I + K)~1 exists, it follows that for
sufficiently large n, the inverse operators (I + K, ) ! exist and are
uniformly bonded by a constant C'. Hence,

(3.18) lp=pnlloe < NNI+En) o[ Knp—Kplloc < CllKnp—EKp||oo-

Now that f € C2F*2[0,27]. We then have /e C2*10, 2] since
A~ CPFF2(0,27] — C2F[0,27]. Thus, p € C2¥[0,27]. Hence, by
Lemma 3.3 (iii) and inequality (3.18), the result (3.17) follows. O

4. A fully discrete quadrature method. In solving equation
(3.15), we need to evaluate the function values of k(¢, s) and f(t), which
are defined, respectively, by the Cauchy singular integrals

27 _
k(t,s) = / cot {tTU] b0 (g, 5) do
0
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and

R . 1 27 t—o , p 1 27 p

1G] ._g/o cot [T]f(a) U+% | (o) do.
In this section we will develop a fully discrete method for solving
equation (3.15) using a quadrature formula for these two integrals.
The main result of this section is Theorem 4.4, which gives the order
of convergence for the fully discrete method.

We first state a quadrature formula for Cauchy singular integrals,
which is basically proved in [11].

Lemma 4.1. Let k > 1 and g(o,t,s) € C* T ([—m, 7] x [0,27] x
[0,27]). Assume

is 2mw-periodic in variable o. Let n > 1, h = 2w /n, and define

(4.1) Qn(t,s) =h > G(jh—h/2,t,s).
j=1
Then
(4.2) max / G(o,t,s)do — Qu(t, s)| < Ch?*.
t,s€[0,27] -

We now use quadrature formula (4.1) in Lemma 4.1 to evaluate k(t, s)
and f(t). A change of variables yields

t

k(t, ) = / cot(/2)b"0 (¢ — o, ) do.
t—2m

Using the periodicity of the integrand in variable o, we write

k(t,s) = /7r cot(a/2)b§1’0)(t —o0,8)do

—T

™ g cot(o/2)b (¢ —
:/ ocot(a/2)by T (t—oys) |

a
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Applying the quadrature formula in Lemma 4.1 to this integral with
g(o,t,8) = ocot(a/2)b§1’0)(t —0,8),

we have
- 25 —1
k(t,s) =h_ cot (JTh> BV (¢ — jh + h/2,s) + O(RF)
j=1

where the coefficient of h%?* in the asymptotic error is bounded by a
constant independent of h, ¢t and s. For simplicity of notation, we let

- 2j — 1
(4.3) kn(t,s) :=h E cot < J4 h> bi”” (t—jh+h/2,s).
j=1

We also use the same quadrature formula to evaluate f (s). To this
end, we write

f(s) = %/_ﬂ Jcot(a/23f'(s—o) da—l—% 02” (o) dor

Using quadrature formula (4.1) for the first integral and the trapezoidal
rule for the second integral, we have

f(s) = %i [cot (2i4 lh)f'(s ih + g) +f(si)] + O(h?k).

i=1

Therefore, we obtain a fully discrete method for the solution of equation
(2.24)

(44) o) Y [Ealos00 1S a0 50
i=1 =1

h 2i—1
252[% e AR SIS O] RS

where ky,(s;, s;) is defined as in (4.3).
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We next analyze the order of convergence for this method. Define
a sequence of fully discrete operators K, : Cpl0,27] — Cpl0,27],
respectively K, : Cpel0,2m] — Cpel0,27], if S is a closed contour,
respectively an open contour, by
(4.5)

() 5= 03 [t + 13 buCoges] st 0.2
i=1 j=1

In operator notation, equations (4.4) are written as p} + IA(npfl = fn,
where

T 4

7

Falt) = o : [cot <2i_1h>f'(tih+h/2)+f(si)}, t € [0, 27].

The next two lemmas collect some properties of approximate oper-
ators K, which are needed for the proof of our main result in this
section.

