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THE hp-VERSION OF
THE BOUNDARY ELEMENT METHOD ON POLYGONS

N. HEUER AND E.P. STEPHAN

ABSTRACT. We give a new proof for the exponential
convergence of the hp-version of the boundary element method
for some first kind integral equations on polygons. Crucial
for our analysis are asymptotic expansions of the solutions of
the integral equations in terms of singularity functions near
the vertices of the polygon. The boundary integral equations
under consideration are Symm’s integral equation with the
logarithmic kernel and the hypersingular integral equation
resulting from taking the normal derivative of the double layer
potential. Applications to acoustic scattering problems and
crack problems in linear elasticity are given.

1. Introduction. The paper gives a further contribution to the
analysis of the hp-version of the boundary element method (BEM) by
presenting a more general result for Dirichlet and Neumann problems
than [1] allowing the use of a general geometric mesh refinement on the
polygonal boundary I". We give a new proof for the exponential con-
vergence of the hp-version by exploiting only features of the solutions
of the boundary integral equations. The key results in this approach
are asymptotic expansions of the solutions of the integral equations in
singularity functions reflecting the singular behavior of the solutions
near corners of I'. With the help of such expansions we show that the
solutions of the integral equations belong to countably normed spaces.
Therefore, these solutions can be approximated exponentially fast in
the energy norm via the hp Galerkin solutions of those integral equa-
tions. This result is not restricted to integral equations which stem from
boundary value problems for the Laplacian but applies to Helmholtz
problems as well. Further applications are 2D crack problems in linear
elasticity.

The paper is organized as follows. In Section 2 we recall the integral
equations for the Dirichlet and the Neumann boundary value problem
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174 N. HEUER AND E.P. STEPHAN

of the Laplacian in a polygonal domain and introduce the Galerkin
schemes. The behavior of the solutions of the integral equations near
the corners of the polygon is studied in Section 3. In Section 4 we
introduce the hp-version of the BEM and prove exponentially fast
convergence for the Galerkin solution. In Section 5 we deal with a
transmission problem from acoustic scattering of time harmonic waves.
Section 6 presents some numerical experiments which confirm the
theoretical results. Throughout the paper ¢ denotes a generic constant
which may take different values at different occurrences.

2. Boundary integral equations. We consider boundary integral
equation methods for solving Dirichlet and Neumann boundary value
problems for the Laplacian in a polygonal domain €2 with boundary
I'. Let us assume that I' has conformal radius less than one; this can
always be achieved by an appropriate scaling. Then the problems under
consideration are the following ones:

Dirichlet problem. For given f € H'Y/?(T') find u € H*(Q) such
that

(1) Au=0 1inQ, u=f onl.
Neumann problem. For given g € H '/*(T") with Jrgds =0, find
u € HY(Q) such that

(2) Au=0 1n, Ou/on=g onT.

Here Ou/0n denotes the normal derivative of u with respect to the
outer normal n. It is well-known that problems (1) and (2) can be
converted into boundary integral equations of the first kind on T, cf.
[2]. With v = u|p, ¢ = Ou/On|r, we have for (1) and (2), respectively,

(3) Vy=(1+K)f onT
(4) Dv=(1-K')g onTl
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with the integral operators (for ¢ € H'/2(I'), w € HY/?(T))

Vola) =~ [ otu)logle — o ds,,

1 0
Kuw(z) ::——/w(y)aTlog|x—y\dsy,
y

T Jr
, 1 )
K'6(a) i= = [ 6(0) 5o logle = v/ ds,
1 0

0
Duw(z) := o /F w(y)a—ny log |z — y| ds,.
It is also well-known that there exist unique solutions ¢ € H~/2(I) of

(3) and
ve HYA(T) = {w € H1/2(F);/Fwds = 0}

of (4). The boundary integral operators V and D are strongly el-
liptic pseudodifferential operators satisfying a Garding’s inequality on
H-Y%(T) and H&ﬂ (T), respectively. Therefore, due to [12], any con-
forming Galerkin scheme for (3) and (4) converges quasioptimally in
the energy norm. Let X and Yy denote subspaces of dimension N of
X := HY2(T') and Y := H)/?*('). Then the Galerkin schemes read:

Find ¢y € X satisfying
(5) VYN, )2y = (1 + K)f,d)r2r), Vo € Xn,
find vy € Y satisfying
(6) (Dunsw)rzry = (L — K')g,w)r2ry,  Yw € Yn.

Then for the Galerkin solutions ¥y ,vy and the true solutions ¥ and
v, there holds

(7) 1Y = ¥nllg-12r) < ell¥ = dllg-1r2ry), Vo e Xn
and

(8) lv = onllmze) < ello —wllgee),  YweYy
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where the constants c;,cy > 0 are independent of V.

It is shown in [11] that the h-version and the p-version of (5) and
(6) on a quasiuniform mesh have only algebraic rates of convergence,
whereas it is shown in [1] that the hp-version on geometric meshes
converges exponentially fast. However in [1] the boundary element
mesh is the trace on I' of a geometric mesh in (2 and the boundary
elements on I' must be the traces or normal derivatives on I' of finite
element functions in 2. This means a restriction on the choice of
boundary elements and on the construction of the geometric mesh
refinement on the boundary I'. Here we give a new proof of the
exponential convergence of the hp-version of the boundary element
method which does not require these restrictions. The analysis given
here can be extended, e.g., to curved polygons I' and to the Helmholtz
operator in (1) and (2) (instead of the Laplacian) as shown below.

3. Regularity of the solutions of the integral equations. In
this section we prove special expansions of the solutions of the integral
equations. These expansions will be used in Section 4 to prove the
exponentially fast convergence of the hp-version of the BEM with
geometric meshes. The main result of this section is the following
theorem which uses the method of Mellin transformation as presented
in [3].

Theorem 1. Provided f is piecewise analytic the solution v of (3)
has the form

9) (@)= (e —ay|™"

j=1k=1

+ |z — ;™ og @ — 2 |)X; (z) + ¢o(),

zel, c,’;’l,cffeRz, akj:kl, ngﬁ(t—3/2)
w]- s

where o|rs € H™'(T7) depends on t. For the coefficients ¢}’ and
cl? there hold the relations (40). The solution v of (4) for piecewise
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analytic g has the form

n

J
(10) vla) = 3 D (o -yl

k=1
+d |z — x| log |z — z;])X; () + vo(2),

zel, db' d*cR?
with vo|lps € HY(IY) depending on t. For the coefficients di’l and
d* there hold the relations (41). Here X; is a C™ cut-off function
concentrated at the jth corner x;, with opening angle w;. The two-
dimensional coefficients c;, = (~cl,, Tcl)T and &, = (Tdy, +di)? are to
be understood in the sense that we have to take cj, = ¢, and dj, = ~dj,
onT;_1 and ¢, = e, and di, = *dj, onT;, where Tj_1 and T; are the
edges of the polygon meeting at the corner x;.

Before we prove the theorem we cite from [3] two lemmas which
characterize the use of the Mellin transform.

