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DIRICHLET CONVOLUTION INVERSES AND
SOLUTION OF INTEGRAL EQUATIONS

RICARDO ESTRADA

ABSTRACT. A method for the solution of integral equa-
tions based on the concepts of Dirichlet convolutions and con-
volution inverses is presented. This method generalizes the
procedures of Chen.

1. Introduction. Recently, Chen [2, 3] gave the solution of
the integral equations for the photon density of states and for the
inverse blackbody radiation problem for remote sensing by using an
inversion formula from number theory. His work generated some
interest, particularly in the possible applications of number theory in
physics [7, 8.

Our present aim is to give a general procedure for the solution of
certain classes of integral equations of the first kind based on the
inversion of the Dirichlet convolutions, a subject studied in elementary
number theory [1]. Chen’s method becomes an interesting particular
case.

Interestingly, the asymptotic behavior of series of the type

Z and(ne)

as ¢ — 07 was studied by using the theory of distributions [4, 5, 6].
These series play an important role in the method presented here. In [4]
many results of number theoretical importance are obtained by using
distributions, an old acquaintance of physicists, who used them before
mathematicians.

2. Dirichlet multiplication and inversion. The concepts
of Dirichlet multiplication and inversion, expounded below, are well
known. Details can be found in standard texts in number theory [1].
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160 DIRICHLET CONVOLUTION INVERSES

An arithmetical function f is a function from the set of positive
integers {1,2,3,...} to R or C. The Dirichlet multiplication or
convolution of two arithmetical functions f * g is defined by

(2.1) (fxg)n)= > f(k)g(i) =D f(k)g(n/k).

kj=n k|n

Dirichlet multiplication has the usual properties of a multiplication,
namely, it is associative, commutative and distributive with respect to
addition. It also has an identity element, the unit function I given by

(2.2) I(n) = {(1) Z i 1

It is an easy matter to see that

(2.3) Isf=f+I=f,
for each arithmetical function f.

Given an arithmetical function f, an inverse for the Dirichlet mul-
tiplication is an arithmetical function f~! that satisfies f * f=! = I.
Using (2.1) and (2.2), it follows that f has an inverse if and only if
f(1) # 0 and in that case the inverse f ! can be computed recursively
as

1 1
(2.4b)
-1 _ -1 -1 .
[~ (n) = F(1) E : F (k) f(9)s n > 1.

kj=n,k<n

Particular but important cases of Dirichlet inverses are the following.
If w is the arithmetical function given by u(n) = 1 for each n, then its
inverse is the Mobius function p given by

(=1)", n=p1---pr, p; different primes,

25 un) =

0, otherwise.

More generally, if N¢, a € C, is the arithmetical function given by
N%(n) = n®, then its inverse is given by (N%)~1(n) = n®u(n).
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If d(n) is the number of divisors of n, then d~! = p*p. Other inverses
can be found in [1].

Dirichlet multiplication by a given function induces an operator on
arithmetical functions whose inverse is the operator induced by its
Dirichlet inverse. Namely, if

(26) h(m) = 3 (W) f(),
and if f(1) # 0, then (2.6) can b’::irrllverted as
(27) a(m) = 37 h(R)FG).
In particular, the relation o

(2.8 hn) = 3" g(k)
can be inverted as "

(29) o) = D uhn /),

the so-called Mobius inversion formula.

3. The operators Ly. Associated with each arithmetical function f
we can define an operator Ly that acts on continuous functions defined

in (0,00) by Lf(¢) = 1 where

(3.1) Y(z) =Y f(n)g(na).

Convergence can be assured by imposing order restrictions on ¢. For
instance, if f(n) = O(n?) as n — oo for some ¢, we will require
¢(z) = O(x™P) as x — oo for some p > g+ 1.

The operators Ly are closely related to Dirichlet multiplication since

Ly(Ls(¢)(@) = D> Y g(m)f(n)¢(mnz)
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so that

(3.2) L,L; =Ly,

It follows that if f(1) # 0 then Ly is invertible and
(3.3) L;' =Ly

In particular, the relation

(3.9 Y(e) = Y np(na),
can be inverted as
(3.5) ¢(x) =D p(n)ny(nz).

The adjoint of Ly with respect to the inner product in (0, 00) defined
by (#,v) = fooo é(x)(x)z~tdx, is given by

o0

(3.6) Li(¢)(x) = > f(n)p(z/n).

n=1

For the adjoint operators L} we also have

LiLy = L.,
Ly =T

Actually L (¢)(z) = Ly (¢)(z ™), where (x) = ¢(z ).

