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EXISTENCE AND UNIQUENESS THEOREMS FOR
INTEGRO-DIFFERENTIAL EQUATIONS ON THE HALF-AXIS
WITH NON-DIFFERENCE KERNEL OF A CERTAIN TYPE.
UPPER AND LOWER BOUNDS FOR SOLUTIONS.

ANNA MITINA

ABSTRACT. The integro-differential equation

d2y e
w5 ty= / R(z — t)y(¢t)dt
dx o

+ / Ry(z + t)y(t) dt, x>0
0

is considered under the following hypotheses: (i) R(z) is an
even function with positive range which decreases everywhere
on the positive semi-axis; (ii) there exist constants s* > 1
and A > 0 such that R(z) < Ae™s"1%l, —00 < 2 < oo;
(iii) the function R1(z) satisfies the inequality |R1(z)| < R(z),
—o00 < & < oo; (iv) foooo R(z) dz < 1. The general solution is

found in a class of twice differentiable functions y(z) satisfying
conditions of the type: |y(z)| < const-e*®, z > 0, where \is a
real number bounded from above by a number o* determined
in a rather complicated way by the function R(z). The initial
value and boundary value problems are formulated and the
existence and uniqueness theorems for these problems are
proved. For two particular solutions of the equation, upper
and lower bounds are not found.

1. Introduction. Formulation of the problem. There are many
applied problems which lead to equations of the form:

" —%—Fy—/ooof(m—t)y(t) dt
+/ Ry (+t)y(t) dt, x > 0.

Equations of this kind arise in various fields of physics. As such, we
may mention radiative equilibrium of stars [3], anomalous skin-effect
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in metals [9, 4, 2] stationary neutron density in multiplying media [1,
11, 12], wave propagation in acoustic and electrodynamic waveguides
[12, 8, 10]. In all these fields of research, there are many particular
problems which lead to the equation (1) with Ry = 0. These cases have
been exhaustively treated with the standard Wiener-Hopf technique.
However, there are many problems which cannot be simplified in this
way. That is why the equation (1) in its general form deserves an
independent investigation.

Asymptotic behavior of solutions of equation (1) was investigated
in the author’s previous paper [6] under the assumption that such
solutions exist. In the present paper the existence theorem is proved
and initial value and boundary value problems are considered.

We restrict the class of considered equations by the following four
conditions: (i) R(z) is an even function with positive range which
decreases everywhere on the positive semi-axis; (ii) there exist constants
s* > 1 and A > 0 such that

(2) R(z) < Ae=*"I=l, —00 < T < 005

(iii) the function R;(x) is real-valued and satisfies the inequality

(3) [Ri(z)] < R(z),  —o0 <& < oo

(iv) [%, R(z)dx < 1.

In many applied problems there is a natural restriction on desired
solution, i.e.,
ly(z)| < const - e*?, x>0

where A is an a priori determined positive or negative number.

Let us consider the class @y of all twice differentiable functions
satisfying the last condition with the same A but not necessarily the
same constant. In this paper we are concerned with solutions of the
equation (1) only in the class @) provided A < 1 and satisfies a
condition which we describe in the following way. Let ¢(a) be a Fourier
transform of the kernel R(z)
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and
(4) G(p) =1-p* — ¢(ip).

In the previous author’s paper [6] it was shown that under condition
(iv) the function G(p) has exactly two zeros p = *o* in the strip
—0* < Rep < o*. The above mentioned condition on A can now be
formulated as: if A\ > ¢*, then the strip c* < Rep < A is free from zeros
of the function G(p). Therefore, the strip —o* < Rep < A contains
only two zeros p = +o* of function G(p).

2. Main result. The following statements may be considered as
the main result of the paper.

The form of the correct initial value problem for equation (1) depends
on the value of \. If A > ¢*, then initial value problem

(5) y(0)=yo,  ¥'(0)=1y)

for equation (1) is well posed, i.e., has one and only one solution in class
Q. If —0* < X\ < ¢* we must replace the pair of initial conditions (5)
with one initial condition of the type:

(6) ay(0) +By'(0)=~,  o,feR

This problem has one and only one solution in @) except for the case
a/B = p, where p is some negative number which is evaluated later.
In the last case the initial value problem has a solution only if v = 0,
and this solution is the trivial one: y(z) = 0. The solution of the initial
value problem in case —o* < A < ¢* is at the same time the unique
solution of the boundary value problem

ay(0) +By'(0) =7,  y(oco) =0.

Equation (1) has only trivial solution in @y if A < —c*.

