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EQUATIONS BY LIAPUNOV APPROACH
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ABSTRACT. The Liapunov method is used to obtain sta-
bility conditions on some classes of Volterra integro-differential
equations, and it is generalized for studying stability of dis-
crete Volterra equations. As a first application of such gen-
eralization, stability conditions for the Volterra linear multi-
step methods, applied to a general linear system of Volterra
integro-differential equations, are derived.

1. Introduction. The aim of this paper is stability investigation
of Volterra integro-differential equations (VIDEs) and their discretized
version.

Since universal stability conditions are not known, we should try to
study stability problems for special classes of VIDEs under appropriate
assumptions. These equations should also be treated as a collection of
test problems which would be useful to check the stability of numerical
methods.

As is known, a powerful tool to analyze stability of a problem is
the direct Liapunov method. It consists of the use of suitable func-
tionals depending on the solution of the equation under consideration.
Through the construction of such functionals, in Section 2, we obtain
stability conditions for different types of VIDEs. Some of these con-
ditions, if the integral term is zero, coincide with the known stability
conditions for ODEs.

In Section 3 we consider a discrete VIDE, that is, a difference equation
of unbounded order. For this equation we prove a general theorem
which gives stability conditions depending on the existence of suitable
functions. In other words, we extend the discrete Liapunov theory
to the case of unbounded order difference equations. We stress that
this theorem furnishes, as in the continuous case, a powerful tool to
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investigate stability of discrete equations arising from the application
of a numerical method to a continuous VIDE.

As a first realization of this approach, we consider Volterra linear
multistep methods, and we obtain conditions for numerical stability
formulated in terms of the coefficients of the method, of the kernel and
the stepsize.

We remark that if the integral term is assumed equal to zero, the
stability conditions, obtained for the one-step methods, coincide with
the known ones for ordinary differential equations.

Finally, we emphasize that the aim of the paper is not only to
obtain explicit stability conditions, but also to show the essence of the
proposed procedures to construct Liapunov functionals and functions
for Volterra continuous and discrete equations.

2. The continuous case. Consider the nonlinear system of Volterra
integro-differential equations

t

21) ¥ =Gtu) + / K5 y(s)ds, 120,
22)  y(0)=u.

Here y(t) € R™, G : [0,00) x R — R™ and k : [0, 00) X [0, 00) X [0, 00) X
R™ — R™ are continuous functions satisfying local Lipschitz conditions
with respect to y and G(¢,0) =0, k(t,s,0) =0 for all ¢,s > 0.

Though the intuitive meaning of stability is clear, much controversy
exists about formal definitions. The stability of definition used below
is the natural generalization of the stability definition proposed by
Liapunov.

Definition 2.1. The trivial solution of equation (2.1) defined by the
zero initial condition y(0) = 0 will be called
1) stable if for any £ > 0 there exists . such that ||y(¢)|| < e, t >0,
for any initial vector yo with ||yo]| < d;
2) asymptotically stable if it is stable and lim y(t) = 0, t — oo for all

vectors yo € D where D is some neighborhood of the origin. Sometimes
D is called the domain of attraction of the trivial solution.
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In order to prove the first general theorem on stability of (2.1), assume
also that the function G(t, y) is continuously differentiable with respect
to y and

(2-3) k(s 5, 9)II < w(2; 8)]y]]

where k(t,s) is a continuous nonnegative function. Moreover, let us
denote by g(¢,y) the Jacobian matrix corresponding to G(t,y) (i.e.,
g(t,z) = 0G(t,y)/0y) and by v(g(t,y)) the logarithmic norm of the
matrix g(t,y).

The proof of the next theorem is based on the following standard
lemma contained in any stability course on functional-differential equa-
tions (see, e.g., [3, p. 103]).

Before reporting this lemma, the definitions of positive definite and
decrescent functional must be recalled. These definitions can be found
in [3, p. 102]. Denote by y; the whole trajectory of solution of the
problem (2.1), (2.2) on the interval [0, ], i.e., y; = y(t + 6), where, for
any t, the argument 6 takes all the values —t < 6 < 0.

Let w;(r) be scalar continuous increasing functions such that w;(0) =
0.