Lemma 1 [3, Lemma 4.1]. Suppose that

n g

f(z) = <Z Z criz®* log' :v)X(x) + fo(z), z€R,

k=11=0
where fo € C§°(0,00), X € C§°[0,00) with supp (1 — x) C (0,00),
ay < ag <---<a,. Then
(i) The Mellin transform

F) = / TN f () de

exists and is analytic for () < ai, and it has a meromorphic
extension on C with poles at A = iy, k=1,... ,n, of order [}, + 1.

(i) In the strip {A\ € C;S(\) € (a1,aj41)}, f is the Mellin
transform of f; defined by
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(i) If we define

() = es L

—_— Z
)\:)\0(>\7>\0)T, re )

then we have

lp+r
P = Gri(an) TR =2 o,

1 o)
S - ERASRY N
2mi </3(A)_h1 /%()\)_hg ) A=) 7

where Ao = tag, lp +7 >0, ar_1 < b1 < o < he < agy1; ’yﬁ‘o(f) =0
ifly +r <0 orif f is reqular at Ao;

(11) vk (f) = =i e, 0<Ii<lg k=1,...,n.

Lemma 2 [3, Lemma 4.3]. Let f be meromorphic in a strip S(\) €
(a0, @nt1) and have poles at X = iy, of order I, + 1, k = 1,... ,n,
op <y < -+ < Oy Assume that, for S(X\) = const, f()) is rapidly
decreasing as |R(\)| — oo. Define fin) by the inverse Mellin transform

1

fny(z) == —/ eMF(N) dA, r=e'eR,.
27 I(A\)=h

Then for h € (g, 1) and h' € (ap, ant1), we have

(12) fmy € fIS(R+) for s —=1/2 € (ap,1);
(13) foy € HS’(R_,_) fors' —1/2 € (an, apt1)
and
n g
fmy(z) = Z Z ez log z + finry ().
k=1 1=0

Formula (11) holds in this case also.
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Remark 1. In [3] there were spaces VE/OS considered for (12) and
(13) which are different from the Sobolev spaces H*(R.) but have
equivalent norms on compact sets. Since we are dealing with functions
with compact supports, this formulation is appropriate.

Proof of Theorem 1. Following Costabel and Stephan [4] we use the
method of Mellin transformation to expand the solutions of the integral
equations (3) and (4) near the corners of the polygon. Let us consider
the reference angle I'Y = T~U{0}UT'" with'~ = ¢“R, and T =R,
w € (0,27). A function ¢ on I'* can be identified with the pair (¢_, ¢ )
of functions on R defined by ¢_(z) = ¢(ze™), ¢4 (x) = ¢(x), x > 0.
We will choose the representation of ¢ by its even and odd parts which
are defined by

(14) 6= 20-+bi) 0= 5(6-—0y)

This induces for any operator A acting on functions on I'“ a represen-
tation by a 2 x 2 matrix of operators acting on functions on R :

~ o Aee Aoe
A—A"‘(Aw Aw>

where
(A¢)E = Aee¢e + Aoe¢07

(A¢)O = Aeo¢e + Aoo¢o'

We need the following operators acting on functions on R :

1— Eefiw

¢(y) dy,

Vodla) =~ [ 1og

™

Vo=V, forw=0.

1 [ 1
Ko¢(z) : ;/0 %<m>¢(y) dy,
Kuola) =~ [ %(—fﬁ¥—>MMd%

™ TeW —y
10

z dw

D, ¢(z) := K,é(z), Dy = ul)lg}) D,.
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Then, with the exception of finite dimensional operators which are
neglectible in our theory, the integral operators V, D, K and K’ can
be represented by the following matrices (see [4]):

(15) VﬁV:<V046V“ VOEV),
(16) DﬁD:<D“’8D° (D00+Dw)>’
(17) K'=K' = <I§J _2(5).

For these representations the Mellin symbols are known explicitly (see

[4]):

s M(V,d)(A) = V(NS — i)
:Q%Eigﬁﬂww, 3() € (0, 1),
(19) R R
M(Dy9)(A) = Dy (A+i)p(A+1)
. . cosh[(m—w)(A+17)]
=) Ot 0]

d(A+1), F(A) € (-2,0),

- M(K,0)(\) = Ku(V)d(N)
::_Wém, S(\) € (-1,1),

(21) M(ELAN) = Ko(A+9)d(N), (V) € (=2,0).

First let us consider the weakly singular integral equation (3). Acting
on even and odd functions on I',, this equation becomes

Vo+Ve 0 v\ _ (1+K, 0 fe
0 Vo-v,)\w) "\ o 1-k,)\s)
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Applying the Mellin transformation, we obtain

(2)
(35:9) _1
7 <cosh ™ ;szzhi(; _ w))\]> .
= . cosh A — cosh(r — )]
| _ sinhl(r — )\ <0 Asmh;;) )
. SR e | ()

0 1
+ sinh w\

sinh 7\ + sinh[(7m — w)A]
coshm\ — cosh[(m — w)A]

0

sinh 7\ — sinh[(m — w)A] 0
— ( cosh T\ + cosh[(m — w)A]

-\ cosh[(m — w/2)\] cosh(w/2)A _
0 sinh[(7 — w/2)A] cosh(w/2)A
A sinh[(m — w/2)A] sinh(w/2)A
feN)
" fvm)

sinh(w/2)A 0 )

— cosh(w/2)A <]i€()\)>

0 cosh(w/2)A o)

sinh(w/2)A
Due to the piecewise analyticity of f near the corners, the even and
odd parts of f have expansions of the form

oo

(23) @)=Y fiak,  folw) =) foat.
k=1

k=0

Note that f° = (1/2)(f- — f4+) has no constant term since f is
continuous at the corners. Therefore, f¢ has first order poles at ik,
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k=0,1,... and f" has first order poles at ik, k = 1,2,... (cf. Lemma
1). The zeros of cosh(w/2)\ and sinh(w/2)\ are i(2k + 1)(7/w) and
i2k(m/w) (k integer), respectively. Now

. . sinh[(w/2)(A +4)]

VO =0+ e A

has poles at
i((2k+1)(r/w) —1) and at ik, k=0,1,....

There is no pole at —i since sinh[(w/2)(A+1)] and (A+1) are zero there.
Note further that the poles at A with §(A) < —1 are not taken into
account since we already know that ¢y € H='/2t¢(T"), ¢ > 0, due to the
piecewise analyticity of f, cf. [2]. Some of the poles are of second order
if m/w is rational.

Analogously,

L cosh[(w/2) (A +1)]

PO =0+ gremar ) A

has poles at
i(2k(m/w) — 1), k=1,2,...

and at ¢k, k=0,1,....

