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STABILITY PROBLEMS
OF FUNCTIONAL DIFFERENTIAL
EQUATIONS WITH ABSTRACT VOLTERRA OPERATOR

YIZENG LI

Introduction. In this paper we study stability problems for the
functional differential equations involving abstract Volterra operators
under second kind initial value

() = (Va)(t), t>to,

) =
(t) = o(1), t €10,t0),
z(ty) = z° € R",

(1.1)

where V is a continuous Volterra operator acting on L2 _([0,00), R"),
with (V0)(t) = 6 € R", and ¢ € L*([0,t0), R"), where 6 is used
to denote both the zero function and the zero vector throughout the

article.

We first give the definitions of stability for the trivial solution (or zero
solution, or equilibrium) of the system (1.1). Although there are many
kinds of stability to be discussed, among them we emphasize five main
stability concepts. They are stability, uniform stability, asymptotic
stability, uniformly asymptotic stability, and exponentially asymptotic
stability.

Then we shall present the necessary and sufficient conditions for the
stabilities with regard to the trivial solution z = # € R™ of the linear
system

@(t) = (Lz)(t),  t>to,
z(ty) = z° € R",

where L is a linear continuous Volterra operator acting on L2 ([0, 00),

R") with (L8)(t) = 0 € R", and ¢ € L*([0,t9), R"). These are new

contributions.

Received by the editors on January 29, 1995, and in revised form on July 10,
1995.

Copyright ©1996 Rocky Mountain Mathematics Consortium

47



48 Y. LI

Finally, we shall discuss some asymptotic behavior of the solutions to
the nonhomogeneous system

z(t) = (Lz)(t) + (Fz)(t), 0<ty<t<T < oo,
(1.3) z(t) = ¢(t), 0 <t < to,
z(ty) = z° € R,

where L is a linear continuous Volterra operator acting on L2 ([0, 00),

R") with (LO)(t) = 0 € R", ¢ € L?([0,tr),R™). The nonlinear
operator F' has certain properties, the case when it is of Niemytzki
type being the most useful.

Definitions. The definitions which we mention here, basically, can
be found in many books, for instance, R. Driver [6], Wolfgang Hahn
[7], T.A. Burton [1], C. Corduneanu [3], but not for equations with
abstract Volterra operators.

Let x(t;to,2° ¢) be a nonzero solution of (1.1) and x(t) = 6 be the
zero solution of it.

Definition 1 (stable). The zero solution z(t) = 6 of (1.1) will be called
stable if, for any t9 > 0, every £ > 0, there exists 6 = d(g,t9) > 0,
such that |z(t;tg,2°, @) < e, for t > to, provided [z°] < §, and
|12 ([0,t0),R7) < O-

Definition 2 (uniformly stable). The zero solution z(t) = 6 of (1.1)
will be called uniformly stable if the number § in Definition 1 can be
chosen independently of #g, that is, § = é(¢), a function of € only.

Definition 3 (asymptotically stable). The zero solution z(¢) = 0 of
(1.1) is said to be asymptotically stable if it is stable in the sense of
Definition 1, and for each ¢y > 0, there exists y(¢o) > 0 such that

. . 0 —
(14) tli)r{olo |Z(t,t0,$ 7¢)‘ - 07

for all (t;to,2°, ¢) with |2°| < y(to) and [¢]L2(j0,t0),Rm) < 7(t0)-

In other words, the zero solution x = 6 is asymptotically stable if it is
stable, and for each tg > 0 there exists v(¢g) > 0 and for any £ > 0 there
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exists T'(g,t9) > 0 such that |z(t;to,2°, @)| < ¢, for t > to + T(e,tg),
provided |z°| < y(to) and ||r2(j0,t0),R) < Y (t0)-

Definition 4 (uniformly asymptotically stable). The zero solution
z(t) = 0 of (1.1) will be called uniformly asymptotically stable if it is
uniformly stable in the sense of Definition 2, and if there exists v > 0,
and for any € > 0, there exists 7'(¢) > 0 such that

(1.5) |z(t;to, 2, ¢)| < e, for t >tg+T(e),

when |2°| < v and |6l L2(10,t0),R7) < -

Definition 5 (exponentially asymptotically stable). The zero solution
z(t) = 0 of (1.1) is said to be ezponentially asymptotically stable if there
exists N > 0, @ > 0 and v > 0, such that

