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HETEROCLINIC ORBITS AND CONVERGENCE
OF ORDER-PRESERVING SET-CONDENSING
SEMIFLOWS WITH APPLICATIONS TO
INTEGRODIFFERENTIAL EQUATIONS

J. WU, H.I. FREEDMAN AND R.K. MILLER

ABSTRACT. Several theorems on order-preserving set-
condensing semiflows are proved. These results are then ap-
plied to a model of stage-structured populations with dispersal
between patches in a heterogeneous environment.

1. Introduction. In [15], Smith proved that a cooperative and
irreducible retarded functional differential equation with finite delay
generates an eventually strongly monotone semiflow to which the pow-
erful theory of monotone dynamical systems developed by Hirsch [5, 6]
and Matano [7, 8] as well as the spectral theory of positive operators
established by Nussbaum [10, 11] can be applied. Results in [15] have
later been extended to more general retarded or neutral equations with
finite delay [16, 20] and some integrodifferential equations with certain
specific kernels [18, 19]. However, as an example in [18] indicates, solu-
tions of integrodifferential equations with general kernels which satisfy
the usual quasimonotonicity and irreducibility conditions always coin-
cide with their initial values, and hence the solution semiflows can never
be (eventually) strongly monotone if the state space consisting of some
functions defined on the noncompact interval (—oc, 0] is endowed with
the natural pointwise ordering. It is therefore natural to ask to what
extent Smith’s results can be generalized to cooperative and irreducible
integrodifferential equations with general kernels and, more generally,
to what extent the strong monotonicity or strong order-preserving con-
ditions in the theory of monotone dynamical systems due to Hirsch and
Matano can be relaxed.
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One of the main purposes of this paper is to provide a partial solution
to the above questions by establishing the existence of monotone
heteroclinic orbits connecting two order related equilibria and the
convergence of bounded orbits for semiflows generated by cooperative
and irreducible integrodifferential equations. Our approach is based on
the observation that a cooperative and irreducible integrodifferential
equation generates an order-preserving and set-condensing semiflow
{@t}tzg on an ordered Banach space X with order cone P, which
satisfies the following property. There exists a Banach space Xy C X
with an order cone P, such that for every equilibrium zy € X; and
every compact invariant subset Y C X, if zg <p Y then there exists
Yo € Xp so that z¢ <p, yo <p Y. Xp is commonly the space of
constant mappings which can be identified with Euclidean space. A
semiflow satisfying the above property is said to be quasi strongly order-
preserving (QSOP). In vague terms, a QSOP semiflow separates an
equilibrium and a compact invariant subset which are order related. It
will be demonstrated that a strongly order-preserving semiflow must
be QSOP, but the converse is not necessarily true.

We will show that (i) for an order-preserving and set-condensing
semiflow, if 1 and x5 are two ordered equilibria and there are no other
equilibria between x; and 3, then there exists an entire monotone
heteroclinic orbit connecting xz; and z2; (ii) for a set-condensing and
QSOP semiflow, if every equilibrium is stable, then each bounded orbit
is convergent to a single equilibrium. These types of results have been
obtained by Hirsch [6], Matano [8], Pola¢ik [12, 13], Tak4¢ [17], Smith
[14], Alikakos, Hess and Matano [1], and Dancer and Hess [2] for order-
compact and strongly order-preserving semiflows. Our proof indicates
that after certain modifications, the argument of Dancer and Hess
[2] based on Nussbaum’s fixed point index theory [9] applies to more
general set-condensing and QSOP semiflows as well.

Our general results will be illustrated by the following stage-structured
model

(4.1) Li(t) = —vLi(t) + Y 6l l5(t) — Li(t)] + o Mi(2)
i

- Zlaj \/700 b”(t - S)Mj(s) ds
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M;(t) = —BiME () + Y Dyl M;(t) — My(t)]
g

n t
+Zaj/ bij(t — s)M;(s) ds
j=1 T

for the growth of a single-species population dispersing in an environ-
ment consisting of n patches, where I;(t) and M;(t) represent the im-
mature and mature population densities, respectively, in the i¢th patch,
and b;; : [0,00) — [0,00) denotes the probability distribution of the
maturation period, 1 < i, 7 < n. When the maturation period is iden-
tical to a constant, the global attractivity of a unique positive equilib-
rium is proved in [3]. We will show that this result is still valid even if
there is some spread of the maturation period around the mean value
in which the kernel functions are general distribution functions.

2. Heteroclinic orbits and convergence for quasi strongly
order-preserving semiflows. Let E be an ordered Banach space
with order cone P. For u,v € E we write u > v ifu—v € P, u > v if
u—v € P\{0}, and u > v if P has nonempty interior and u—v € int P.
We will sometimes use <p to denote the order induced by the cone P.