If A > o, class @) contains two linearly independent solutions wy(z)
and wy (z) of the equation (1) which satisfy the following inequalities:

(7) €T —e 7" < wo(x), wi(z)
(8) 0 < wi(z) —wo(z) <

oz

S + efa*z
2e”
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There is a constant ¢ > 0 such that
(9) wy () — wo(z) > ce™ %,

For all above mentioned solutions, there were obtained formulae for
sequences of lower and upper estimates which approximate a solution
with an arbitrary accuracy. These formulae except (7) and (8) cannot
be used immediately (if ever) for getting a numerical solution.

3. Preliminary remarks. As the first step we replace equation (1)
with the equivalent system of two equations:

umz@y_AwR@—¢w@dp5AmRﬂx+wmwﬁ, 2> 0
d2

Y

(11) a2

+y(z) = 2(z), z>0.

The following statements are true:

i) If y(x) is any function in @) but not necessarily a solution of (1),
then the function z(z) defined by (10) is also in Q.

ii) If y(z) > 0 for z > 0, then z(x) > 0 for z > 0.

iii) If z(x) is any function in @, then the general solution y(z) € Qx
of equation (11) has the form

1

(12) y(z) = 3 /000 z(s)e”l*=*l ds + Be™®

where B is an arbitrary constant, and vice versa, each function given
by (12) is a solution of (11) in Q. Therefore, equation (1) is equivalent
in @y to the family of inhomogeneous integral equations:

]_ oo oo
(w)m@:—/ eszm(/ R(s — t)y(t) dt
2 Jo 0
+/ Ri(s+t)y(t) dt> + Be™".
0
There is a simple relation between B and initial values y(0) and y'(0):

(14) B =2 (u(0) - y/(0)).
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Due to the linearity of equation (1) it is sufficient to consider only
B=0and B=1.

Equation (13) determines the integral operator P defined on Q) for
any A < 1:

a5) P =g [ e as( [ R - o a

+ /Ooo Ri(s+t)y(t) dt> + Be™".

We will need the following evident property of the operator P:

(16) Plya()] = Plyn ()] if y2(t) > 31(2)

and the following equality:

ot] _ _ox G(U) oT e .
Ple?*] =e 1 g2¢ —2(1+0)¢(w)
(17) _ l * ef\sfw\ s * s et
: /0 d /0 (R(s +1)

— Ry(s+t)e?")dt + Be ™.

4. Uniqueness lemma.

Lemma 1 (Uniqueness lemma). If y(x) is a solution of integral
equation (13) for B =0 and

lim y(z) =0,

T—r0o0

then y(z) = 0.

Proof. Let y(x) be a nontrivial solution of (13) for B = 0 such that
lim, o y(z) = 0. We may assume that for some values of z function
y(x) is positive and so the upper bound y* of y(z) is positive. There
exists a point z* such that y(z*) = y*. Let us estimate y*. Since

1

y(z*) = 5/000 esw*lds/ooo(R(st)+R1(s+t))y(t) dt
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Then

1

(18)  y* Sy*-§/Oooe—S—$*|ds/ooo(R(s—t)+R1(s+t))dt.

The integral on the righthand side of this inequality coincides with
Ple?t] when o = 0 and B = 0. Denoting this integral by Py[1], we have

(19) y* <y"- Poll.
According to (17), we have

e

Pyl1] = 6(0) (1 - 2’”) - %/m e loe g

/OO(R(S +1t) — Ri(s +1))dt.
0

Since ¢(0) < 1, we get
Po[l] < 1,

which contradicts (19). The theorem is proved. O

5. Existence of solutions. The proof of the existence theorem is
based on the following lemma.

Lemma 2. Let Q be a set of all continuous functions w(x) such that
ea*z _e—a*z < w(w) < ea*z +6_J*Z.

Operator P maps Q into itself.

Proof. To prove Lemma 2, it is sufficient to establish two inequalities:

Plw(t) <e” ®+e 7 °, Plw(t) >e” ®—e @

for any function w(z) € Q.

Taking into account (16), we may write:

(20) Plw(t)] < Ple” t + e, Plw(t)] > Ple” t —e” Y.
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According to identity (17) and the definition of o*, we have:

P[ea*t + e—a*t] — eo’*w + e—a*z _ (1 _ B)e—z

]_ oo
- —/ e”lsl ds
2 Jo

*

/Oo(e" b4 e 7 ) (R(s +t) — Ri(s + t)) dt

P[ea t —e° t] — eo’*z _efa*z + (B+U*)67z

l (e 9)
+ 5/0 e~ ls=el ds

/w(ea*t — e T Y(R(s + 1) + Ra(s + 1)) dt.