(16)  |o(t;to, 2" @) < N(|®| + [@lL2((0,t0) 1)) exp(—a(t — to)),

for t > ty, provided [2°| < and [@|2(jo,t0),R7) < -

Remark 1.1. It is not difficult to see that if [°] and |¢]L2((0,10),R")
are small enough, respectively, then (|z°] 4 |@|2([0,¢,),r»)) Will be suffi-
ciently small, and vice versa. Hence, we may use (|z°|4|6|.2([0,¢0),m")) <
7, or 8, instead of [z°) < v, or 4, and |@|z2([0.¢,),r") < 7, O §, in the
above definitions.

Remark 1.2. It is obvious that the exponential asymptotic stability
implies all other kinds of stabilities mentioned above.

It has been proved in [9] that the solution of the system (1.2) has the
form

to
(1.7) x(t;to,z°, @) = X (t,to)a" +/ X(t,s;t0)p(s)ds, fort > to,
0

where X (t,t0) and X (t, s; ) are square matrices of order n, X depends
also on tg, belongs to L?([0, ), R™) and X (t, s;t9) = 6, and the solu-
tion z(t; tg, 2°, ¢) is in C([ty, 00), R™), or more precisely, z(t;t,z°, @)
is a locally absolutely continuous function.
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Since (1.7) is true for any z(ty) = 2 € R" and any ¢ €
L2([0,tp), R™), therefore, if ¢(t) = 0 on [0,ty), it will be reduced to
the form

(1.8) z(t;to, z°, ¢) = x(t;to,x°,0) = X (t, t9)x", for t > to;

on the other hand, if 2° = 4, then (1.7) will be changed to the form
(1.9)

to 5
z(t;to, 2%, 9) = z(t;to, 0, ¢) = / X(t,s5t0)¢(s) ds, for t > to.
0

These facts give us some ideas, namely, instead of discussing the
concepts of stability properties for (1.7), we may deal with (1.8) or
(1.9), respectively, in some circumstances.

Stability of linear systems. We present the following theorems
with regard to the stabilities for the zero solution z =  of system (1.2).

Theorem 1.1. The zero solution © = 0 of system (1.2) is stable if
and only if

(1.10) |X (t,t0)] < M(to),  t>to,

and

(1.11) </ X(t,s;t0) 2d3>1/2 < M(ty), t > to,
0) >

for some M (¢t

Proof. (a). Sufficiency. Suppose that (1.10) and (1.11) hold; then
for tp > 0 and each € > 0, consider (1.7), and by Cauchy’s inequality,
we obtain

to 5
2t t0, 2%, 8)] < X (t to)a®| + \ [ % st as
0

to _ 1/2
< X+ ([ 1%t ds)  I6luagoamae
0

< M(to)(I2°] + 8] 2([0,t0),R™))
<eg, fort>ty,
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provided
€

. _ e
(12”4 1622040 ) < 0(esto) = 370

Thus, (1.10) and (1.11) are sufficient for the stability of the zero
solution of (1.2).

(b). Necessity. In order to prove the necessity of (1.10), we use the
formula (1.8), that is, in case the initial function data ¢(¢) = 6 on
[0,%0), and the solution of (1.2) has the form (1.8)

x(t;tg, z°,0) = X (t,t0)z°, for t > t.
Now suppose that the zero solution z = 6 of (1.2) is stable, then fix
to > 0, for € = 1, there exists § = §(1,%9) = d(tp) > 0 such that
(1.12) |z(t; o, 2%, 0)| = | X (t,t0)a’| < 1, for t >ty >0,
provided |2°| < §(to). Condition (1.12) is equivalent to
(1.13)  |z(t;to,2°,0)| = | X (t,t0)2°] < [6(to)] "%, fort >ty >0,
provided |z°| < 1, where [6(t0)] ! = 1/6(to).

If we choose 20 in (1.13) such that |z°| = 1 and all the coordinates
are zero, except that of rank m (or the mth coordinate), for 1 < m < n,
then we get

(1.14) |col (X (¢, t0)| < [6(t0)] ", for t >ty > 0.