Definition 2.2. A functional V(t,y;) is called positive definite
(decrescent) if there exists a function wq(r) (function wa(r)) such that
V(£ 1) = wi(lly(8)]]) (such that V(Z,y:) < wa(sup_s<o<o [ly(t + O)|])-

Lemma 2.1. The trivial solution of (2.1) is asymptotically stable
if there exists a scalar continuous functional V (t,y;) which, for any
solution y(t) of the problem (2.1), (2.2), belonging to D for all t, is
positive definite, decrescent and its right upper total derivative denoted
as d*V (t,y;)/dt is negative definite.

Theorem 2.2. Assume that

(2.4) a> sup/ k(t+s,t)ds
>0 Jo

where

(2.5) a=— sup (g9(t,y))

t>0,yeD
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and & is defined in (2.3). Then the trivial solution of (2.1) is asymp-
totically stable.

Proof. Consider the functional V (¢, y;)

20 v=lyoll+ [ ds [ s snllldr

where y(7) =0 for 7 < 0.

It is clear that the functional (2.6) is positive definite and decrescent.
To verify that d*V/dt is negative definite, we obtain

VSO [

dt
+ ||y(t |\/ k(t + s,t)d

For any norm || - || in R™ (see, e.g., [2, p. 461])

(2.8) d+”5t( )” = Q[y(t),y'(t)]

where the function Q(u,v) of two independent arguments, u,v € R",
is defined by the relation

= s)[ly(t —s)l|ds
2.7)

.1
(29) Q)= Tim -+ Aol [lu]].
From (2.8) and (2.9), it follows that

WO _ i L + 5@ - @I

(2.10) dt hoot h

Substituting in (2.10) the right side of (2.1), instead of y'(t), we get

+
% < lm %[Hy(t) +hG(t,y@)] — [ly@)]]]
+ ‘ /0 k(t, s, y(s))ds

< Qly(#), Gt ()] + / (t, )lly(s)]) ds.
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But
G(ty(t)) = [ [ st sy(t))ds]yu),
hence
ol _ 1
— < Qyt), | g(t sy(t)) dsy(t)
(2.11) dt [ /0 ]

+ / w(t, ) ly(s)]] ds.

Now taking into account [2, p. 462] that for any matrix g the logarith-

mic norm satisfies Y(g(t,y)) = SUP,e o) 20 |2l QLz, 9(t,y)a], we
obtain

1

(2.12) Q[yo:), / 1g(t,sy(t>>dsy<t>]m[ / g(t,sya))ds]w(t)n.

Further, from (2.5) and convexity of the logarithmic norm, it follows
that

7[/019(15, Sy(t))dS] < /01’7(9(15, sy(t))) ds < —a.

Consequently, because of (2.12),

1
Q[ya), [ st sy<t>>dsy<t)] < —ally(®)|I.
0
This inequality and (2.11) mean that

d*ly(1)]]

(213) P < —aly(oll+ [ sttt =s)lute = o)l ds

comparing (2.7) and (2.13) we see that

atv o
(2.14) —— < —(a—sup k(t + s,t)ds |||y(t)|] <O.
dt >0 Jo
Relation (2.14) shows also that V(¢,y:) < V(0,y0). So the functional
(2.6) satisfies all the conditions of Lemma 2.1, and the theorem is
proved. ]
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We observe that if the kernel k is assumed equal to zero then (2.4)
and (2.5) coincide with the known stability condition for ODEs [4, p.
269].

Theorem 2.1 is quite general, and it is interesting not only for the
stability condition there derived, but also because it illustrates the
Liapunov approach to general integro-differential equations.

Using the same arguments as in the proof of Theorem 2.1, we can
establish the two following results.

Consider the VIDE
(215) yl(t) = Gl(tay(t))y(t)+G2(tay(t))A k(t) S,y(S)) dS, t Z 0.

Suppose Gy : [0,00) x R™, G2 : [0,00) x R™ — R™*™ are bounded and
continuous, G;(¢,0) = 0 and the kernel k is such that

(2.16) G2 (t, y () (2, 5,y(s))]| < Ra(t, 5)[[y(s)]]
with &1 (¢, s) a continuous nonnegative function.

Theorem 2.2. Assume that

oo
ay > sup/ k1(t + s,t)ds
t>0 Jo

where

ay =— sup (Gi(t,y)).
t>0,yeD

Then the trivial solution of equation (2.15) is asymptotically stable.