Lemma 4.2. The following statements hold:
(i) {K,:n > 1} is uniformly bounded.
(ii) ||Knp—Kpllow — 0 as n — oo, where p € C,[0,27], respectively
p € Cpel0,2m], if S is a closed contour, respectively an open contour.
(i) Ifpe Cgk[O, 2], respectively p € Cp [0, 2], when S is a closed
contour, respectively an open contour, then

|1Kp = Knplloo = O(R**).

Proof. We prove the lemma when S is a closed contour only. For the
case when S is an open contour, the same proof applies as long as we
replace C?[0, 27| by C [0, 27].

(i) Note that k,,(t,s) converges to k(t, s) uniformly with respect to
both ¢ and s. Hence, there exists a constant C' > 0 for which

max |k,(t,8)] <C.
t,s€[0,27]
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It follows that
(Enp) )] <hY [|kn<t,si>| s |b1<sj,si>|] 1p(s0)
i=1 j=1
< 20(C + o] loe) ] .
(ii) We first prove that
(4.6) 1Kup — Ruplloo < OB),  p e Cyl0, 271,

Since for p € C,[0, 27],

|(Knp)(t) = (Knp)(t)] < hz [k(t, 5i) = kn(t, i)]

+ |:l(5i) - hilﬂ(sj,si)} ‘|P(5i)| < Ch**,

where C' is a positive constant independent of ¢ or h, we conclude that
equation (4.6) holds. We write

(4.7) IKp — Knplloo < [|Kp — Knplloo + [|Knp — Knplloo-

Then (ii) follows immediately from (4.6) and Lemma 3.3 (ii).

(iii) This statement follows from (4.6), (4.7) and Lemma 3.3 (iii).
O

Lemma 4.3. When S is a closed contour, the set
K= {Knp:peCl0,27],|lpllec <1, n=1,2,...}
s equicontinuous. For the case that S is an open contour, the set
K:={Knp:peCpel0,27],|Ipllc <1, n=1,2,...}

1S equicontinuous.
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Proof. Again we prove the lemma when S is a closed contour only.
The remark in the beginning of the proof of Lemma 4.2 is valid here.
Let € > 0, p € Cp[0, 27| with ||p||cc <1 and ¢, s € [0,27]. Note that

[(Knp)(t) — (Knp)(s)] < hz |kn(t, si) — kn(s,si)||p(si)].
=1

Write

(4.8) Bty 53) — b (s, 85) = /t O (g, 5,) ds.

However, differentiating (4.3) with respect to ¢, we have
(1,0) - 25 -1 (2,0) .
k% (z,s) = hZCOt Th by (x — jh 4+ h/2,s).
j=1

This is the quadrature formula developed in Lemma 4.1 applied to
integral

2w o
kRO (g, 5) = / cot [—I 5 U]b?’o)(a,s) do,
0
whose integrand is 2m-periodic in ¢. By Lemma 4.1, we find

max _|[k1O(t,s) — kO (t,5) — 0, as n — oo.
t,s€[0,27]

Hence, there must be a constant C' > 0, independent of n, for which

(4.9) max kB0 (8, 5)] < C.

Consequently, from equations (4.8) and (4.9), we conclude that
|kn(t, s:) — kn(s,s:) < CJt— s,
and thus, for ||p||ec <1,

|(Knp)(8) — (Knp)(s)| < 27C]lpllclt — 5| < 27C]t — s].

This implies C is equicontinuous. O
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We are in the position to state and prove the main theorem of this
section.

Theorem 4.4. If f € C2F*2(0,2n], respectively f € C2%+2[0,2n],
when S is a closed contour, respectively an open contour, then for
sufficiently large n, equation (4.7) has a unique solution p}, with

Hp - p7*1||oo = O(h%)v

where p is the solution of equation (2.24).

