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CONVERGENCE ESTIMATES FOR SOLUTION OF
INTEGRAL EQUATIONS WITH GMRES
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ABSTRACT. In this paper we derive convergence estimates
for the iterative solution of nonsymmetric linear systems by
GMRES. We work in the context of strongly convergent-
collectively compact sequences of approximations to linear
compact fixed point problems. Our estimates are intended
to explain the observations that the performance of GMRES
is independent of the discretization if the resolution of the dis-
cretization is sufficiently good. Our bounds are independent
of the righthand side of the equation, reflect the r-superlinear
convergence of GMRES in the infinite dimensional setting,
and also allow for more than one implementation of the dis-
crete scalar product. Our results are motivated by quadrature
rule approximation to second-kind Fredholm integral equa-
tions.

1. Introduction. In this paper we derive convergence estimates for
the iterative solution of nonsymmetric linear systems by GMRES [25].
We work in the context of strongly convergent-collectively compact [2]
sequences of approximations to linear compact fixed point problems.
Our estimates are intended to explain the observations that the perfor-
mance of GMRES is independent of the discretization if the resolution
of the discretization is sufficiently good. Our bounds are independent
of the righthand side of the equation, reflect the r-superlinear conver-
gence of GMRES in the infinite dimensional setting, and also allow
for more than one implementation of the discrete scalar product. This
latter property is important in the context of integral equations, where
an integral operator may be discretized with a high-order quadrature
rule, with the implicit approximation of the L? inner product by that
quadrature rule, and GMRES implemented in software that uses the
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standard Euclidean inner product. We state our results in complex,
rather than real, spaces because resolvent integration is an important
component of our proofs.

Examples of sequences of strongly convergent-collectively compact
maps arise in the approximate solution of linear second-kind Fredholm
integral equations [3, 2, 13], elliptic partial differential equations which
are preconditioned by solvers for high order terms [9, 8, 20, 7, 6],
radiative transport problems [24, 19, 15], and semiconductor device
modeling [10, 11, 18]. In some of these papers, [8, 15, 13], GMRES
is used as a coarse mesh solver in the context of a multilevel method
and/or as an iterative solver for the linear equation for a Newton step
in a nonlinear iteration. In other work [7, 6, 18], GMRES is used as a
primary fine-mesh solver.

1.1. GMRES. This paper is concerned with convergence rate es-
timates, not implementation, and for our purposes it suffices to char-
acterize the GMRES iteration in terms of the minimization property
satisfied by the iterates [25]. In the setting of linear equations in a
complex Hilbert space H,

(1.1) Au = f,

the Ith GMRES iterate u; minimizes the H-norm of the residual
ry = f — Auy over vectors in the affine space ug + K;, where ug is
the initial iterate and the Krylov space K; is given by

K; = span (rg, Arg, ... , A7 1rg).
We can express this minimization property as

1.2 = i —A .
(12) rlls = min £ = Aulla

If we let P; be the class of residual polynomials [26],
P, ={p | p is a polynomial of degree [ and p(0) =1}
it is easy to see, [25, 14], that

(1.3) ry = f — Au; = pi(A)ro
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for some p; € P;.
Equations (1.3) and (1.2) lead to the estimate

(14) Al = nin [[p(A)rollm < [Irolls min |Ip(A)lzc)-

Here L(H) denotes the space of bounded operators on H with the
standard operator norm. Typical estimates for the convergence rate of
GMRES select specific polynomials p; € P; and then estimate the right
side of (1.4) using

1.5 in [[p(A < (A :
(1.5) ;Telglgll\p( ey < oAl e

Several papers have used (1.4), (1.5) and either diagonalization assump-
tions [25, 18, 14, 17], or resolvent integration methods [22, 23, 4] to
estimate ||r;||z. We take the latter approach and seek to construct p,
in such a way that families of operators can be handled with the same
polynomial p;. Our bounds reflect not only the superlinear convergence
of GMRES for compact fixed point problems in Hilbert space [18, 23,
4] but also the manner in which the spectra of strongly convergent col-
lectively compact families approximate that of the limiting operator.
One can also, [21], obtain g-superlinear convergence results, but such
bounds depend on the righthand side f.