The norm of the n xn matrix X (¢,%) = (ai;), 4,7 =1,2,... ,n, could
be chosen as
(1.15)

1/2 n n n 1/2
X (t,to)] = < > a?,-) = (Za?1+Za?z+---+Za?n> :

ij=1 i=1 i=1 i=1
Clearly, (E?:l azzm) = |COlmX(t’ 2"‘0)|2 < ([6(250)]71)2’ form=1,2,...,n.
(1.14) and (1.15) will lead to

X (8, t0)] < (n([8(t0)]71)%)1/2

V- [6(to)] 7
M(tg), fort >ty >0,

(1.16)
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where n is the order of the matrix X (¢, to).

To prove the mnecessity of (1.11), we may let z° = § € R", and
consider the formula (1.9).

to ~
z(t;to,0,0) = / X(t, s;t0)p(s)ds, fort > ty.
0
For a fixed t >ty > 0, let us define a functional on L2([0,t,), R") as:
to _
(1.17) L) = / X(t,s;t0)p(s)ds, for any ¢ € L*([0,t0), R™).
0

Obviously, L(¢) is a linear functional with respect to ¢. Moreover,
Li(¢) will be bounded if the zero solution z = 6 of (1.2) is stable. In
fact, by definition of stable, for any tg > 0, for ¢ = 1, there exists
d(1,¢0) = 6(to) > 0, such that

@ (tito, 0, 6)| = /OOX(t,s;to)ng(s)ds <1,

as soon as
D] £2([0,40),R7) < 6(t0).

This condition is equivalent to

(2(t;t0,0, 9)] = \ [ st ds| < e

provided
16| L2([0,t0),R7) < 1.

Therefore, for any ¢ € L*([0,), R"), we get

L) =] [ Kot ds

< [6(to)] " - 19l L2 ([0,t0), Ry < 00

(1.18)

Thus, L;(¢) is a linear, bounded functional on L2([0,t0), R™).
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By Riesz representation theorem, the norm of L;(¢) is at most
[6(to)] 1, that is,

to _ 1/2
119 ([TIREswPa) < Bl < M),
0
where
M (to) = V/n[6(to)]™", fort > to.
The inequality (1.19) leads immediately to (1.11)
1/2

</0to X(t,55t0) ds) < [6(t0)] ™" < M(to), for t > to,

since X (to, s;to) = 0, almost everywhere.

The proof of Theorem 1.1 is then complete (for the original idea of
the proof, see [2, 3]). u]

Theorem 1.2. The zero solution z = 6 of system (1.12) is uniformly
stable, if and only if

(1.20) | X (¢, t0)| < M, fort > to,

and

1/2

to 5
(1.21) (/ |X(t,s;t0)|2ds> <M, fort>t,
0

for some M > 0, where M does not depend on ty.

Proof. The proof of Theorem 1.2 is similar to that of Theorem 1.1,
keeping in mind that here, § = §(¢) > 0 does not depend on t. o

Theorem 1.3. The zero solution x = 6 of system (1.2) is asymptot-
ically stable if and only if

(1.22) Jim [X(¢,t0)] = O,
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and

to 1/2
(1.23) lim (/ X(t,s;t0)|2ds> =0,
0

for any tg > 0.

Proof. (a). Sufficiency. Suppose that (1.22) and (1.23) are true; then
for any tq > 0, for each ¢ > 0, there always exists T'(¢,t9) > 0 such
that

[ X(t,t0)| <,

and
to 1/2
(/ | X (t,s5t0)|? ds> <eg, fort>ty+T(eto)-
0
On the other hand,
x(t;t, 2°,0) = X (t,t0)2°, for t > to,
and
to _
tito.0,0) = [ Xlt,sit0)o(s)ds, for ¢ 1o
0
are continuous; therefore, there always exist some M (tg) > 0 such that
| X (2, 20)| < Mi(to),

and
1/2

to _
</ IX(t, s;t0)2d3> < Mi(to),
0
for tg <t <ty +T(€,t0),
as soon as |2°| and |¢|r2([o,t0),rR") are bounded.
Let M (tp) = max(e, M;(to)), then

| X (¢, t0)| < M(to),

and
1/2

to _
</ |X (¢, s;to)zds> < M(ty), fort > to,
0
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by Theorem 1.1, the zero solution z = 8 of (1.2) is stable.