The last two relations make obvious the two following inequalities:

P( ot —o*t < oz —o*z
et +e 7 <e Tte
* * *

P(ea*t —e° t)

eU z_efo' I’

Y

which together with inequality (20) prove Lemma 2. Later we will need
a stronger version of the last inequality, namely,

(22) P[ea*t o efo'*t] > ea*z o efo'*a: + (B + U*)eiw,

which also follows immediately from (21). u]

Theorem 1 (Existence Theorem). Under the hypotheses of Section 1
the integro-differential equation (1) has at least two linearly independent
solutions wo(z) and wy(z) in the set Q.

Proof. Let us define two sequences of functions:

(23)
Un(z) = Plup—1(t)], n=12,..., ug(z) =e” *—e 7"
(24)
vp(x) = Plop—1(t)], n=1,2,..., vo(z) =7 T +e 72,

Due to Lemma 2, all these functions are in Q. Due to (16) we may
write
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wol®) < () < -+ < un(e) <

vo(z) 2 v(z) = -+ 2 va(z) 2
un(z) < vy(x), n=20,1,2,...,
£

so that for any value of x there exist two limits:

(25) lim w,(z) = u(z), lim v, (z) = v(x).

n— oo n— oo

Let us consider the sequence of derivatives {ul,(2)}52,. According to
(15) we have:

%{P[Un(t)]} = —% /Ow e~lsolds

/OO un(t)(R(s — £) + Ru(s +£)) dt
+ %/:o e~15l ds
/oo wn()(R(s + £) — Ru(s +¢)) di — Be—™.

Taking into account that u,(t) and (R(s —t) + R1(s +t)) are positive
functions, we get:

£ Pl (0] < Pl (0]

Thus, all functions u, (z) have derivatives bounded by the same number
e N 4+ e 7N on any finite interval [0, N] and, therefore, converge
uniformly on this interval. Since the difference of any two functions
of the sequence {u, ()} is not greater than 2e~7 *, we get that this
difference is less than 2¢=° " on the interval (N,00). These two
properties show that the sequence of functions {P[u,(t)]} converges
uniformly to P[u(t)] and therefore

Plu(t)] = P[ lim u,(t)] = lim Plu,(t)] = lin;o Unt1(x) = u(z).

n—oo n—oo n—
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Thus, u(z) is a solution of (13). Similarly, function v(x) defined by
(24) is also a solution of (13). According to the uniqueness lemma, it is
the same solution. This is true for any value of B. Setting B = 0 and
B =1 we obtain two linearly independent functions wg and w; each of
which is a solution of (1). The theorem is proved. O

6. Properties of the solutions wy(z) and w;(z). According
to the proof of the existence theorem, the solutions wy(z) and wy(z)
may be estimated from below and above with the aid of sequences

{uon ()} {von ()} {u1n (@)}, {vin(z)}:
(26)
uon () < wo(z) < von(z),  win(z) < wi(z) <vin(z), n=1,2,....

These estimates may be made as accurate as one wishes by choosing a
sufficiently large n.

It is worthwhile to point out a couple of inequalities which connect
these two solutions:

(27) wy (z) — wo(z) < 27"
which is common for any pair of functions in 2, and
(28) wi(z) —wo(z) > e °.

To prove the last inequality it is helpful to write down the definitions
of the sequences {uo,(x)} and {uy ()}

uon+1(2) = Poluon(t)]l,  wint1(z) = Prlugn(t)],

o'z —o*zx

upo(z) =u1g(r) =e” “ —e
where operator Py is operator P with B = 0 and operator P; is operator
P with B = 1.

If the inequality
uo,n(2) < uyn(x)

holds (it obviously holds for n = 0), then the similar inequality holds
for ug p41(z) and uq ni1(x). Thus, taking the limit we get

wp(z) < wy(z).
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Therefore,
wp(z) = Polwy(t)] < Polwy(t)] = Prjwy(t)] — e™* = wy(z) — e ™.

Notice an obvious consequence of the inequality (28):

*

7T —e T Cwplz) < e T4e 7T e
7T e > wy(z) > 7 F eI f e,
In particular, at x = 0, we have
(29) 0 <wp(0) <1 <w(0) <2
Moreover,
(30) wg(0) > o*.

Indeed, by the definition (23)
wo(z) > ug1(x) = Ple” ' — e 7Y
and, due to (22),
wo(z) > e’ ® —e 7%+ (B+o")e".