Proof. Similar to the proof for Theorem 3.4, by using the Arzela-
Ascoli theorem and Lemmas 4.2 and 4.3, we can show that the set
of operators {I%'n}ff’:l is collectively compact operators. Hence, for
a sufficiently large n, the inverse operators (I + IA(n)_l exist and are
uniformly bounded by a constant C' > 0. Hence, we have

A

p— P; = (I+Kn)_1[(f_ fn) - (K - Kn)p]
It follows that

1o = prlloe < ClIf — falloo + IEp — Knplloc] < O(h%). o

5. Numerical examples. In this section we present two numerical
examples, one for the case when S is a closed arc and the other for
the case when S is an open arc, to illustrate the method proposed
in the previous sections. The numerical results confirm our theoretical
estimates. We also use these examples to demonstrate the computation
of the single-layer potentials.

Example 1. Consider the interior Dirichlet problem for Laplace’s
equation:

(5.1) Au(P)=0, PeD,
(5.2) u(P) = h(P), Pe€S,

with the elliptical region D given by

(z,y) = (ycos(t),0.4ysin(t)), 0<t<2m 0<y<1,
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where v is a parameter. In particular, when v = 1, we have the
representation of the boundary S

r(t) = (cos(t), 0.4sin(¢)), 0<t<2rm.
In (5.2), the function h is chosen such that the true solution of this

problem is u(z,y) = e® cos(y).

We represent the solution u as the single layer potential
63 uP)= [o@oelP-Qlds@Q. PeD.

The unknown density function g is obtained by solving equation (1.1)
with the specific S and h given by this example. Then the correspond-
ing kernel defined by equation (2.8) becomes

1 t t
b(t,s) = —%{1 + log [sin2 [%] 4 0.16 cos® [%” }

After solving equation (2.5) corresponding to this case for the approx-
imate solution p,, by using the fully discrete quadrature method pro-
posed in Section 4, the approximate density function g, is given by

gn(t) = pn(®)/IF'@)], 0 <t <2

Notice that

u(P) :/ ﬂg(r(S))\r’(S)llogIP—T(S)\ds
(5.4) 0

2m
:/ p(s)log |P —r(s)|ds, PeD.
0

We then obtain an approximation u, to u by substituting p,, into (5.4)
and integrating (5.4) numerically. The trapezoidal rule is used in the
numerical integration of the integral in (5.4) with the quadrature nodes
as the same points s; as were used in solving for py,.

We give below numerical results of this integration at four points
(xj,y;) inside D, where

(zj,4;) = 7j(cos(n/4),0.4sin(r/4)),  j=1,2,3,4,
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with 74 = 0, 2 = 0.4, 73 = 0.8, and 4 = 0.99. Since point (z4,y4)
is very close to the boundary S, the integrand in (5.4) behaves badly
when P = (z4,y4). We do not expect that the trapezoidal rule gives a
good approximation for the integral (5.4) when P = (z4,y4). Table 1

gives the errors of u,(z;,y;), 7 =1,2,3,4.

TABLE 1. Errors of un(z;,y;)

n ji=1 j=2 i=3 j=4
10 | 5.7922D-03 | -1.3692D-02 | 8.8532D-02 | 1.0797D-01
14 | 7.9089D-04 | -3.2355D-04 | -4.4436D-02 | 9.236D-02
18 | 1.1483D-04 | 6.4008D-04 | 1.1943D-02 | 6.9897D-02
22 | 1.7395D-05 | 1.2793D-04 | 1.3263D-03 | 4.3749D-02
26 | 2.7165D-06 | -2.0475D-05 | -3.7480D-03 | 5.0950D-02
30 | 4.3386D-07 | -1.2526D-05 | 2.9246D-03 | 2.2854D-02
34 | 7.0486D-08 | -7.1632D-07 | -1.5361D-03 | 3.9962D-02
38 | 1.1606D-08 | 8.1437D-07 | 4.8883D-04 | 1.1329D-02
42 | 1.9316D-09 | 2.0194D-07 | 2.6721D-05 | 3.2798D-02
46 | 3.2433D-10 | -2.7353D-08 | -1.7395D-04 | 4.1091D-03
50 | 5.4863D-11 | -2.1134D-08 | 1.5177D-04 | 2.7742D-02
54 | 9.3385D-12 | -1.6693D-09 | -8.4921D-05 | -7.5805D-04
58 | 1.5981D-12 | 1.4235D-09 | 2.9787D-05 | 2.3968D-02
62 | 2.7489D-13 | 4.0226D-10 | -6.5167D-08 | -4.1791D-03
66 | 4.7296D-14 | -4.3957D-11 | -9.7613D-06 | 2.1031D-02
70 | 8.3267D-15 | -4.2063D-11 | 9.2244D-06 | -6.6311D-03