1.2. Motivating example. When applied to discretizations of
compact fixed point problems, integral equations in particular, more
than one implementation of GMRES is possible. In this section we
illustrate this with a simple example. This example will also serve
to motivate our Banach-Hilbert space setting which, as was done in
[9] in the context of Broyden’s method, seeks to account for the
successful application of an inner product (and hence Hilbert space)
based algorithm to a problem naturally posed in a Banach space. A
typical example of such a pairing of spaces is the solution of a problem
posed in the Banach space of continuous functions on a compact set
with GMRES and the L? scalar product.

Let Q C R™ be compact, k € C(Q x Q), and define the operator K
by

(1.6) Ku(x) = /Q k(z, y)uly) dy.
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Clearly, K € COM(L?(Q2),C(f2)), the space of compact operators from
L? to C. We set A =1 — K and seek to solve (1.1) with f € C(Q).
We assume that A is nonsingular. In the infinite dimensional setting,
one could apply GMRES to (1.1) with H = L*(Q) and, [23, 4], expect
r-superlinear convergence in the L? norm. One can also [17] obtain
r-superlinear convergence in the L* norm by using an implicit form of
Nystrom interpolation.

We will approximate the operator K by replacing the integral by a
quadrature rule. We will consider a sequence of such approximations
{K,}, where

In (1.7) {27} and {w?}" are the nodes and weights of the quadra-
ture rule used at level n. Throughout this paper we will assume that
the weights of the quadrature rules are positive, that the quadrature
rules integrate constant functions exactly, and that

Np,
nlgr;ozlg(w;’)w;’ :/Qg(m) dx
=

for all g € C(Q2). For example, if  is an interval and the nth rule is a
composite p-point Gauss rule on n subintervals, V,, = pn.

It is well known [2], that the operators K, converge strongly to K
in C(Q), i.e., K,u — Ku uniformly for all u € C(2), and that the
family {K,} is collectively compact, i.e., UK, B is precompact for any
bounded set B C C(2). We set A,, = I — K,,. The solutions u,, to

(18) Apu=u—-Kpu=f

converge uniformly to u* = A71f.
The solution u,, of equation (1.8) may be solved [3] by first solving
the finite dimensional fully discrete system

Nr

1

<
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for the values of u,, at the nodal points of the quadrature rule and then
recovering u, € C'(2) by Nystrom interpolation

(1.10) Un(z) = f(2) + > k@, 2} un (@} )w].

At this point we have three approximations to K. K, € L(C(Q)) is
used in the analysis of the convergence of u,, to u*. The fully discrete
approximation KI'P : CNn — ONn is defined for V € CN» by

N,
(1.11) (KpPV)i = k(a},a})Vyuw].
j=1

KFP is used in the finite dimensional system that one actually solves
with GMRES. Finally the semidiscrete approximation K> : CN» —
C(Q) is defined for V € CN» by

Np
(1.12) K3PV(z) = Zk(w,m?)V]w;’
j=1

The semidiscrete operator is used in Nystrom interpolation (1.10).

The purpose of this paper is to derive bounds on the residuals
of the GMRES iteration that apply to both the fully discrete (1.9)
and continuous (1.1) problems. We will make an assumption on the
structure of the sequence of operator approximations that will imply
that the approximate operators have spectra that, in a sense sufficient
for our purposes, approximate the spectrum of the limiting operator.
This is not the case in general and problems with a high level of
nonnormality can exhibit behavior far different from that of second
kind Fredholm integral equations and their discretizations [5, 27].

Our work is related to the class of mesh independence results, first
considered in [1] and [16] in the context of nonlinear problems. These
results describe the convergence behavior of an iterative method, for
example Newton’s method, as it is applied to a sequence of approxima-
tions of an infinite dimensional problem. This was done in [1] and [16]
by showing that the number of iterations required to drive the norm of
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the nonlinear residual to a given tolerance was independent of the level
of approximation for sufficiently fine meshes. The name “mesh inde-
pendence” was given to that phenomenon in [1]. Our notion of mesh
independence for estimates of the GMRES residuals will be that the
estimates are equally valid for the infinite dimensional problem (1.1)
using the L? inner product and for the sequence of finite dimensional
problems using an appropriate inner product on C™~. Moreover, these
estimates are independent of the righthand side and allow for any nat-
ural choice of scalar product. We will describe the issue of choice of
scalar product below.