Proof. The theorem can be proved analogously to Theorem 2.1 by
taking the same functional (2.6) and changing & into &;. O

An interesting application of this corollary is given in the following
example.
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Example 2.1. Let us consider the two-dimensional VIDE of the
form (2.15) with

&1 (Lo “C0V) @=t

e—4(t—s) 0
k= ( 0 eq(ts)) y(t)

where a; and g are positive constants, the function a : [0,00) x R? — R
is continuous and bounded, y = (y1,y2) and I is the identity matrix.

(2.17)

Take the Euclidean norm in R2. Then the logarithmic norm of the
matrix G is equal to the maximal eigenvalue of the symmetric matrix
(G1 + GT)/2,i.e., v(G1) = —ay. Further, since in this case

[IK]| < exp(—q(t = ))lly(s)]],

the asymptotic stability condition of Corollary 2.1 applied to equation
(2.17) is
K 1 o1

(2.18) a; > sup/ e % ds = —sup[l —e 9] = —.

t>0 Jo q t>0 q
We observe that if g tends to infinity then the asymptotic stability
condition (2.18) turns into a; > 0, which can be obtained also by the
following arguments. If ¢ — oo, then the VIDE under consideration
becomes the ordinary differential equation

Y (t) = Ga(t,y(1))y(t)

which can be easily proved to be exponentially stable under the same
hypothesis a; > 0. For the proof it is sufficient to use the Liapunov
direct method applied to the function V (¢, y(t)) = [|ly(¢)]/.

Moreover, we want to stress that the stability condition (2.18) does
not depend on the function a(t,y).

From Theorem 2.1 the following corollary, which will be useful in
Section 3, can also be immediately derived.

Corollary 2.1. The trivial solution of the VIDE system

(2.19) (0 = AWe) + [ Kt syl ds
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with

(2.20) supv(A(t)) < — /000 [|k(t+ s,s)||ds,

t>0

is asymptotically stable.

In the remaining part of this section we want to illustrate how,
depending on the type of VIDE we are considering, more appropriate
functional V' can be found, leading to different sufficient stability
conditions. For example, in the sequel, three different functionals V'
(related to three different classes) of VIDEs, are derived. We want
to add that another functionals for investigating stability of Volterra
equations was proposed in [5].

2.1. Second order equations. Let us consider the two-dimensional
VIDE system

(2.21)
Y (8) = =o(t,y(t)) — f(2(t)) + [y k(t,t = s)y(t —s)ds >0
where ¢ : [0,00) X R = R, k:[0,00) x [0,00) = R, and f: R — R are

continuous functions ¢(¢,0) = 0, f(0) = 0. Then the following theorem
holds.

Theorem 2.3. Assume that
t [e'e]
22(t,2) > 2* [/ |k(t, t — s)| ds + / |k(t + s,t)] ds],
0 0

t>0, z€(—00,00),
zf(2) >0, if[z] >0,

then the trivial solution of equation (2.21) is stable.

Proof. For the stability investigation of the trivial solution of (2.21)
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we take the functional

x(t)
V:2/ £(s)ds + y2(t)

0
fe’e] t
+ ds/ |k(7’+s,7‘)\y2(7') dr
0 t—s

where y(7) =0, 7 < 0.

Calculating V', we obtain

t 0
V' < —2yd(t,y) + 2 {/ |k(t,t —s)|ds +/ |k(t + s,t) ds]
0 0
and the thesis follows. u]

Remark 2.1. We observe that in this case the stability conditions
are obtained without any assumptions about differentiability of the
functions ¢(t,y) and f(z) which were essential for Theorem 2.1.

2.2. Scalar equations.

A) Linear equations with differentiable kernel. Let us consider the
scalar VIDE

(222)  2'(t) = —az(t) /Otk(t— s)z(s)ds, t>0

where @ > 0 is a constant and the function k : [0,00) — R is
continuously differentiable. For such an equation, the following result
can be proved:

Theorem 2.4. If

(2.23) ak(0)>(1+a)/000|a(s)ds, a>/0°° la(s)| ds,

then the trivial solution of equation (2.22) is asymptotically stable.
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Proof. Differentiating both sides of (2.22) in ¢, and putting y = 2/,
we get the system

{ z'(t) = y(t)
Y (t) = —ay(t) — ba(t) — [5 a(t — s)z(s) ds
with b = k(0) and «(s) = k'(s). Continue z(t) for (¢ < 0) by setting

z(t) =0, t < 0, and introduce the functionals

V=V+Vs,
Vi = 2b2”(t) + v*(¢) + (y(t) + az(t))?,

V= (2+a) /Oooa(s)ms/;ﬁ(f)df.