Thus, we obtain for ¢ and 1° the expansions (cf. Lemma 2)

,(pe(x) — Z(wz,lx(2k+1)(ﬁ/w)fl + ¢Z’2x(2k+1)(ﬁ/w)7110g |ID
(24) k=0
+ > viet + 9 (@)

0<k<(2n+1)(7/w)—1

and

7;[)0('1') — Z(d)’oc,lek(w/w)—l + ¢Z,2x2k(7r/w)—1 log |$‘)
(25) b=t
) Wt e

0<k<2n(m/w)—1
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where
Uf € HURy) fors—1/2€ (2n+1)(r/w) — L,[(2n+ 1)(/w))
and
¥y € H¥(Ry) for s —1/2 € (2n(n/w) — 1, [2n(r/w)])-

Here [m] denotes the largest integer less than or equal to m. Of course,
the sums just before the remainders 9§ and 1§ are polynomials and
therefore arbitrarily smooth. However, since we are interested in the
expansion of ¢ and ¥° for n — oo we have to take care of these
additional terms. It remains to estimate the coefficients 1/1;’1, 1/),2’2, 1/12’3
and ¢Z’1,¢Z’2,¢Z’3. First of all we note that the coefficients of the
polynomials corresponding to second order poles are zero. This is
so because, in this case, they are already taken into account by the
respective terms in the first series. Further, in the case of first
order poles the respective coefficients 1/12’2 and ¢Z’2 are zero. Let us
concentrate on ¥¢. The coefficients of the expansion of ¥° can be
estimated analogously.

Applying relation (11), we conclude

Vol = ‘ Res e ‘
| A=i((2k+1)(m/w)—1) (%)

-] ®r =)
‘)\:i(2k+els)(7r/w)w ( Z)

sinh(w/2)A ;
R AMIR/DA Gy
‘A:i(2k+els)(7r/w) cosh(w/2))\f (%)
Now, if i(2k + 1)(r/w) is no pole of f¢, i.e., (2k + 1)(r/w) is not an
integer,

sinh(w/2)A
R R S A
A:i(2k+els)(7r/w) cosh(w/2)A

N ™2, T
‘AN =2k+1)——|f°i(2k+1)—
Fe| = @+ 022 e (it 1 T )|
and in the case i(2k 4+ 1)(7/w) is a pole of f¢ we obtain

sinh(w/2)A ;,
)\:i(21§+els)(7r/w) cosh(w/2))\f ()

Res )\sinh(w/2))\ Ae()\) B Res)\:i.(Zk—I—l)(Tr/w)fe()‘)
A=i(2k+1)(r/w) cosh(w/2)A A—i(2k + 1)(7/w)
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since
Res sinh(w/2)A ' 1 _o
A=i(2k+1)(r/w) \ cosh(w/2)A X —i(2k + 1)(7/w)

Therefore, in the latter case,

2

Resy—; n/w Fe(A
e (2k+1) A=i(2k+1)(r /) FE(A)

A—i(2k + 1)(r/w)

feon —

A=i(2k+1) (7w /w)

f(e2k:+1)(7r/w)
i(2k +1)(m/w) |,

2
= (2k + 1)E

) = 5=

2k:+1)(7r/w)

Provided i(2k + 1)(r/w) is a pole of f¢ we obtain with the help of
formula (11)

e,2 .
' A—i(2k+1 A—
il =l (A iR DT )i
sinh(w/2)\ ;
= —i(2k+1)— ) A A
215615) 7r/w)< 2k + ) cosh(w/2))\f ( )‘
sin(w/2)y
= li (2k + 1) ¢
2k}rnll) (m/w) <y b > cos(w/2)yf (¢ )‘
- lim <y (2k + 1) > sin(w/2)y
—(2k+1)(7/w)

Resy—; (2k+1)(7/w)
y—(2k+1)(7/w

/2)

COS(/)y
‘W
)

since
. sinh(w/2)\
A—i(2k+1 A——
/\=i(215i-els)(7r/w) [( H2k + 1)(r/w)) cosh(w/2)A
2 R =1 w/w fe )\
fe() - BeziGk VAT
A—i(2k+1)(m/w)
Therefore,
0.2 i m\ sin(w/2)y s
= 1 —(2k+1)— Jy————== “(A
[ ki) (/@) <y (2k+ )w>ycos(w/?)y,\=i(215+e1s)(7r/w)f (%)

27 | e
= (2k + 1)E|f(2k+1)(7r/w)|'
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For the coefficient ¢Z’3 there holds, if i(k+1) is no pole of 1/ cosh(w/2) A,

e,3 2 .
1= g =, e 0
[k ‘)\:eﬁcw z(%il —9)

sinh(w/2)
e(\ ‘
‘)\:i(gil) cosh(w/2)\ f( )

B sin(w/2)(k + 1)
=(k+1) cos(w/2—k+l‘f’““|
Summing up, we proved
(26)
( 27 | T
(2k+1)— |f°(i(2k +1)—) ((2k + 1)(7/w) not
w? Z w ‘ an integer) °
gt = q (2k+ 1) 20
Flort1) (/) :
_)\—i(2k+l)(7T/w) A=i(2k+1)(r/w) (2b+1){r/u) imteger)
(27)
s 0 ((2k + 1)(7/w) not an integer)
Wil = { (2k +1)(27/w?)|f, (Gkt1yr/wl  ((2k+1)(7m/w) integer)
(28)
k41 W‘ feol (k414 (2m+1)(r/w
|¢Z’3 = ( ) cos(w/2)(k + 1) il (for all ingegers ng)( /) .
0 (else)

Similarly, we find for the coefficients of 1°

(29 A
2k (27 [w?)| fo(i2k(m /w)] (2k(7/w) not an integer)
2k (27 /w?)| fo(A

o ] 24/ £
f20k(7r/w)

(2k(m /w) integer)

Tk(”/w) A=i2k(r/w)
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(30)
002 = { (2k(m/w) not an integer)
B 2k(27r/w2)|f§k(w/w)| (2k(m /w) integer)
(31)
cos(w/2)(k+1)| ,, (o
g =4 Y sty Vil g S,
0 (else)

Analogously, the hypersingular integral equation (4) becomes

D, — Dy 0 v\  (1-K] 0 g°
0 —(Do + D,,) v | 0 1+ K] g°

and using the Mellin transformation, we obtain

(+)

cosh A —cosh|[(m—w) ] -1
_ A < sinh 7w\ ) 0
cosh TA+cosh|[(m—w)A]
0 A < sinh >
sinh[(7m — w) ]
| T T e 0 (gE(A¢)>
o - | (30
sinh 7w\
cosh(w/2)\ 0

_ L[ sinh(w/2)x (g%xn)

A 0 sinh(w/2)\ P°N—1) )"

cosh(w/2)\

Comparing this transformed equation with (22) we detect a similar
Mellin symbol with the factor A being replaced with 1/ and arguments
of ¥ and § being shifted by +i and —i, respectively. Therefore, we
conclude for v¢ and v° expansions of the form

v(@) = (o @K 4 ot loga)
(32) k=1
+ Y gt ()
1<k<2n(m/w)
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and

Z 01 (2k+1) (7 /w) +U02 (2k+1) (7 /w) 10g|ID
(33) k=0

+ Z vy Sk 4 vl (x)