Assume that U is a subset of F, and S : U — U is a continuous,
strictly order-preserving mapping (i.e., u > v implies S(u) > S(v)). We
say that € U is a subsolution for the fixed point equation S(u) = u
provided z < S(z); x is a strict subsolution if x < S(z). Similarly, a
(strict) supersolution y is defined by S(y) < v, (S(y) < y). An entire
orbit is a sequence {z,;n € Z} in U such that z,41 = S(z,) for all n.

Theorem 2.1. Let u; < ug be order related fized points of S, and
let
X = [ur,us]g = {z € B;u; <z < us}.
Assume X C U and S : X — X 1is a set-condensing mapping with
respect to a measure p of noncompactness. Then either

(a) there exists a further fized point u of S such that u1 < u < ug,
or

(b) there exists an entire orbit of strict subsolutions {x, : n € Z}
connecting uy; and uz, i.e., Tny1 = S(z,) and Tn11 > T, for all n,
Tp, — Uy asn — —oo and T, — Uz aAS N — 00, OT
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(c) there exists an entire orbit of strict supersolutions {y, : n € Z}
connecting ug and uy, i.€., Yyn+1 = S(Yn), Unt1 < Yn for alln, y, — u;
as n — +o0o and Y, — Uz aS N — —Q.

The above theorem represents a considerable improvement on cor-
responding results obtained by Hirsch [6], Matano [8], Pola¢ik [13],
Tak4¢ [17] and Smith [14]. This improvement was achieved by Dancer
and Hess [2] under the assumption that S(X) is relatively compact in
E. Our results show that the relative compactness of S(X) can be
replaced by the set-condenseness of S : X — X. The main idea of
the following proof belongs to Dancer and Hess. We thus focus on the
modification of their argument for a set-condensing mapping S.

Proof. Consider X = [u1,uz|g as a metric space with induced metric
and assume that there are no fixed points in X except u; and wus.
Following the argument of Dancer and Hess [2], we can show that either
there exists a strict supersolution u. on dBx (uz, ) for every sufficiently
small £ > 0, or there exists a strict subsolution u. on dBx(uj,e¢) for
every sufficiently small € > 0, where Bx(a,e) ={z € X : ||z —al| < e}
for every a € X and € > 0. We take the latter case and assume,
without loss of generality that u; = 0. Let §g > 0 be small enough
so that uy ¢ Bx(u1,dp). By continuity of S at u; = 0, there exists a
sequence of real numbers

dop >8>0 >03>---—0
and a sequence of strict subsolutions {u;}7°; C X such that
okl =0k, S(Bx(0,0k11)) S Bx(0,0k)
forall k=0,1,.... Let
A={S"(v):k=1,2,...,n=0,1,...}.
Then
(4.1) A=S(A)U{v,va,...}.
Note that vy — w1 = 0 as k — 0co. We have

p({vi,ve,...}) =0
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from which by (4.1) it follows that u(A) = p(S(A)). So the set-
condensedness of S implies that p(A) = 0. Thus A is relatively compact
in X. The remaining part of the proof is identical to that of [2]; that
is, first of all, since for every k > 1 we have

0< v, < S(vg) < SQ(Uk)--- — Us,

we can find n(k) > k — 1 such that w; := S"*)(v}) satisfies §; <
[lwg]| < dp. Due to the relative compactness of A, there exists
a subsequence {wy } converging in X to zp, and a subsequence of
{5"()=1(y)} converging in X to z; and so forth. Consequently,
we can get an entire orbit {z, : n € Z} consisting of subsolutions such
that x, — u; asn — —oo and z,, — ug as n — co. This completes the
proof. ]

By a standard limiting argument, Theorem 2.1 implies a correspond-
ing result for continuous-time dynamical systems.

Corollary 2.2. Let ®: Ry x U — U be a semiflow satisfying
(i) ®(t,u) < ®(t,v) fort >0, if u <w.
(il) for any ty > 0, ®(to, ) : U — U is set-condensing with respect
to .

Suppose u; < ug are order related equilibria of ® and X := [u1,us]g
contains no equilibria in X except uy; and us. Then there exists a
monotone heteroclinic orbit connecting u; and us.

In what follows, we assume that ® : R, x U — U is a given semiflow
satisfying assumptions (i) and (ii) of Corollary 2.2.

Definition 2.3. & is said to be quasi strongly order-preserving
(QSOP) if for every sequence {y?} of equilibria and every compact
invariant subset A C U such that

lim y? =y < A, y<y? forp=1,2...,

p—o0

there exists an integer pg such that y < yP°o < A.
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Proposition 2.4. If ® is strongly order-preserving (i.e., P has
nonempty interior and u < v implies ®(t,u) < ®(¢t,v) for t > 0),
then ® is QSOP.