By applying Cauchy’s inequality, we get

V' < 222(t) [ —ab+(1+a) /Ooo la(s)| ds] + 22 (t) [ - a/ooo la(s)| ds}

and the hypotheses (2.23) assure V' < 0 which completes the proof.
[}

Remark 2.2. We note that if the kernel k is a constant, then stability
conditions (2.23) turn into a > 0, k > 0, and they are necessary and
sufficient conditions which coincide with the known stability conditions
for the basic test equation [1, p. 418]

(2.24) V' (8) = () + / y(s) ds.

We also stress that such result concerning the basic test equation cannot
be obtained directly by Theorem 2.1 because the kernel in (2.24) is not
L'

B) Linear equation with general kernel. Let us consider the scalar
VIDE

(2.25) y'(t) = — /000 k(t,s)y(t — s)ds, t>0
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with the initial condition

y(0) = ¢(0), 0<0

where ¢ : (—00,0] — R is a given, continuous bounded function, and
k : [0,00) x [0,00) — R is a continuous function. Then the following
result can be established:

Theorem 2.5. Let us assume that

(2.26) A(t):/ k(t+5,5) ds > 0, Sup/ lk(t, 5)| ds < oo,
0 t>0 J0

(2.27) a >0,

(2.28) alzsup/ ds/ k(t+s,s)|dr <1,

t>0

then the trivial solution of the VIDE (2.25) is uniformly asymptotically
stable.

Proof. To obtain stability conditions of the trivial solution of equation
(2.25) with respect to a disturbance of the initial condition, let us
introduce the functional

V—V1+V27

[ / ds/ kr—i—ss()dr},
VQ:/O ds/t—sA(31+S)dSI/sl k(T + s, 8)|y*(7) dr

where all integrals are assumed to be absolutely convergent. After
computing V{ and Vj, we get

(2.29) V' < —az?

a:inf[QA / ds/ k(T +s,s)|dr
>0

—/0 |k(t+s,s)|ds/t_SA(sl+s)dsl].
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From (2.29) and (2.27), it follows that

(2.30) /000 y?(s)ds < oo

and also

00 t
(2.31) ‘y(t) —/ ds/ k(r+s,s)y(r)dr| < C < oo, Yt>0.
0 t—s
Inequalities (2.28) and (2.31) mean that

sup |y(t)| < oo.
>0

From here and (2.26), one can conclude that

(2.32) sup |y’ ()] < oo.
>0

Inequalities (2.30), (2.32) lead to

lim y(t) =0

t—oc0

which completes the proof. u]

Remark 2.3. Comparing the stability conditions (2.26), (2.27) and
(2.28) with the ones obtained in Theorem 2.1, we note that no as-
sumption about “instantaneous feedback” is requested. The presence
of such a term (function G(¢,y(¢))) was on the contrary essential for
application of general stability criteria from Theorem 2.1.

3. The discrete case. In this section we treat the stability of the
discrete Volterra equations.

We start by generalizing the Liapunov theorem for difference equa-
tions of unbounded order

i1 = F(i, Y0, Y1y Ui)s i>0, y; €R",
(3.1) Yit1 (4,90, 71 Yi) - y

F(3,0,0,...,0) =
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and for the sake of completeness, firstly we report the following defini-
tions corresponding to Definition 2.1 in the continuous case.

Definition 3.1. The solution y; of (3.1) is said to be

1) stable if for all € > 0 there exists a § = d. > 0 such that ||y;|| < ¢,
i > 0 for any initial vector yo with ||yo|| < J;

2) asymptotically stable if it is stable and lim; o ||y;|| = O for all
vectors yo € D where D is some neighborhood of the origin.

Now the following general theorem which can be considered as a
generalization of the corresponding theorem for equations with finite
delay [3], can be proved. Let w;(r) be scalar continuous increasing
functions such that w;(0) = 0.