1<k<(2n+1)(7w/w)

where

. T m

vg € H'(Ry) fors—1/2¢ <2n—, [271— + l})
w w

and

vg € H*(Ry) forsl/2€<(2n+l) [(271—}-1) +1D

Analogously, as above, we obtain

(34)
% ge(i(ng - 1))‘ (2k(7/w) not an integer)
1], .
et =4 7 |9 =)
—M (2k(m/w) integer)
A — 2k(m/w) A2k ()
(35)
e 0 (2k(7/w) not an integer)
© | W/ (Rm))95k )1 (2k(m/w) integer)
(36)
1 |co )k‘
— lgi_1] (k # 2m(7/w) for all
|UZ’3| —{ k|sin(w/2)k integers m)

o

(else)
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and
(37)
2 etk + )" o ((2k + 1) (/) not
—_ —— T
2k + 1)m I w )
an integer)
o,1 2
o ={ — 2 oA —i
vk (2k+1)7rg( 0
92k 41)(r fw)—1 .
- - 2k + 1)(m/w) integer
A= i(2k + 1)T/w |y 2 41) (x /) (( (/) )
(38)
0 ((2k + 1)(7/w) not an integer)
o] = 2 ,
m\g(zkﬂ)(w/w)_ﬂ ((2k + 1)(m/w) integer)
(39)
1 |sin(w/2)k |, , .
00 — % w lgn_1| (k# (2m+1)(7w/w) for all integers m) '
0 (else)

Now, mapping back to functions on I'" and I'* via the relations
(14), ie., Y|p- = Y- = ¢ +9° and ¢Y|p+ = Y4 = ¥© — °, we obtain
expansions of 1 and v on I'“ near the corner. Therefore, we proved the
representations (9) and (10). For the coefficients there holds

e,l e,2
R g2 — (Y
2k+1 — we,l ’ 2k+1 — ¢e72

(cf. (34), (37), (35), (38)) where w has to be replaced with w; and
where, for f€, f° and g¢¢, g° local mappings of the given data f and g
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onto I'“ have to be used. We note that we did not consider explicitly
the smoothness of the solutions of the integral equations around the
corners. This was done in detail by Costabel and Stephan in [3]. |

Since we are interested in the exact behaviors of the solutions of the
integral equations, where the usual Sobolev spaces are not appropriate,
we have to let n in (9) and (10) tend to infinity. In view of the
relations (26)—(31) and (34)—(39) and Lemma 4 we make the following
assumptions to control the growth of the coefficients in the expansions
(9) and (10) (cf. also (24), (25), (32), (33)):

Assumption 1. There ezist constants C and 7 such that, for
j=1,...,J and for integers k large enough,

(42) f(zkl> ‘ <M (k1 not an integer)
5 Tr(r/wj) k T
fQA) - ——"— < C" | k— integer
A = TR/ W5) [\t ey wj
| fr(rjwy)| < c* (kw1 integer)
j
fk k
< C™
sin(w;/2)k cos(w;/2)k | —

(k #* m for all integers m>.
wj

Assumption 2. There exist constants C' and -y such that, for
ji=1,...,J and for integers k large enough,

g(i (ki — 1>) < Cckv <k1 not an integer)
wj wj

~ . Gk(m/wj)—1 k ™ .
A—1)— — 172 — < O™ k— int
LS A o) < < w " ")

< ok <k:1 integer)

Wi

(43)

A=ik(m/wj)

Gk(r/w;)—1
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Jk—1
sin(w;/2)k cos(w;/2)k

(k #* m for all integers m).
s

J

Sok’y

These assumptions are to be understood locally at each of the corners
of T, i.e., by mapping I';_; U {0} UT; onto I'*, where we made no
differences between even and odd functions.

Under the two above assumptions, we deduce the following corollary
which can be proved exactly by the steps performed in the proof of
Theorem 1.

Corollary 1. (i) Provided f is piecewise analytic and fulfills As-
sumption 1 then the solution v of (3) has for any x € T' the form

oo
P(a) =Y > (e — ;| T+ e — 2 T log |z — g

j=1lk=1
+ el — 2 F )X (@) + o),
ot eR?, oy = k(r/w;)

with o|rs € C®(T7). For the components of the coefficients c*, ci”
and ¢}® there holds

|:|:Cliyl| < Cf’h’ |:tci;2| < Cf’h and ‘:i:ci73| < C{WI-

The constants Cy and -y, depend on f and w;, j=1,...,J.

(ii) The solution v of (4) for piecewise analytic g fulfilling Assump-
tion 2 has for any x € I the form

o0
o(@) = DD (@ o - 251" + df |z — 25| log |z — ;)
j=1k=

+ di’3|a: — mj|k)Xj(a:) + vo(z), di’l, dff, d{;’a e R?

[y
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with Up|]_“j € C®(I'9). For the components of the coefficients di’l,di’Z
and di’g there holds

|idi71| < 0572’ |:I:di';2| < 0;6’72 and ‘idi73| < 0572‘

The constants C2 and 2 depend on g and w;, j=1,...,J.

Here X; is a C*° cut-off function concentrated at the jth corner x;,
with opening angle wj.

If f and g have finite expansions of the form (23) at the corners of T',
i.e. they are locally polynomials of arbitrary degree, the Assumptions
1 and 2 are automatically fulfilled.

Corollary 2. (i) Let f be piecewise analytic and have polynomial
behavior at the corners of T'. Then, the solution v of (3) has, for any
xz €T, the form

J oo
b)) =3 <c?c’1fv — | e | log |z — ij>

“Xj(@) + o(2), gl e’ R, apy = k—
j
with olps € C°(T7). For the components of the coefficients ci’l and
J»2
¢~ there holds
‘ici;l| < Cfvl
and '
=0 fork >k

for constants C1, v1 and an integer ki depending on f and wj, j =
1,...,J.

(ii) Let g be piecewise analytic and have polynomial behavior at the
corners of I'. Then, the solution v of (4) has, for any x € T, the form

J oo
v(z) = Z Z <di’1 x — x| + d? |z — x;]%% log |z — LL‘J|>
j=1k=1
- Xj(z) + vo(x), &t di? € R,
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with vo|ps € C(IY). For the components of the coefficients di’l and
dfc’z there holds

<oy

and

AP =0 fork > k.

The constants Ca,7v2 and the integer ky depend on g and w;, j =
1,...,J.

Here X; is a C*° cut-off function concentrated at the jth corner x;,
with opening angle wj.