As can be seen from Table 1, the convergence of u, to u is quite
rapid except at the point (z4,y4) which is very close to the boundary.
The unsatisfactory numerical evaluation of the single-layer potentials
is also observed by Atkinson in [3]. To improve the computational
accuracy of the numerical evaluation of (5.4), Atkinson proposed a
method of evaluation by increasing quadrature nodes, and it provided
better numerical results (for details, see [3]). Here we propose an
alternative method: linear interpolation method using two points on
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the boundary and one point in D not “very close” to the boundary
such that P is a point in the triangle with vertices at the above
mentioned three points. The strength of this method is the simplicity of
implementation. Numerical experiments show that this method gives
improved numerical results. We illustrate this method by an example of
approximation for u,(z4,ys). Instead of evaluating w, (z4,y4) directly,
we choose two points

Py = (cos(w/4 + w/180), 0.4 sin(m /4 + w/180))

and
P, = (cos(m/4 — w/180), 0.4 sin(m /4 — w/180))

at the boundary, which are close to (z4,y4), use the values h(Py), h(Ps)
and u,(z1,y1) to interpolate the value of u,(x4,y4). Table 2 gives the
errors of this interpolation.

TABLE 2. Errors of interpolations at (z4,y4)

n (za,94) n (za,y4) n (za,y4) n (za,y4)
10 | -2.7251D-03 | 14 | -2.7744D-03 | 18 | -2.7810D-03 | 22 | -2.7820D-03

Clearly, as we expect, the interpolation improves the accuracy of
Un (T4,Y4)-

Example 2. Consider the Dirichlet problem

(5.6) Au(P)=0, PcR*S,

(5.7) u(P) = h(P), PeS,

(5.8) sup |u(P)| < oo.
PecR?

The function h is chosen so that

(5.9) u(z,y) = u(P) = Real [exp(V2%2 — 1 — z)],
z =z + 1y, P:= (z,y) € R?,
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is the exact solution of the boundary value problem, where the branch
cut for v/22 — 1 is to be the interval [—1, 1], and the boundary curve S
is the same interval.

To solve this problem, we first consider the single-layer potential
(5.10) w(P) = [ (@ 1oz |P - Q|45(Q)
where the density function ¢ is obtained by solving
611 [ o@ogP-QldS@Q = hP).  Pes.

The potential w(P) satisfies the boundary condition (5.7), but in
general it is unbounded as |P| — oo (see [4]). To obtain the desired
solution, as in [4], we introduce the auxiliary equation

612 [ AQuelP-Qis@=1.  Pes,
s
and define the potential corresponding to A by
(5.13) v(P) = / MQ)log|P —Q|dS(Q), PeR~.
s

Then we introduce

u(P) = w(P) — av(P) + «

(5.14) = /S[Q(Q) —aA(@)]log |P — Q|dS(Q) + «
with
(5.15) _ [59(Q)dS(Q)

YT INQASQ)

The function u gives the solution to the original problem.
We use the fully discrete quadrature method described in Section 4 to
solve both (5.11) and (5.12). We first obtain the approximate solutions

Pg.n tO
py(t) = g(r(cost)) ' (cos )] sin]
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and py , to
pa(t) = A(r(cost))|r’(cost)]|| sint|.