Theorem 3.1. If there exists a scalar function Vi(yo,...,y;) con-
tinuous with respect to all the variables yo, ... ,Y;,..., such that
i) V%(0)=0

i) Vi(yo,--.»yi) > wi(llill)

iii) AV; =Viy1(yo,--- i Yir1) — Vi(yo, -+ ,4:) <0
then the solution of (3.1) is stable. If, in addition,

iv) AV; < —ws(]lyil)
then the solution of (3.1) is asymptotically stable.

Proof. Let us consider an arbitrary positive number € > 0. For the
continuity of the function Vj(yg) there exists a positive number § = §,
such that Vo(yo) < wi(e) if ||yo|| < 6. Then by ii) and iii) there results

(3-2) wi(llyill) < Vi(yo, - - ,5i) < Volyo) < wi(e)-

So, since w1(0) = 0 and wy is an increasing continuous function, (3.2)
implies ||y;|| < €. Therefore we have proved that

Ve>0 36=046st. if ||yo]| <9, llyil| <e, Vi>0

which is equivalent to the stability of the solution.
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Let us prove the asymptotical stability under the additional assump-
tion iv). Show that for arbitrary initial condition yy the corresponding
solution y; of (3.1) tends to zero as i — co. Assume the opposite, i.e.,
there exists a positive number € > 0 and an infinite sequence {k;}, such
that

[y, || > ¢, 1> 0.

Let us represent V;(yo, ... ,y;) in the form

i—1 1—1
Vi(yo,--- »9i) = Vo(yo) + Z AVigir,y + ZAVze{ki},
=0 =0

but by virtue of iv)
AV < —wa(llyll) < —wale), Vi€ {ki}.
Hence, recalling also that AV; < 0 for all I > 0, we get

V;(y07 s ayi) S %(yo) - M(Z)UJ?(E)

where M (i) is the number of the terms of the set {k;} such that
ki < i — 1. Finally, take into consideration that because of our
assumption M (i) — oo as i — oco. It means that V;(yo,...,y;) = —00
as i — oo which contradicts ii). Consequently, for any solution y; of
(3.1) we get y; — 0, ¢ — oo. o

Now since the aim of this section is to give a first example of how
the Liapunov approach can work on the discrete VIDE, we use the
previous theorem for studying the numerical stability of some Volterra
linear multistep (VLM) methods.

Let us consider the n-dimensional system of VIDE (2.19) with the
assumption (2.20) and apply a k-step VLM method [6, p. 182]. The
numerical solution y; ~ y(t;) where t; = ih satisfies the following
difference equation system

k k k
(33) D ayyir; =hY BjAltir;)yirs +h Y BiF(tiys), 1>k,
j=0 =0

=0
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where o; and 3, 7 =0,... ,k, are the coeflicients of the VLM method
under consideration, and the lag term F(t) is an approximation of

S k(t, s, y(s)) ds, ie.,

F(ti) = hzwi,rk(tiatr)yr-
r=0

Here w; , are the coefficients of suitable quadrature formulas.

Before proving the next theorem we add to (3.3) the natural assump-
tion

(3.3") yr =0, r<0
and we need the following notations
(3.4) R, = [OékI — h,BkA(ti_;,_k) — hzﬂkw*k(ti+k,ti+k)]71 € R

where w* = w;4 ;4% is the last coefficient of the quadrature formula,
which is usually independent of .

(3.5) T, =—ojl + hﬁjA(tT) € R™*™

where I is the n X n identity matrix.

Theorem 3.2. If
(a‘) |wi77“ S w’ l',’l‘ Z 07
k—1 k o)
) =1+ Yo Rkl Tireall + PPw 3518513202
[Ritk—1—jtull [B(tivk 140, tivk—1)]| <0, >0,
then the solution y;, i > 0, of (3.3) is stable.

Proof. By computing y;, from (3.3) we obtain

k—2

Yirk = RiTh 1ok 1Yirk 1+ B Y Thitj¥ing
i=0

k q
+ thz Z ﬁj Z wi—l—j,rk(ti—!—ja tT)yT
7=0 =0
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where
g =min{i + j,i + k — 1}.
Then consider a norm || - || in R” and the following functions:
(3.7)
Viyo, -+ 9i) = Gi(yo, -+ ,yi) + Hi(yo, .. ,¥i) + Li(yo, - .-, i),
Gitk—1(Y0, - - s Yitk—1) = [|Yitr—1l;
k—2i+k—2
Hitr-1(yo,- -+ Yitr—1) = Z Z [Re— [ | T, 1 e ],
§=0 r=i+j

Livi—1(Yo,--- s Yitk—1)
0o i+k—2

k
=Y 181> D R gl ks o)l e,
§=0

v=q1 r=itj—v

with
¢1 = max{0,2 — k + j}.