Proof. The assertion follows from Corollary 1 by noting that ci;?’ #0
and di’?’ # 0 only for finitely many numbers k£ due to the polynomial
behavior of f and g at the corners of I'. Therefore, the corresponding
terms in the expansion for 1 are again polynomials and can be incor-
porated in the remainders ¥y and vy. For the same reason, the local
Mellin transforms of f and g possess only finitely many poles of second
order which means that almost all of the coefficients ci;z and d{e’z are
zero. By noting that fr = 0 and g = 0 for k large enough (cf . (23))
and since therefore f and § have no poles at ik(r/w;), 3 =1,...,J,
for k large enough, a comparison of (26)—(31) and (34)—(39) with As-
sumptions 1 and 2 shows that only the growth conditions (42) and
(43) have to be required. On the other hand, these growth conditions
are automatically satisfied if f and g have polynomial behavior at the
corners of I'. This follows from the fact that the Mellin transform of
smooth functions with compact support satisfy (42) and (43) due to
[5, Lemma 4.2, (4.7)]. Note that we only consider the functions locally
at the corners by use of appropriate C*° cut-off functions. a

Obviously, our method of using the Mellin transformation to obtain
singular expansions of the solutions of the integral equations applies
to more general given data f and g as well. What we basically need
are expansions of f and g at the corners of I' which may also contain
singular terms of the form (z —z;)%, a € R. In the following corollary,
we consider functions f and g which have finitely many singular terms
at the corners of I' which are treated explicitly by the Mellin transform.
The remainders of f and g (after having considered the singular terms)
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are again arbitrarily smooth. Altogether the inspection of the proofs
of the foregoing corollaries and Theorem 1 shows that there holds the
following result (the proof is omitted for brevity).

Corollary 3. (i) Let f be analytic on T’ apart from the corners and
suppose [ has expansions of the form

n;
f@) =Y flle -z,  w;eR
k=1

at the corners x; of I with vi; > oy, j =1,...,J and aij # Vmn for
all pairs kj and mn. Then the solution ¥ of (3) has, for any x € T,
the form

P(a) =D D (o —ai |+ e — ] X () + o (),

j=lk=1
c,i’l,ci’g € R?, ap; = k(m/wj)
with o|rs € C°°(T9). For the components of the coefficients ci* and

cfc’g there holds
e <o
and ‘
ici’?’ =0 fork>n;
for constants C1 and v1 depending on f and w;, j =1,...,J.

(ii) Let g be analytic on T apart from the corners and suppose g has
expansions of the form

nj
o(@) =Ygl — o1
k=1

at the corners xj of I'. Then the solution v of (4) has, for any x € T,
the form

j,1 Akj j,3 Vkj
(@) = 3N (dh e — 251 + dP e — 2079 )x(2) + vo(e),
j=1k=1

it d® € R?
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with vo|ps € C(IY). For the components of the coefficients di’l and
dfc’s there holds

|id£’1 < Céc’)’z

and ‘
idfc’?’ =0 fork > n;.

The constants Co and 2 depend on g and w;, j =1,...,J.

Here X; is a C° cut-off function concentrated at the jth corner x;,
with opening angle wj.

Remark 2. If some of the exponents ay; and v, are identical, there
occur also logarithmic terms, as in the previous corollaries.

4. The hp-version of the boundary element method. To
describe the hp-version we introduce the geometric mesh I' on I' =
U}-Izlf‘j, IV being open arcs, with endpoints zj_1,x;. First, we bisect
each side [V with length d; into two pieces I‘{ (containing the vertex
zj_1) and T} (containing the vertex z;). Then each boundary piece

Fi, j=1...,J, k = 1,2 is decomposed into subarcs Fi’m, m =
1,...,n+ 1, geometrically refined towards the vertices z;_2,
dist (:Ej,2+k, Fi’erl) = (dj/2)0’n7m+1, m = 1, cee N,

where o € (0,1) is the mesh grading parameter and n+1 is the number
of levels of the mesh, cf. Figure 2 in Section 6 where the mesh is
geometrically graded just towards the origin. On this geometric mesh
I'” the boundary element space S¥!(T7), 1 =0 or 1, is given by
(44) SPUTY) = {v € H'(D); ¢lpgm € Py (T™),

j=1...,J, k=12, m=1,... ,n+1}

where Pp'(Fi’m) denotes the space of polynomials of degree < p on the
subarc I';™.

With the choice X := SP°(I'?) in the Galerkin scheme (5), we have

Theorem 2. Provided the given data f in (1) satisfies the assump-
tions of one of the corollaries 1(i), 2(i) and 3(i), then there holds the
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estimate
(45) 16 — ¥l g1y < Ce VN

for the error between the Galerkin solution ¢y € STO(T?) of (5) and
the solution ¢ of (3) if the degrees P are suitably chosen. Here the
positive constants C' and b depend on the mesh parameter o but not on

the dimension N of ST0(T'n).
With the choice Yy := SP1(I'?) in the Galerkin scheme (6) we have

Theorem 3. Provided the given data g in (2) satisfies the assump-
tions of one of the corollaries 1(ii), 2(ii) and 3(ii), then there holds the
estimate

(46) lv = vn |l g1z < Ce VN

for the error between the Galerkin solution vy € SPHT%) of (6)
and the solution v of (4) if the degrees P are suitably chosen. Here
the positive constants C and b depend on o but are independent of
N = dim SPY(I'n).

Remark 3. The functions in Xy need not be continuous on T’
since Xy C H~/?(T') whereas the constraint Yy C H'/2(T) requires
continuity for the functions in Y.

The proofs of Theorems 2 and 3 are based on the regularity results
for the solutions of the integral equations presented in Section 3 and
on approximation results for splines on geometric meshes.

Following Guo and Babuska, see e.g. [7], we shall study the approx-
imation of singular functions which can be characterized as elements
of special Sobolev spaces, the countably normed spaces, which will be
introduced in the following.

Let I = (0,1). By Hé"’l(I), m > 1 > 1 integers, we denote the
completion of the set of all infinitely differentiable functions under the
norm

(47) HuIIiIF,l(I) = |[ullFr2 () + Z [u® 2D 2,
k=l
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The countably normed spaces on I are defined as

(48)
By(I) ={ue€ H{"'(I), m=1,1+1,...;3C > 0,d > Lk =1,1+1,...
Hu(k)m(ﬂ"'k_l)HLz(l) < Cd*D(k -1} 1>1, integer.

On T the countably normed spaces are the product spaces
(49) By(I') = I, I, B5(I}) N H' (D)

where each boundary piece I‘i has to be mapped onto I such that the
vertices 1o fall onto 0 in order to apply the definition (48).

For the local singularity terms, we have
Lemma 3. Let R > 0 and p,(z) := z*, o, 1(x) := z*log"z for
z € (0,R), k > 0 an integer. Then
() @u e BLO,R) forp>1—1/2—B,
(i) @ur € B5(0,R) for p>1-1/2—p.

The proof of Lemma 3 follows immediately by inspection.