The estimate
|z (t;to, 2°, @) < |X(¢,t0)][2°]
to 1/2
([T EEsPs) ol
0
< e(|z°] + |@lL2(o,00),rm)),  for t > to + T'(e, to),

ensures that
t—o0

provided
(12°] + |l22(j0,t0),r™)) < ¥(t0), Where y(t) > 0.

Thus, the zero solution z = 6 of (1.2) is asymptotically stable.

(b). Necessity. In order to prove the necessity of (1.22), we use the
formula (1.8), that is, in case the initial function data ¢(t) = 6 on
[0,%0), and the solution of (2.2) has the form (1.8)

z(t;tg, 2%, 0) = X (t, t9)z°, for t > t,.

By Definition 3, for any ¢ty > 0, there exist y(tp) > 0, and to each
e > 0, there is a T'(g,t9) > 0, such that

(1.24)  |z(t;to,2°,0)| = | X (t,t0)2°| <&, fort>to+T(e,to),
provided |z°| < 7(tp). Condition (1.24) is equivalent to

je(t; to, 2%, 0)| = | X (t,10)2°| < [y(to)] e,

1.25
(1.25) for t > to + T'(e, to),

provided |z°| < 1. From (1.25), we can easily find the inequality (see
the proof of the necessity of Theorem 1.1)

(1.26) | X (t,to)| < v/nly(to)] e,



56 Y. LI

for t > to + T(v/n[y(to)] te,to) = to + T(e1,tp), where g1 =
Valy(to)] e

Thus, lim;_, o | X (¢,%0)| = 0.

For the necessity of (1.23), we let z° = § € R™ and consider (1.9)

to _
z(t;t0,0,0) = / X(t,s;t0)p(s)ds, fort > to.
0

If the zero solution = = 6 of (1.2) is asymptotically stable, then it is
stable; hence
to 1/2
(/ | X (t,5;t0)|? ds) < M(tg), fort >ty and some M (to) > 0.
0

Moreover, by Definition 3 (asymptotic stability), for any ¢ty > 0, there
exists v(tg) > 0, particularly satisfying 0 < y(t9) < 1, and to every
e > 0, there corresponds a T'(g,tp) > 0, such that

to 5

|I(t, t076a¢)‘ = ‘ / X(tvs;t0)¢(s) ds| < € for ¢ > to +T(Eat0)7

0
and all x(t;t9, ) with [¢|r2([0,¢0),R?) < 7(to) < 1. Then, for any
¢ € L*([0,t0), R™), we get the following estimate:

to

|z(t; to, 0, 9)| = X(t,s5t0)0(s) ds
0

< E|¢|L2([07t0)7Rn), for t > tg + T(&‘,to).

Now, fixing ¢t > to + T'(¢,to) > to, the mapping

¢ — /0 ’ X(t, s;to)@(s) ds

is a linear, continuous mapping with respect to ¢. Indeed, for any
¢, € L*([0,t9), R™), we may obtain the following estimate:

[ xswsas— [ s i

to 1/2
< </ | X (t, s3t0)]? d5> |6 — V| L2(0,t0),R™)
0

< M(to)l$ — L2 ((0,t0),R)
—0, as¢— .
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The linearity part is obvious. Therefore, by Riesz representation
theorem, the norm of the mapping is at most ¢, that is,

to 1/2
(/ X (t, 55t0)]? ds> <e, fort>ty+T(eto).
0

Thus, limt_,oo(f(;fo | X (t, s;t0)|? ds)'/? = 0, is the necessary condition.