It is clear that V verifies both i) and ii) of Theorem 3.1. Now in order
to compute AV, we compute separately AG, AH and AL.

AGivk—1 = [|Yitx!l — |Yi+r-1ll
and from (3.6)
AGitk-1 < [|RiTk-1,i+k-11] = U|[Yirk-1]

k-2
+ D MR Tg 1] 1y
§=0

k q
+ 2w Y 1B Y Rl k(Eigss t)l] 90l
j=0 =0

k—2
AHir1 =Y Rivk—1—ll 1 T5isn—1ll [yirr—al]

7=0
= Bl 11T |lyie511],
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k o)
ALivk 1 =hw Y 1B Y (Risk 1 sl

P R —
e (titk—140s tivk—1)|] [|Yitr—1]]
(3.8) — Rl [k (it s tivi o)l Yivi—ol]-

Here ¢o = max{0,1 — k + j} can be substituted for g;, and putting
i+j—v=r(3.8) becomes

k 0o

ALijpos = th[Z 8513 I Risko1—ginl
j=0 v=q1
[k (titk—1+vs titk— )| [|Yitr—1l]
k —o0
=081 Y Rl kgt 1yl
im0 r=iti-g
Taking into account that i + j — g2 = ¢ and (3.3’), there results
k-1
AV < | =14 3 WRssi sl Tsnna
=0
k [eS)
+Rw Y (8] D || Rivk—1—j40l|
j=0 v=q1

NE(titk—140, ti+k1)||] NYitr—1ll,

and by hypothesis b) we get AV < 0. Finally, by choosing w(z) = ||,
we have that the difference equation (3.3) satisfies all the hypotheses
of Theorem 3.1 and therefore its solution {y;} is stable. O

As can be easily seen, the auxiliary function V;(yo, ... ,y;) introduced
in (3.7) is the discrete analogue of the functional V'(¢) in Theorem 2.1.

Of course, also in the discrete case different functions V' lead to
different sufficient stability conditions.

Moreover, we note that stability condition b) derived in Theorem 3.2
becomes more tractable for particular classes of VIDEs.
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Remark 3.1. Let us assume that A(t) = A and k(¢,s) = k(t — s) in
the problem (2.19). Then condition b) is independent of i and we get

k—1 k e’}
(39)  —L+[[RIID T +h*wlRID 161 Y IIk(E)]] <0
7=0 7=0 v=q1

where

R = [axI — hfBrA — B2 Brw*k(0)] 7,
Tj = —osz—i— h,BJA

Remark 3.2. In the particular case of the scalar VIDE

t
v =@+ [ Ke-su(s)ds, A<
0
the stability condition (3.9) reads

Yoizo | — o+ hABj| + hPw 5 1851 Yoo, [k(ty)]

(3.10) —1+ s — hABr — W2Brwk(0)]

<0.

We add that if the kernel |k(s)] is not increasing, the infinite summa-
tion appearing in (3.10) can be surely bounded. Namely,

Ykt < / " Jk(s)| ds + AJk(0)].

Remark 3.3. We want to compare (3.10) with the known stability
condition for the ODE linear multistep methods characterized by the
same coeflicients o, 3;. For this purpose, let us apply Theorem 3.2 to
the classical test equation

y' = Ay, Re(\) <0.
In such a case b) becomes

k—1
(3.11) (Z laj — hwj|>/ak — hABy| < 1,

i=0
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and we observe that if (3.11) is true for all AA < 0, then the corre-
sponding ODE linear multistep method is A-stable. Moreover, for the
one-step methods, (3.11) coincides with the known stability conditions
[4, p. 70].

Finally we observe that the stability condition derived in Theorem 3.2
has an interest more theoretical than practical, since it represents, to
the best of our knowledge, the first result obtained from the application
of Liapunov theory to the study of stability on numerical methods for
VIDEs. Since such a theory is a powerful method for studying stability
of continuous VIDEs, we hope that this tool can in the future be used
to also give more significant results in the numerical case.
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