Lemma 4. Let

o(z) := Z cpa™ /=2 ¢ gI=1(0, R)

n=1

(1 =1,2) with |c,| < C™ for constants C' and y. Then there holds
¢ € By(0, R)

forall B € (3/2—7m/w,1) and R < R’ small enough.
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Proof. We have to show ||o®) B0 2o gy < Cd* (K —1)!, k > 1.
With o, = n(r/w)+1—2 and (a)g := a(a—1) - (@ —k+1), we have

R
‘|$B+k—l¢(k)”%2(0,m :/ |<p(k)(m)|2$2(ﬂ+k—z) d
0

(50) [

ch(an)kman—kb’—?
R
:/ C\t1+ﬂ 2
0

n=1
2
Z enl(a —1)(m/w)
Now the series is bounded, provided R is small enough: Let K be the
integer defined by (ax)r < 0, (ax+1)r > 0. Then we conclude

2
dzr

dzx.

Z kl‘(" 1)(m/w) Z |Cn| | ‘R(n 1)(n/w)
n=1 —
K
Z (o] | (aon) | R D7/)
£ el [(@n ROV
(51) n:;;ﬂ
< ck!Y Jey|ROD/)
n=1
+ C(ﬂ'/w)k Z |cn|nkR(”*1)(W/w)
n=K+1
< ck!+ c(,,r/w)k
< Cdk_l(k- 1)

for R small enough due to the assumption |c,| < C™7. Here we have
used

()il < { (on)* for ay > &
YR Tan + D)k —ay) fora, <k

and
o, + DIk — a,) < ck! for a, < k.
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Combining (50) and (51), we obtain for 3/2 — 7/w < 5 < 1,

R 1/2
|\$5+k_l<P(k)|\L2(0,R) < cdk_l(k _ l)!(/ ‘x(w/w)+ﬂ—2‘2 dm)
0

<ecdYk-1)! o

Remark 4. Inspection of the proof of Lemma 4 shows also that
expansions of the form

o
Z(c}]xnw/w-l—l—Q +Cimnw/w+l—2 10g|$| +Ci$n)

n=1

(given by Corollaries 1 and 2) and also that given by Corollary 3 are
contained in BlB (0,R) for 8 > 3/2 — 7/w and R small enough.

Hence, if f satisfies the assumptions of one of the Corollaries 1(i)-3(i),
then for the solution ¢ of (3) there holds

¥ — o € By(Us(z;)) for B> 3/2 —m/w;

for a neighborhood Us(z;) of xj, j = 1,...,J. Here ¢ is the C>-
remainder of the expansion of ¢ given by Corollaries 1(i)-3(i). Since
¥ = (Ou/0n)|r in (3), ¢ is analytic apart from the corners for piecewise
analytic f, and since I" can be covered by a suitable partition of unity
we can conclude the following regularity on each of the sides of the

polygon

™

- . 3
— g € BXI?) for B> = —
(52) Y — 1o € Bg(Iy,) B 2w anr

j=1,...,J, k=1,2.

Here 1y consists of the C'°°-remainder term 1y in the expansion of ¥
and of the contributions from the expansions of ¢ which are localized
away from the corners due to the partition of unity. Hence, g is
arbitrarily smooth on the sides of the polygon, i.e.,

dolrs € C(IY).
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Analogously, if g satisfies the assumptions of one of the Corollaries
1(ii)-3(ii), then for the solution v of (4) there holds

™

; 3
v—179y € B3(I?) forB>=—
(53) 0 € B5(T) ’ Wj—24k

j=1,...,J, k=12
since v = u|p in (4) is analytic apart from the corners for piecewise
analytic g. As above, 0y consists of the C'°°-remainder term vg in the
expansion of v and of the contributions from the expansions of v which

are localized away from the corners due to the partition of unity. Hence,
7g is arbitrarily smooth on the sides of the polygon, i.e.,

Bolps € C(IY).

Next we need some properties of the Legendre polynomials.

Lemma 5. (i) Let I = (—1,1), u(z) = Z;io cilj(x), l; Legendre
polynomial of degree j. Then

2 2 — : 2 (R
[uP@ra - )’“dx—;chJrl(j—k)!'

(i) Let I = (—1,1) and u € H**1(I), k € Ny. Then there erist a
¢ € Pi(I) and a constant ¢ > 0 such that
(k—s)!
k+s+2—2m)

H(U—SD)(m)HZLZ(I) < C( !||U(S+1)H2LZ(1)
(m=01,0<s <k, s€ Ny, k>00rm=s=kk=0) and
o(=1) = u(-1), ¢(1) = u(l) for k>0

(iii) Let J = (a,b), h=>b—a and u € H**1(J), k € No. Then there
exist a p € Pi(J) and a constant C > 0 such that

R\ (k—s)!

_ (m)|2 —2m ( ° (s+1))2
=)™ By < onm(3) 7 G e,
(m=0,1,0<s<k,k>00rm=s=k%k=0) and p(a) = u(a),
©(b) = u(b) for k> 0.
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(iv) Let I = (0,R) for R >0, J = (a,b), J C I and X > 0 be a
fized number with h = b —a < Aa. Then for u € HEH’I(I) there exist
a polynomial ¢ € Pi(J) and a constant ¢ > 0 such that, for m = 0
(k=0) and m = 0,1 (k > 0), respectively, there holds

1(u = )™ 225y < Ca*t=m=
I‘(k—s+1 é
T(k+s+3— 2 HS“’
(m<s+1,1<1<s+1<k+1,seR) with ga(a) = u(a), p(b) = u(b)
for k> 0.

Proof. Assertion (i) is well-known (see, e.g., [7]). (ii) follows from (i)
by expanding u and v’ in Legendre series (see [8]). (iii) follows from
(ii) via affine transformation (see [8]). Assertion (iv) can be seen as
follows. By definition,

|U|i,;+1,l(1) > a2(ﬁ+s+1fl) | |u(s+1)||iz(J)-

By (iii) there exists ¢ € Py (J) with
(k—s)!
(k+s+2—2m)!

h 2(s+1)
h q—2B+s+1=D),,12
(2) uf?,

1w — @)™ 325 < CR72"

s+1 l(I)

yielding (iv). O

Next we consider a geometric mesh I” on I = (0,1) with n + 1
subintervals I; = [z;_1,zj], zo = 0, z; = "It h; = z; — x4,
1 <j <n+1 For a degree vector P = (p1,...,p,) of nonnegative
integers, we set

(54) SPUIZ) = {q € H'(I);qli, € By, (1;)}-

Lemma 6. Let I = (0,1),u € BE(I), 0<pB<1,l=1,2. Then there
ezists a p € SPLL(IP) with 0 < o < 1, py =1 — 1, p; = max{l, [ui]},
1=2,...,n+1, such that

(55) llu— @llgi-r(y < Ce VN
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where the positive constants C' and b depend on o but are independent

of N = dim SP!=1(I7).
Proof. First we use Lemma 5 (iv) on each subinterval I;, i > 1. Thus
we have a ¢; € P,,(I;) with

m 2(l—m—
[I(u — ¢3)¢ )HiZ(Ii) < CﬂfiEl A

M=ot (N,
L(p; +si+3—2m)\ 2 PR )

(m<s;+1,1<1<s,4+1<p;+1,s €R) sinceueBlﬁ(I) implies
u € Hg"H’I(I), s;i +1 > 1. On the first interval I;, i = 1, we have (see