The proof of Theorem 1.3 is complete. ]

Theorem 1.4. The zero solution x = 6 of system (1.2) is uniformly
asymptotically stable if and only if for each € > 0 there exists T'(e) >0
such that, for any tqg > 0,

(127) |X(t,t0)‘ <eg, fort>ty+ T(S),
and
to 1/2
(1.28) </ X (t, s5t0)|? ds> <eg, fort>ty+T(e).
0

Proof. The proof of Theorem 1.4 is similar to that of Theorem 1.3,
keeping in mind that here, M(ty) = M > 0, v(tp) = v > 0 and
T(e,to) = T'(¢) > 0, do not depend on tg. O

Theorem 1.5. The zero solution x = 6 of system (1.2) is exponen-
tially asymptotically stable if and only if there exists N > 0 and o > 0
such that

(1.29) | X (t,t0)| < Nexp(—a(t —tp)), fort>ty>0,
and

to 1/2
(1.30) </0 | X (t, 55t0) d5> < Nexp(—a(t —tp)),

fort >ty > 0.
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Proof. (a). Sufficiency. Assume that (1.29) and (1.30) hold; then
from (1.7),

| (¢; to, 2", o)| = ‘X(t,to)xo + /t0 X(t, s;to)p(s) ds
0

< |X(t to)| [2°]

1/2

to 5
+< / |X(t,s;to>|2ds) 16125 (0.0 2
0

< Nexp(—a(t — t0))(|z°] + 18 22 ((0,t)0), & "))
fort >ty > 0.

Thus, the zero solution z = 6 of (1.2) is exponentially asymptotically
stable, provided the initial data satisfy

(|2° + ||r2((0,t),R")) <7, for some vy > 0.

(b). Necessity. To prove the necessity of condition (1.29), we choose
¢ = 6 on [0,t) and consider the solution: z(t;tg,z°,0) = X(t,to)z°
for t > tg. By Definition 5, there exists Ny > 0, a3 > 0 and v > 0,
such that

|z(t; 0, 2°, 0)| = | X (,t0)a°|
(1.31) < Ny exp(—on (t — t))|z°),
for t > to and |29 < 7.

Condition (1.31) is equivalent to

|z (t; to, 2°,0)| = | X (t,0)z"
(1.32) < Ny exp(—ay(t —to))y ™7,
for t > to and |2°] < 1.

Consequently, we obtain that

X (£, t0)| < v/ny ™" Ny exp(—au(t — to))
= Nexp(—ai(t —ty)), fort>tg,
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with N = /ny 1Ny,

Using the formula (1.9), we can prove the necessity of (1.30). Indeed,
the definition of exponentially asymptotically stable shows that there
exists No > 0, ag > 0 and 0 < v < 1, such that

to _
(2t 0,0, 8)] = \ [ Kot as

< Naexp(—a(t — t0))[#2([0,t0) R™)
S N2 eXp(fa(t - tO))a
for t > t() and |¢‘L2([0,to),R") < 1.

Therefore, for any ¢ € L%([0,tp), R"), we have

S Ng exp(fa(t — tO))|¢|L2([0,t0),R")-

‘/Oto X(t, s;t0)¢(s) ds

The mapping ¢ — foto X (t, s;t0)p(s) ds is a linear continuous map-
ping, for fixed ¢ > tg, its norm satisfies the following inequality

to 1/2
</ |X(t,s;t0)]2 ds> < Nyexp(—a(t —tp)), fort>ty>0.
0

The necessity is proven if we choose N = max (N, Nz).

Hence the proof of Theorem 1.5 is complete. u]

Before we end this paper, let us consider the nonlinear perturbed
system

&(t) = (Lz)(t) + (Fz)(t) t > to,
(1.3) z(t) = ¢(t) t €0, %0),
z(ty) = z° € R,

where L is a linear continuous Volterra operator acting on LZ _ ([0, c0),
R") with (L8)(t) = 0 € R", ¢ € L?*([0,ty), R"), and the operator F
has certain properties which will be specified below.
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If (FO)(t) = 6 € R", then system (1.3) possesses the zero solution.
We are interested to know: if the zero solution of linear system (1.2)
has a certain stability property, which assumption we should impose on
the operator F, such that the zero solution of nonlinear system (1.3)
has the same stability property (or a weaker one).