As mentioned in the introduction, the asymptotic behavior of L¢(¢)(z)
for x small is known for several arithmetical functions [4, 6]. In par-
ticular, if ¢(z) ~ a1z + a2x®? + agz® + - - -, where Reav,, /* 00, and
if o = —1 then

(oo}

Y dna) ~ (/000 P(t) dt + ’Yak>l'1 —arz 'lnz

(3.9)  n=1
+ Z C(fozj)ajmaj,
Jj#k
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as x — 0%, where ((s) is the Riemann ¢ function, the integral is in the
finite part sense, and where v is the Euler’s constant [6, Chapter 5].

Interestingly, the asymptotic behavior of L, (¢)(z) for small = cannot
be obtained from the expansion of ¢(z) as z — 0". Indeed, since
¢(-=2) = 0, by taking ¥1(z) ~ z* + z°, ¢a(z) ~ 2°, as ¢ — 0,
with fooo Yi(x)de = 0, i = 1,2,... and defining ¢; = L,(¢;) then
$1(z) ~ ¢2(z) as ¢ — 0T but ¢y = L,(¢1) and ¢ = L, (¢2) are not
asymptotically equivalent.

4. Solution of integral equations. Let k(z) be a kernel defined
in (0,00), and suppose the integral operator K defined by

(@) K{s(wiv} = | buv)o(u) du

0
has a known inverse K~1. There are many examples of this situation.
For instance, if k(z) = e~® the K becomes the Laplace transform,

whose inverse is known. This is the kernel used by Chen. Other cases
are considered below.

Theorem. If the kernel m(z) is related to k(z) as
(4.2) m(z) =Y _ f(n)k(n),

for some arithmetical function f with f(1) # 0, then the integral
equation of the first kind

(4.3) /000 m(uv)p(u) du = P (v), 0 <wv < oo,

has the solution
(4.4) $(u) = h(n)f(u/n),

where h is the Dirichlet inverse of the arithmetical function g given by
g(n) = f(n)/n and where

(4.5) 0(u) = K~ {3(v);u}.
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Proof. Indeed, if M is the operator associated with the kernel m, we
have

Mwwm4=AWMWwwMu

:/0 Zf(n)k(nuv)qﬁ(u) du

n=1
= /000 k(uv) i": %(b(u/n) du,
n=1
i.e.,
(4.6) M = KL,
thus
(4.7) M'=L_K",

which is (4.4)—(4.5). o

Clearly a similar result is obtained for kernels of the form m = L} (k).
We now consider two interesting cases of the theorem.

Let W(z) = Yo7 | ay2™ be analytic in |z| < 1, with W(0) = 0,
W'(0) = a; # 0. Then the solution of the integral equation

(48) Awwwuwwwmz¢w»

can be obtained from (4.4)—(4.5) since W(e™%) = >.°° | a,e™™*. Hence
the solution is

(4.9) ¢(u) =) h(n)b(u/n),

where h is the Dirichlet inverse of the arithmetical function given by
g(n) = an/n and where 6(u) is the inverse Laplace transform of ¢ (u).

As Chen shows, the integral equation for photon density of states can
be reduced to (4.8) with W(z) = z/(1 — 2)? while the integral equation
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for the inverse black body radiation problem can be reduced to (4.8)
with W(z) = z/(1 — 2).

Next, let us consider the integral equation
(4.10) /000 m(uwv)p(u) du = 9P(v), 0<wv< oo,
where m(z) is periodic, of period 2p, and odd. Let
(4.11) m(z) = f: an sin((nwz)/p), x>0,
n=1

be the Fourier sine series of m. Suppose a; # 0. Then, by taking
k(xz) = sin((wz)/p) we have the situation of the theorem. Since the
solution of the equation

(4.12) /00 sin((ruv)/p)0(u) du = ¥ (v), 0<v< oo,
0
(4.13)  O(u) = ; /0 ~ sin((ruv) p)o(@) dv, 0 < u < oo,

it follows that the solution of (4.10) is

o) =2 [ (f; B sin((raw) () ) (0) o

0 <u < oo,

(4.14)

where h is the Dirichlet inverse of the arithmetical function g given by
g(n) = a,/n.
Suppose, in particular, that we want to invert the relation

o0

(4.15) Y(z) =Y (=1)"¢((n+1/2)z).

n=0

Let

o0

(4.16) m(z)= > (=1)"6(z - (n+1/2)),

n=—oo
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where é(x) is the Dirac delta function. Then m(z) is periodic, of period
2, odd, and we can write

(4.17) m(z) =2 Z sin(nm/2) sinnrz, z > 0.
But
(4.18) /000 m(uv)p(u) du = v (v™1),

so that inverting this equation as in (4.14), we obtain

(1.19) o) = [ (i_oj hn) sin((m)/(nv))) o) g,

where h is the Dirichlet inverse of the arithmetical function g given by
g(n) = (sinnm/2)/n.
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