8])
1-p) |u|2

2
lu = e1llF 1y < Chl HY (1)

Thus there exists ¢ € SP!~1(I?) with

n+1
||U _ @Hzl—l([) < C|:o_2(1—ﬂ)n + Zw?£1175)
1=2

Doi—sit1) ()0
C(p; + s +5—20) \ 2 gt |

With the estimate

|u‘H;+1’l(1) < C(l)dSF(S + 1), s € R+

and
Ty — Ti—y < Axi_1 = ITTUUTHHZ, 2<i<n+1
we obtain
ntl
lu— @l gy < C [Uzu—ﬂ)n 1Y gD 0-0)
i=2

L(pi — s +1) o pd\
T(si +1)% 22
T(p; + 5: +5 — 21 (s: +1)7( 3

n+1
< O[04 37 g0 (i,
=2
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where

and
1
o, = max{—,amin}, p:=max{1,\}.
Di
There holds

inf F(d,a) = Fuin = F(d, amin) < 1,
a€e(0,1)

where

2
Qmin = (77— -
Vi + d?

Taking p; = max{l, [ui]}, ¢ = 2,...,n + 1 ([x] means the smallest
integer greater or equal to z) with

(56) jz >max{1,W}

1Og Fmin

and deﬁning iO by Diy, = [1/amin] + 17 then Diy = [,U'ZO] S ]-/amin + 2
and thus 7y is bounded. Hence

10
||u - 90”?-1!—1(1) <C |:0—2(1—5)n + Z 02(n—z+2)(1—5)piF(pd, ai)m
=2

n+1
£y Uz(nwz)(lﬁ)pi(pmin)pi}

i=ig+1
10
< Co20-B)m [HZ o22=00=B) (F i

- <F(pd, 1/p;) >p"

- max
Fmin

1<i<ip

n+1
£y 02(2—i)(1—5)pi(pmin)pi]_
i=ig+1
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With p; = [ui] and ¢ := F¥ /o?17#) < 1 due to (56) we have
Disi, 19° < oo since (ig*)'/* — g < 1 as i — co. Therefore the term in
the brackets is bounded yielding with a positive constant ¢

(57) llw = l[3i-1(ry < co® M.

Next we observe for | = 1:

n+1
N =dimSPO(Ur) =1+ (pi+1)
=2
n+1
=14 (] +1) < cun®
=2
and for [ = 2:
n+1
N =dimSP(I2) =2+ ) (pi+1) —n+2 < cun’.
=2

Hence we obtain from (57) (I =1,2)

Hu — (,0||Hl—1(1) S C@ib\/ﬁ
with
1-p 1
o8 b= log —
(58) VI

Corollary 4. Let I = (0,1), u € B3(I) for some 0 < § < 1.
Then there exists a ¢ € SPY(IT) with 0 < o < 1, py = 1, p; = [ui],
2<i<n+1, such that

llw = @l g2y < eV

with constants ¢,b > 0 independent of N = dim S (I7).

Proof. The assertion follows by interpolation directly from Lemma 6.
O
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Now the proofs of Theorems 2 and 3 are completed as follows:

Proof of Theorem 3. First we observe that the assumptions on g
imply for the function v satisfying (4) the representation v = ¥ + 7
where § € Bj(T}) for 1 > 8 > 3/2 — m/wj_oyk and where o is
arbitrarily smooth, cf. (53). The C'"*°-part ¥y of v can be approximated
exponentially well as shown in [9]. For he part o of v we proceed
as follows. By Lemma 6 there exists for each boundary piece I'}, a

w) € ST (T) with degree pj k., on T2™ such that (I =1 or 2)
1o — w‘lz;||Hl—1(1"i:) < Celiky Nj’ka

Nj = dimSPJ"kvl(Fi), k=1,2,j=1,...,J where wi coincides with
¥ at the endpoints of I'],. Let

) J J . ~ J
zbfc:{wk on I'y and vi:{v on I'y
0 elsewhere 0 elsewhere.

Then for [ =1 and 2

J 2 J 2
5 9D 9| IR 9) Y- PN
j=1k=1 H'=YD)  j=1k=1
(59) J 2 ) ;
=3 ol — wille e
j=1k=1
Soe—b\/ﬁ

with b = minlngJ71SkS2{b‘?’7k}, N = minlSjS‘]’lg,kSQ{vak}' Note the
estimate (59) holds since v] — wj, € C°(T') and v] — @], = 0 on I'\I'.
Hence the assertion of Theorem 3 follows from (59) by interpolation and
by applying the right triangle inequality to ||o + @y — Z;-Izl 22:1 u?fe -
Wo| H/2(T) where W is a piecewise polynomial on the geometric mesh
approximating 9 sufficiently well (cf. [9]). o

Proof of Theorem 2. First we observe that the assumptions on f imply
for the solution 1 of (3) a representation of the form ) = 1+ where
¢ € By(Ty) for 1 > 8 > 3/2 — mw/wj o1k and where 1y is arbitrarily
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smooth, cf. (52). Hence by Lemma 6 there exists for each boundary
piece ', a ¢, € STix:0(I7) with degree p; km, — 1 on I'y"™ such that

||1/~1 — ‘PiHH(Fi) < Ce*bj,k\/Nj,k’ Nj = dim SPj,kyo(F?)‘

Hence the assertion of Theorem 2 follows as in the proof of Theorem 3.
]

5. Applications to acoustic scattering. @ We consider for
w, k1, k2 € C\{0} and pu # —1 the transmission problem

(60)

(A+k%)u1 =0 in Oy U = U2 +vg }
. — Ou;  Oug onI'
(A+k%)UQ =0 in Qg = RQ\Ql 'u,% = % ¢0

subject to the Sommerfeld radiation condition

6UZ
OR
In the case of scattering problems, u; and us denote the refracted
and scattered field, respectively, and vy and %y are the boundary
trace and the normal derivative of the incident field ug. In [4] the

above transmission problem is reduced to a system of boundary integral
equations on I' = 9 for the Cauchy data v; = uy|T, ¥ = (Ouy/On)|r:

H(U1>,_1<—(K1+K2) V1+MV1><111>
1) 2\ D1+ (1/pu)D2 K{+ K} U1

N ((1/5)%)

— ikyuy = o(R™Y/2), uy = O(R™Y?) as |z| = R — .

(61)

where (j =1 or 2)
Vip(z) = -2 /F B(O)i (2 C) dise,

0
Kjv(z) = —Q/FU(C)a—nC"Yj(Z,C) ds¢,

0
ZEQJ', Dj’Uj :—8—nKj’Uj|[‘
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and K7 is the adjoint operator of K.

1

7i(2¢) = g H5" (k12— C))

1
= 5 loglz — ¢[+0(z —¢| )
s

is the fundamental solution of the Helmholtz equation Aw = —ka-w in
Q; where H(()l) is the Hankel function of first order and degree zero.