We cannot apply GMRES directly to (1.8) in L? because the def-
inition of K, depends on point evaluation. However, we can apply
GMRES to the fully discrete problem (1.9) using either of two natural
norms to solve the least squares problem for the GMRES iterate and
compute the vector U € CN» where U; = u,(z?). We can put the
standard Euclidean norm and scalar product on C™V», as would happen
automatically if we used a general purpose code, or we could use the
approximate L? norm and inner product that arise from the quadrature
rule. In this latter case we would have

Nnp,
(1.13) U V) =D UV}
j=1
whereas in the former case
Ny,
(1.14) U, V)n =Y _U;V;.
j=1

Multiplication of the inner product by a constant has no effect on the
GMRES iteration, and we may scale the Euclidean inner product (1.14)
by m(2)/N,,, where m is Lebesgue measure, to obtain

(1.15) (U, V)n =

The motivation for this scaling is that if U is the vector with 1 in every
component, then (U,U),, = m(Q) for all n if (-,-), is given by either
(1.13) or (1.15).
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These different scalar products lead to different GMRES iterates as
the least squares problems (1.2) are not the same. Qur bounds are qual-
itatively the same for either choice of sequences of finite dimensional
scalar products.

1.3. Main result. Our abstract setting is motivated by the example
presented in Section 1.2. We formalize this setting in Assumption 1.1
in which care is taken to distinguish between the approximate problem
(1.8), which is posed in the infinite dimensional space, the fully discrete
(1.9), and the semidiscrete operator (1.12).

The convergence analysis in [2] uses {K,} to show convergence of
solutions of (1.8) to that of the infinite dimensional problem (1.1). The
semidiscrete operators {KS"} are used in Nystrém interpolation to
connect the solution of the fully discrete problem to that of (1.8).

We will assume that H, X, K, {K,}, and {K35P} satisfy

Assumption 1.1. 1. H is a separable Hilbert space with scalar
product (-,-) and norm || - ||u-

2. X C H is a Banach space with norm || - ||x.

3. (-l < I+ llx-
4. K eCOM(H,X), A=1- K is nonsingular.

5. K, converges strongly to K in X, and the family {K,} C
COM(X) is collectively compact.

6. There are numbers N,, maps P, : X — C™n, and semidiscrete
maps K50 : ONn — X such that P, is onto and

K, =K>Pp,.

7. There are a constant C1 > 0 and scalar products (-,-), defined on
CNn such that for alln, allve X,V € CN, and || - ||, = (-, -)}/2,

(1.16) HPnU”n < ||U||X’
and

(1.17) ISPV |x < Cl|V]|n-
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The role of the fully discrete operators is played by

(1.18) KPP = p, K30
and
(1.19) AFP -1 - KFP.

The assumptions guarantee [2] that for n sufficiently large (I— K, )u,, =
f may be uniquely solved for u, for any f € X and that u, — u* =
A~1f in the norm of X.

To solve u,, — K,u, = f we mimic the procedure described above in
the integral equations case and first solve the fully discrete problem

(1.20) AFPy —v - P, K3PV =P, f

for V.= P,u, € C"~». Then we recover u, through Nystrom interpo-
lation
u, = f + K3PV.

We will solve the finite dimensional system (1.20) with GMRES by
solving the least squares problems for the GMRES iterates in the norm
associated with the inner product (-, -),,. Our assumptions imply that if
I —-K,, is nonsingular on X, then I — P, K5 is nonsingular on C». To
see this, note that if V — P,K5PV =0 and u = KSPV, then P,u=V
and

u—Kyu=u—K3PPu=u— K"V =0,

and therefore v = 0 by nonsingularity of I — K,,. This implies that
V =0 and hence I — P,,KP is nonsingular.

In the context of the integral equation example above, Assumption 1.1
is satisfied if H = L?(Q), (-,-) is the L?(2) inner product, X = C(Q),
and X is given the scaled norm

(1.21) lullx = m()"?||ul|w,

where m denotes Lebesgue measure. K and K, are defined by (1.6)
and (1.7). If we define K352 by (1.12), then all parts of Assumption
1.1 with the possible exception of item 7 follow from the discussion in
Section 1.2.
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Item 7 in Assumption 1.1 imposes a natural consistency condition
between the inner product on CV» used in GMRES and the discretiza-
tion itself. Condition (1.16) requires that the vector in C"» having 1
in each component be bounded as n — oo in the norm

- 1ln = ()%

This holds for either of the scalar products (1.13) or (1.15) in Section
1.2.