As mentioned earlier, the zero solution of the linear system (1.2) has
the form
to .
z(t;to, 2°, ) = X (t,t0)2® + X(t,s;t0)p(s)ds, fort > ty.
0
Consequently, for a fixed F, the zero solution of (1.3) satisfies the
nonlinear equation

2(t; o, 2%, §) = X (¢, to)2® + / ® Rt 55t0)6(s) ds
0

¢
+ [ X(t,s)(Fz)(s)ds, fort > t.

to

(1.33)

If we assume that the zero solution of (1.2) is exponentially asymp-
totically stable, then, by Theorem 1.5, there exist numbers N > 0,
a > 0, such that

|X(t7t0)‘ S Nexp(—a(t - tO))a for ¢ 2 to > Oa

and
to 1/2
</ |X(t,s;t0)|2ds> < Nexp(—a(t —to)), fort >ty > 0.
0
Estimating (1.33), we obtain

(1.34)
|z (t; to,2°, 9)| < |X(t,t0)] |2°]

+( C 1Rt s ) ds)m( / " |¢<s>2ds)1/2

+ / X (t,5)] [(Fz)(s)| ds
< Nexp(—a(t — t0)) (2] + 6] 2(0.10) )

+ N exp(—at) / exp(as)|(Fz)(s)| ds.

to
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If (Fz)(t) = F(t,z(t)), that is, the operator F is a Niemytzki
operator, such that |Fz| < r|z|, where » > 0, then (1.34) becomes

|z (t;to, 2°, ¢)| < N exp(—a(t — to))(|2°] + || 2 (0,t0),7))

+ Nr exp(fat)/ exp(as)|z(s)|ds.

to

Multiplying both sides of it by exp(at) and letting

u(t) = exp(at)|z(t; to, 2°, )],

we have o
u(t) < Nexp(ato)(|z”| + |JL2([0,t0),R"))

t
+Nr/ u(s) ds, t > to.
to

Applying a Gronwall type inequality, we obtain

u(t) < Nexp(ozto)(|x0\ + 191 22(0,t0),r7)) exP(N7(t — to)), t > to,

or

|z (t;t0, 2%, @)| < N(|2°] + 6112 (0,t0) R)) exP(— (@ — N7)(t — o)),
t > tg.
Clearly, if « — Nr > 0 or r < a/N, then the zero solution of nonlinear
system (1.3) is also exponentially asymptotically stable.

Summing the above discussion, we obtain the following

Theorem 1.6. Assume that

i) the zero solution of the linear system (1.2) is exponentially
asymptotically stable;

i) the operator F is a Niemytzki operator such that |(Fz)| < r|z|,
with 0 < r < a/N, where the numbers N > 0 and a > 0 are from the
definition of the exponential asymptotic stability of the zero solution for
system (1.2).

Then the zero solution of the nonlinear system (1.3) is also exponen-
tially asymptotically stable.
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If the operator F' is a nonlinear Volterra operator, the proof of
Theorem 1.6 is not valid. In the paper by Tadayuki Hara, Toshiaki
Yoneyama and Toshiki Itoh (see [8]: ‘Asymptotic Stability Criteria for
Nonlinear Volterra Integro-Differential Equations’), they consider the
case where the operator F' has the form

(Fo)(t) = /Ot G(t, s, 2(s))ds, for t > to,

such that
|G (L, s5,2(s))] < c(t, )|=(t)],

where ¢(¢, s) is continuous for ¢t > s > 0 and |z| < H for some H > 0.
They proved that if there exists a positive constant p such that

sup ([ expliute = s)ete —5)ds) </

t>0

then the exponential asymptotic stability of the zero solution for (1.2)
implies the same stability for the zero solution of the system (1.3).

Now, if the operator F' is a Volterra type operator acting on
leoc ([07 OO), Rn)’ such that

(1.35) |(Fx)(s)|2([0,¢), ") < Tlz(5)]L2([0,1,R™)

for ¢ > 0 and some suitable positive number r > 0, do we still have the
same conclusions as in Theorem 1.67 At this moment, we are not very
sure of it, the Gronwall inequality method we have used does not lead
to a result.

In the recent paper [4, 5] (written by C. Corduneanu), the stability of
the zero solution of the system (1.1), where the nonlinear Volterra oper-
ator V is continuous and defined on the function space Li, ([0, 00), R™)
has been discussed by using the comparison method. Lyapunov func-
tionals in the form W = W(z)(t), t > 0, W : Lo ([0,0),R") — R,
assuming that W is also of Volterra type, have been used.
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