Taking « = 0 we obtain (30). Also, due to (14),
wo(0) = w;(0), wq(0) — wi(0) = 2.
7. Uniqueness theorem for (1). To establish the uniqueness

theorem in @) we need the following theorem from [6] which may be
formulated in the form:

Theorem 2. If X is any number from the interval (—s*,s*), then
any solution of (1) in Qx has asymptotic behavior of the form:

y(z) = ZPk(x)ep” + O(e")
k
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where summation is over all zeros py of the function G(p) (4) lying in
the open strip v < Rep < A, v > —s*.

We will use this theorem for some v such that —s* < v < 0. Taking
into consideration that the strip —o* < Rep < A contains only two
zeros p = +o0* and that they are simple zeros of function G(p), we get:

(31) y(z) = P,e” ® + 0(e"®), v <0,

where P, is a constant depending on a solution. Now we will use the
last relation to prove the following theorem.

Theorem 3. If A > o* the general solution of equation (1) in Qx is
a linear combination of the solutions wo(x) and wi(z):

(32) y(x) = cowo(x) + crwy (),

where co and c1 are arbitrary constants.

Proof. The solution y(x) has the form (31) and satisfies the integral
equation (13) for some value of B = B,,. The solutions wo(z) and w- (z)
as functions in {2 may be represented by the formulae:

wo(z) = €7 % + O(e"?)
wy(z) = e T + 0(e’®).

Let us consider the function
Y(z) = y(z) — Byw:i(z) — wo(z)(Py — By).

The function Y (z) is a solution of (13) with B = 0. Its asymptotic
behavior is of the form

Y(z) = O(e"), v <0.

According to the uniqueness lemma, Y (z) = 0. The theorem is proved.
O
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Theorem 4. If —c* < X\ < ¢* the general solution of equation (1)
i Qx has the form
y(z) = c(wi(z) — wo(z))
where ¢ is an arbitrary constant.

Proof. If A < o* the solutions wy(x) and wy(x) do not belong to @
and so we are left with the only one (up to a constant factor) solution
wi(x) —wo(z). It belongs to @ because A > —a*. O

Theorem 5. If A < —c™ the class Q) contains only a trivial solution
of equation (1).

The proof of this theorem requires a statement which could be easily
obtained in [6] but was not. To get this statement out of the frame of
[6] seems to be too cumbersome. Therefore, we omit the proof.

8. Initial value problem.

Theorem 6. Initial value problem for equation (1) with initial

conditions y(0) = yo, ¥'(0) = y has one and only one solution in
Qx if A > o*. Namely,

y(z) = cowo(z) 4+ crw; (z)

where
(33) co = 2y — w;(oo()o()yo ~ Yp)
(34) ¢ = %(yo - Y0)-

Proof. Let us assume the existence of a solution y(z) of the initial
value problem. According to Theorem 3 it has the form (32). Coefli-
cients cg and ¢y are uniquely determined by the initial conditions since
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the denominator wg(0) is greater than o* (see (30)). Thus we get ex-
pressions (33) and (34). The uniqueness part of the theorem is proved.
The function y(z) defined by (32), (33) and (34) is obviously a solution
of the initial value problem. The theorem is proved. ]

Theorem 7. Initial value problem for equation (1) and initial
conditions (6) has a unique solution y(x) in Q) if —0* > A < o*
and

(35) y(z) = c(wi(2) — wo(z))
where

B = 0w o) T A —w @ =D
provided

(1) a(wi(0) - wo(0)) + Bluw:(0) — wo(0) — 2) £0.

If this condition does mot hold, the initial value problem has no solu-
tions unless v = 0. In this last case it has only trivial solution y(z) = 0.

Proof. According to Theorem 4, the general solution of equation (1)
has the form:

y(z) = c(w(z) — wo(z)).

Initial condition (6) can be satisfied if inequality (37) holds. In this
case the coefficient c is uniquely determined by (36). Thus the defined
function y(z) is obviously the solution of the initial value problem. The
theorem is proved. Condition (37) may be rewritten in the form:

a/B #

where

_ _wl(O) — wO(O) -2
’11)1(0) — wo(O)

Inequalities (29) show that p is negative.
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Solution (35) is at the same time the unique solution of the boundary
value problem:

(38) ay(0) + By'(0) =v,  y(c0) = 0.

Theorem 8. Boundary value problem (1)—(38) is equivalent to the
initial value problem (1)—(6) in the class Qx if —o* < A < o*.

This theorem is valid because any solution y(x) of equation (1) such
that lim,_, ., y(z) = 0 is proportional to the difference wy(z) — wo(z).
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