If (-,-)n is given by (1.13), then since the weights of the quadrature
rule are positive, it is clear that

Nnp,

(1.22) KZP(V)(2)] < (K]l Y |Vjlw]
j=1

for all z € Q.

If we let U € CN» and |V| € C™» be the respective vectors having 1
and |Vj| in each component, we have that

Nn
Yo Wilw) = UV Da < Ul VIl < m(@)Y2||V ]
j=1

We use (1.21) and (1.22) to obtain
KR Vix < m(Q)][k]oo![V]]n

and therefore (1.17) holds with Cy = m(Q)||k||co-

If (-,-), is the scaled Euclidean inner product given by (1.15), we
require a different bound on the right side of (1.22). In that case, if
W,, € CN» has components wj, then

N,
~ N,
Vilwyi = = V], Wh)n.
2. Vil = 2

Hence
Nn

Jw™ <
|‘/}|w] = m(Q)

[[Wallnll V|-
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Hence, (1.17) will hold if {N,||Wh||,} is bounded and we can use

(1.23) O = ||kl |oom ()12 sup{ Ny |[Waln}.

The right side of (1.23) is finite if and only if

2

n

(NnHWan)2 = Nnm(Q) (wn)Z

.
Il
-

is bounded. For composite p point Gauss rules with n subintervals,
with Q = [0, 1], for example, N, = np and w} < 1/n. In that case

Ny,
n np
Nn (wj)zznp S;Z

for all n and (1.17) holds.

We will prove our mesh independence results for GMRES using
resolvent integration methods as was done in [22, 23] and [4]. The
basic result, a perturbation insensitive form of an estimate in [4] relates
convergence of GMRES for (1.1) to the spectrum and the algebraic
multiplicity of eigenvalues of A that are far in some sense from 1. This
result gives a sequence of residual polynomials {p;} that can be used
to estimate not only the convergence rate of GMRES for (1.1) but also
for (1.9).

Our main result is

Theorem 1.1. Let H, X, K, {K,}, and {K>P} satisfy Assumption
1.1, and let p € (0,1). Then there is M;(p) > 0, depending only on p
and K, such that if n is sufficiently large and r* is the residual for the
lth GMRES iteration for (1.20), then

171l < M (p)p'I75 |

for all 1 > 0.

In Section 2 we prove Theorem 1.1. We begin with a discussion
of some consequences of Assumption 1.1 that will allow us to make
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resolvent integral estimates that are independent of n. We then
construct a family of residual polynomials and make the estimates.
Our proof represents a simplification of the analysis in [23, 18] and [4]
and can be used without modification to prove that if r; is the GMRES
residual for infinite dimensional iteration that

Iril e < Mi(p)p* 7ol

for all I > 0. This implies r-superlinear convergence of the GMRES
iteration when applied to linear compact fixed point problems in Hilbert
spaces. If K is diagonalizable (similar to a normal operator) or if the
spectrum of K satisfies certain growth properties, then superlinear rate
estimates can be made directly in terms of the eigenvalues of K. Results
of this kind can be found in [17, 18] and [23].

2. Proof of Theorem 1.1. This section is divided into two
parts. In the first, Section 2.1, we prove some simple lemmas based
on Assumption 1.1. Then, in Section 2.2, we apply those lemmas and
resolvent integration methods to prove Theorem 1.1.

2.1. Consequences of Assumption 1.1. We begin our proof by
deriving uniform estimates on the norms of inverses of fully discrete
operators of the form

2I — KFP

in CN» with respect to the norm || - ||,. Here z ¢ o(K) the spectrum
of K. These bounds will follow from similar X-norm bounds on
(I — K,,)~! that can be found in [2]. We will also use the results
from [2] on convergence of the spectra of the operators K,, to obtain
identical results for KI'P.

We will let || - ||, denote not only the norm on CV» induced by the
scalar product (-,-), but also the induced matrix norm.

Lemma 2.1. Let Assumption 1.1 hold, and let S be a compact set in
the complex plane that is disjoint from the spectrum of K. Then there
is Co(8) so that, for n sufficiently large, 2I — KXP is nonsingular on
CNn and

(2.1) 1(=1 = K37 P) 7Yl < Ca(S)
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forall z € S.