The approximations g, to g and A, to \ are given by

Pg,n
t =
9n(t) 7 (cos t)|[sin |
and
A = Px,n
n

~ |r'(cost)||sint|’

Notice that

(5.16) o = foTr g(r(cost))|r' (cost)| sint dt _ 027r py(t) dt
. fo7r )‘(T(COS t)) |T"(COS t)| sint dt 02” p/\(t) dt
and

u(P) = /Oﬂ[g(r(cos t) — aA(r(cost))]

(5.17) log |P — r(cost)|r'(cost)|sint dt + «

1

= 5/0 7r[F’g(t) — apx(t)]log |P — r(cost)|dt + a.

Substitute pg, and py, into (5.16) and integrate (5.16) numerically
by using the trapezoidal rule whose quadrature nodes are the same s;
as were used to solve (5.11) and (5.12). Denote by «,, the resulting
approximation to a. Substituting pg,,pa,» and a, into (5.17) and
integrating (5.17) by the trapezoidal rule with quadrature nodes chosen
in the same manner as mentioned above, we have the approximation
uy, to u. Table 3 gives errors of u, (z,y) for the four points

(z1,91) = (1.1,0), (z2,y2) = (0.5,1),
(z3,y3) = (0.5,0.01),  (z4,y4) = (0,100).

Similarly to Example 1, it can be seen from Table 3 that the conver-
gence is very rapid at all points except (0.5,0.01) which is very close
to the boundary S = [—1,1]. At this point, the integrand in (5.14)
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TABLE 3. Errors of un(zj,y;).

n j=1 j=2 j=3 j=4
10 | 7.5645D-04 | 1.1098D-05 | -5.2045D-02 | -2.7309D-07
14 | 9.2155D-05 | 1.9504D-07 | -4.3351D-02 | -1.1154D-11
18 | 1.2257D-05 | -1.6482D-09 | 1.1073D-01 | 1.5543D-15
22 | 1.7101D-06 | -8.6014D-11 | -2.2148D-02 | 4.4409D-16
26 | 2.4633D-07 | 1.4266D-13 | -1.9903D-02 | 1.4433D-15
30 | 3.6306D-08 | 4.0079D-14 | 4.8820D-02 | 1.6653D-15
34 | 5.4443D-09 | -3.3307D-16 | -1.2730D-02 | -5.1070D-15
38 | 8.2750D-10 | 8.8818D-16 | -1.1772D-02 | 3.7748D-15
42 | 1.2714D-10 | 1.1102D-16 | 2.7157D-02 | 1.6653D-15
46 | 1.9710D-11 | 1.3323D-15 | -8.2565D-03 | 7.9936D-15
50 | 3.0788D-12 | 2.2204D-16 | -7.7524D-03 | 1.8874D-15
54 | 4.8428D-13 | 6.6613D-16 | 1.6964D-02 | 4.3299D-15
58 | 7.6161D-14 | -2.2204D-16 | -5.7125D-03 | -3.7748D-15
62 | 1.2212D-14 | 7.7716D-16 | -5.4170D-03 | 6.7724D-15
66 | 2.7756D-15 | 1.8874D-15 | 1.1362D-02 | 1.0103D-14
70 | -6.6613D-16 | -1.2212D-15 | -4.1144D-03 | -5.7732D-15

behaves very badly.

267

To improve the accuracy of the approximation

u,(0.5,0.01) to ©(0.5,0.01), as in Example 1, we use linear interpolation
method. For this purpose, we choose two points P; = (0.4,0) and
P, = (0.6,0) on the boundary which are very close to (0.5,0.01) and
interpolate u(0.5,0.01) linearly by using wu,(0.5,1.0) and the exact
values at P; and P,. Table 4 below gives the errors of this interpolation,
from which we see the desired improvement.

TABLE 4. Errors of interpolations a + (0.5,0.01).

10

(z3,93) n
4.7577D-04 | 14

(m37y3)

4.7566D-04 | 18

(mS ’ y3)
4.7565D-04

n (z3,93)
22 | 4.7565D-04

We should point out that Atkinson and Sloan in [4] proposed a
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numerical treatment to improve the accuracy of the evaluation of single-
layer potentials by increasing quadrature nodes which gave satisfactory
numerical results.
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