It is shown in [4] that the operator
H: HY*(T) x HY*(') — HY*(I') x H~Y*(T")

is bijective if and only if the homogeneous transmission problem (60)
as well as the adjoint problem, obtained by interchanging ©; and s,
have only the trivial solution. This is assumed in the following. From
the regularity results in [4] follows that, for piecewise analytic data vg
and 1y, the solution (vy1,1) of (61) has expansions of the form (9), (10)
with ag, = ka; and a; being a zero of the transcendental equation

(62) sin(fwj)a_i(,u-i-l)‘
sinh rav p—1

The boundary element Galerkin scheme for (61) reads (for the defi-
nition of (-,-) see [4]): Find (vy,¥nr) € Y x Xpr such that

o ()06 = {aimn) - (5)

V(w,qﬁ) €EYny X Xy

where Yy, X are finite dimensional subspaces of H*/2(I") and H~'/%(T)
with dimYy = N and dim X,; = M. Since the operator H satisfies
a Garding’s inequality in H'/2(T") x H~/2(T) this boundary element
Galerkin scheme converges quasioptimally in the energy norm, i.e.,

llon —villge @y + ¥ — Y1lla-12 ()
<C inf  A[lor —wllgreey) + 1Y = dllg-em

(w,0)EYN x X ns
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Next we choose Xy = SF~10(I7) and Yy = SPI(I7) as in Sec-
tion 4 and obtain the exponential convergence of the hp-version of the
Galerkin scheme (63) for the transmission problem (60).

Proposition 1. Let vy and 1o in (60) be piecewise analytic such that
there holds one of the assumptions of Corollaries 1-3. Then, for the
error between the Galerkin solution vy € STL(IR), vy € SE-1O(T7)
and the exact solution of (61), there holds

o1 — vwnllgr2 @y + [¥1 — ¥nllE-120) < Ce VN

if the degrees P are suitably chosen. Here N = dim SP1(I'?) =
dim SP~10(I'™) and C and b are constants depending on o but not
on N.

Proof. Firstly, we observe that for piecewise analytic data vy, g
fulfilling one of the assumptions of Corollaries 1-3, the solution (vy, 1)
of (61) belongs to B3(T') x By(T') with 1 > 8 > 3/2 — aumin Where aumin
is the smallest zero of (62). Therefore, application of the analysis in
Section 4 yields the assertion of the proposition. i

Remark 5. For the transmission problem (60) with k1 = k2 = 0 the
exponential convergence of the hp-version of the BEM has been shown
recently in [8].

Remark 6. Two-dimensional crack problems in linear elasticity can
be converted into first kind integral equations (see [10, 13]). For
example, let us consider the Neumann crack problem for the domain
Qr exterior to an arc It Find v € HL_(Qr) such that A*u =
pAu+ (A + p)graddive = 0 in Qr = R?\T and

T(u)|F1 =1, T(u)|F2 =2

for given 1; € H~'/%(I'), i = 1,2, where T denotes the traction operator
on the sides I'; and I'; of I and A, p are given Lamé constants. Under
appropriate conditions, e.g., assuming a decaying condition for u at
infinity, this problem can be converted into the integral equation

(64) Do(x)= T, / (T,(E(z, )T (y) dsy = f(z), el
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FIGURE 1. L-shaped domain.

for the jump ¢ = [u] = u|r, — u|r, with the fundamental solution of
the Navier operator A*

A+3u 1 AJru(ﬂ«'—y)(ﬂ«“—y)T}_

E = I I
(=) 4w(A+2u){°glw—yl XT3 fo—yP

Here T denotes the transposed tensor, I is the identity matrix and
f is given via %; and ¥y (see [13]). It is shown in [13] that the
solution ¢ of the hypersingular integral equation (64) behaves like
zY/%(dy + dox + d3z? + --+), dj € R, near the crack tip z = 0, i..,
like v in (10) with w = 27 and oy = 1/2 + k, k > 0 integer. Therefore
NS Bé(l") for 0 < 8 < 1, cf. Lemma 3.

The operator D in (64) satisfies a Garding’s inequality in H'/2(T") (see
[13]) and therefore the corresponding Galerkin scheme converges qua-
sioptimally in H'/? (T"). Therefore the analysis in Section 4 applies also
to the integral equation (64) yielding exponentially fast convergence for
the Galerkin solution of the hp-version with geometric meshes in the
L2?-norm. This result is also true of the energy norm || - || z1/2(r) @s can
be seen by a more detailed analysis, cf. [9].
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FIGURE 2. Geometric meshes I'}, 0 <n <2, 0 =0.5.

6. Numerical results. Now we present numerical results for the
Dirichlet problem using the h-, p- and hp-versions of the Galerkin
method. In our example we use for (2 the L-shaped domain shown
in Figure 1 and choose in (1) f := u|p for u(z) := Im (22/3) with
z =z + ty. Then, due to Lemma 3, u belongs to Bé(l"), 5/6 < B <1,
with the occurrence of a singularity at the origin. Thus, for the solution
i = (0u/dn)|r of (3) there holds ¥ € BY(T), 5/6 < 8 < L.

Theorem 2 proves the exponentially fast convergence of the hp-version
with geometrically refined meshes. Three samples in the sequence of
geometric meshes for o = 0.5 are shown in Figure 2. Note that, due to
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the only singularity at the origin, the meshes are just refined towards
the reentrant corner.

For the implementation of the linear system,

<V¢N7¢>L2(F) = <(1+K)f7¢>L2(F)7 V(ZSEXNa

we rewrite the righthand side as

(A+ K)f,9) ey = (f, (1 + K')@) r2(r)

where K’ is the adjoint of the double layer potential. Then we use
analytical formulas for the inner integrations and calculate the outer
integrals by a Gaussian quadrature formula. To compute the error in
the energy norm of the Galerkin solution 1y, we apply the relation

19 = ¥ lF-1/2my = 1Y — ¥nlT
= V(¥ —9¥n), ¥ —¥n)r2(r)
= Vi, ¥) L2y — (VN ¥N) 21y
= 19I5 = [l9nll3-

For ||¢||v we take an approximation obtained by extrapolating the
norms ||1p||y of Galerkin solutions ¢ of the h-version. For more
details, we refer to [6].

Figure 3 presents the relative errors in the energy norm for the two
sequences of geometric meshes ¢ = 0.5 and o = 0.15. For comparison,
we also show the numerical results for the h- and p-versions with
quasiuniform meshes. These versions converge algebraically with rates
of 2/3 and 4/3, respectively (cf. [11] and [6]). The convergence of the
hp-version with geometric meshes is better than algebraic as confirmed
by the downwardly curved lines whereas the curves for the h- and the p-
version are approximately straight lines. The figure also demonstrates
the influence of the mesh-parameter o which gives a rapidly convergent
method for o ~ 0.15. After giving a relative accuracy of about 0.2%
the error blows up again. However, we note that the condition number
increases exponentially in the number of unknowns if the hp-version
with geometric meshes is performed. Therefore, since we are using
quadrature formulas, the upward kick in the curve is not surprising.
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