Proof. Assumption 1.1 implies that for n sufficiently large (21 — K,,)
is nonsingular for all z € S, and there is an M such that

(2] — Kp) Hlexy < M

for all z € §. As we pointed out in Section 1.3, nonsingularity of
2I — K,, implies that of zI — KX'P. Hence it remains only to prove the
bound (2.1).

Let G € CN», and let g € X be such that G = P,g. Such a g exists by
our assumption that P, is an onto map. Let V = (2I — KFP)~1G, and
let v =2"1(g+ K5PV). Note that v is well defined because 0 € o(K)
and therefore not in S. We have P,v = V and

w=g+K,v=g9+ K,(zI — Kn)_1

2.2
(22) =g+ (2 - K,)'K,g =g+ (21 - K,)"'K°"G.

Hence,
2V = 2Pyv =G + P, (2] — K,) 'K3PG

and therefore, using Assumption 1.1, we have

IVIla < 121711+ MC1)| |Gl

If we set
Ca(S)=(1+ MC’l)meagc \z|71

the proof is complete. O

The next lemma expresses convergence of the spectrum in a way that
we can use directly in our analysis. Let L be a compact operator,
B=1-L,and p € (0,1) be given. Let {\;}7", be the eigenvalues of
B satisfying

‘1 - /\J| > ps

and counted by multiplicity. We define a residual polynomial

(2.3) sz:ﬁlfz//\
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Note that the definition of p(z,L,p) has nothing to do with the
particular space on which L is defined. The requirement that L be
compact is sufficient to guarantee that the product in (2.3) is finite for
any p > 0. It is possible for m to vanish, for instance, if p > ||L|| or L is
quasinilpotent. In that event the product in (2.3) is empty, and p = 1,
as is standard. p is the characteristic polynomial for the eigenvalues of
B outside the disk of radius p about z = 1. In [4] the analogous minimal
polynomial was used. We must use the characteristic polynomial here
because we analyze a sequence of operators.

Lemma 2.2 follows from the results in [2].

Lemma 2.2. Let Assumption 1.1 hold, and let p € (0,1) be given.
Then
lim p(za KFD7 P) = p(za K7 P)

n
n— oo

uniformly on compact sets in the complex plane.

2.2. Completion of the proof. Let p € (0,1) be given, and let
C), denote the circle of radius p about z = 1 in the complex plane. If
necessary, we reduce p so that no eigenvalue of A lies on C,.

Let {\;}72, be the eigenvalues of A which lie outside C,, i.e., the roots
of p(z, K, p). Lemma 2.2 implies that, for n sufficiently large, there are
exactly m eigenvalues (counted by multiplicity) of AZP = [ — KI'P
outside C),. Following [4], we separate the spectrum into a “good” part
inside C, and a “bad” part outside. Our estimate will be based on
construction of a residual polynomial that has roots at the eigenvalues
of AF'P that are outside C,, and then provides an r-linear convergence
estimate with r-factor at most p. The fact that if K is compact then
any p € (0,1) can be used in such a decomposition of o(A) implies
r-superlinear convergence [4].

Let n be large enough so that the number of eigenvalues of A and
AFP outside C,, is the same and is m. Let

(2.4) an(p) = max |p(z, K, p) = p(z, K37, p)l;
and increase n if needed so that

a(p) <2 K, p)l.
an(p) < zlgfgjlp(z p)l
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For [ > m we define residual polynomials p; € P; by
pi(z) = (1= 2)'""p(z, K7, p).
We define spectral projections

(2.5) Mg =

=_— [ (2I —AEPY =14z and TIp =1 -Tlg.
2m c,

We use (1.5), the polynomial p;, and the spectral projections defined
in (2.5) to obtain (see [12] and [4])

pi(AFP) =Tapi(ALP) + Mppi(ALP)

=Tapi(4,")
1 _
= o (=1 — ASD) lpl(z) dz
e Cp
and hence
(2.6) P (AL P)ln < Dipt

where, letting D, = {|z| = p},

Dy = p'="Co(D,) max p(z, K7, p)|-
z&lp

In view of (1.4) and (2.6), we may complete the proof by noting that
Ip(z, K5 p)] < [p(2, K, p)| + an(p) < 3 max[p(z, K, p)|
#cbp

and setting

Mi(p) = 2p" " C5(Dy) max p(z, K, p)|.
zelp
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