Proof. Assume that {yP} is a sequence of equilibria of ® and A is an
invariant compact subset such that lim, ..o y? = y < A and y < ¢
for every p = 1,2,.... For a fixed 7 > 0 and given a € A there exists
a* € A such that a = ®(7,a*). Since y < a*, by the strongly order-
preserving property of ®, y < a. So, from the compactness of A, there
exists a neighborhood O of y such that y € O < A. On the other hand,
since y? — y as p — oo there exists pg so that y?° € O. Therefore,
y < yPo < A. This completes the proof. O

Proposition 2.5. Suppose that there exists an ordered Banach space
Ey whose order cone Py has nonempty interior such that

(i) every equilibrium of ® belongs to Ey;

(il) Ey C E; the norm-topology of Eqy is weaker than the induced
topology from E; and for every a,b € Ey, a <p, b if and only if a <p b;

(iil) for every y € Ey and an invariant compact subset A C E such
that y <p A there exists yo € Ey such that y <p, yo <p A.

Then ® is QSOP.

Proof. Suppose that {yP} is a sequence of equilibria of ® and A an
invariant compact subset such that lim, ..o y? = y < A and y < ¢
for p = 1,2,.... By assumptions (iii) there exists yo € Ey so that
Yy <p, Yo <p A. On the other hand, since y» — y in E and the
norm-topology of Ej is weaker than the induced topology from E, we
have y? — y in Ey according to assumption (i) of Proposition 2.5. So
there exists an integer py so that y?° <p, yo. From the last part of
assumption (ii), we get

y<py” <pyo < A

This completes the proof. a

Remark 2.6. In the next section we will show that a semiflow
generated by an integrodifferential equation satisfying certain quasi-
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monotonicity conditions and irreducibility conditions satisfies all con-
ditions of Proposition 2.5, but is not strongly order-preserving.

Theorem 2.6. Suppose that ® is QSOP, a € U is a subsolution (i.e.,
a < ®(t,a) fort > 0) and b € U is a supersolution (i.e., b > ®(t,b) for
t > 0) such that a < b andV := [a,blg C U. Assume that all equilibria
of ® inV are stable with respect to V (i.e., for every equilibrium u € V
and every € > 0 there exists 6 > 0 such that ®(¢, By (u,d)) C ®v(u,€)
for all t > 0). Then every bounded positive semiorbit in V' converges,
i.e., for every v € V such that {®(t,v)}+>0 is bounded, there exists an
equilibrium e(v) so that lim;_, ®(t,v) = e(v).

The above result can be proved by a similar argument to that of
Theorem 2 in [2], and thus the proof is omitted.

3. Applications to functional differential equations with
infinite delays. In this section we prove that solution semiflows of
certain retarded functional differential equations with infinite delay are
QSOP. In order not to hide the main idea behind technical details, we
will state our results for functional differential equations defined in the
phase space C,, but our results can easily be generalized to equations
defined in general phase spaces satisfying the fundamental algebraic,
topological and ordering axioms formulated in [19, Axioms 1-12].

Let o > 0 be a given constant. Define

Co ={p:(—00,0) - R" is continuous; lim |p(s)|e™’ exists}.
§——00

Then C,, is a Banach space with the norm

ll¢]la = sup [p(s)|e**  for ¢ € Ci.
s<0

Moreover, C,, has the following property. If x : R — R™ is continuous
and zg € Cy, then z; € C,, for t > 0 and the mapping ¢ € [0,00) —
xy € Cy is continuous, where z;(0) = z(¢t + 6) for 6 < 0.

We consider the following retarded functional differential equations
with infinite delay

(3.1) &(t) = f(z)
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where f : C, — R"™ is completely continuous and satisfies a local
Lipschitz condition. It has been shown (see, cf. [4]) that for any ¢ € C,,
(3.1) has a unique solution, denoted by z(t, ), satisfying the initial
condition g = ¢. Moreover, if z(t; ) is noncontinuable on (—oco, b)
with b < oo, then lim; ;- ||2¢(p)|]|o = oo.

In what follows, we assume that for every ¢ € C,, x:(p) is defined
for allt > 0. Let ® : Ry x C, — Cy be defined by

‘I)(taSO) = xt((p)’ t Z 07 pe Ca-

Then @ is a semiflow on C,. Let S(t) : C\, — C, denote the translation
operator, i.e.,

[ ¥(0), if § € [—t,0]
St)e(0) = { p(t+0), ife(—00,—t)
for ¢ € C,. Define Sy(t) = S(t)|co, where

CS = {p € Cu;9(0) = 0}.

Then
1So(®)]] <e* <1 ift>0.

Therefore, by Theorems 2.2 and 2.3 in [19], ®(¢,0) : Cy — C,, is set-
contractive with respect to the Kuratowskii measure of noncompactness
for every t > 0, and the w-limit set, w(y), of any bounded solution
{z¢(¢)}+>0 is nonempty, compact, connected and invariant.

C, is also an ordered Banach space with the order cone C defined
by
C’;r = {Sa c Ca; (p(g) ZRi 0 for 8 < 0}

Clearly, ¢ <+ ¢ implies that ¢(0) <gn 9(0). Moreover, if z,y : R —
R™ are given continuous functions such that xzg,yo € C,, o <c+ Yo
and z(t) gRi y(t) for ¢ > 0, then z; <ot Yt for ¢ > 0. Therefore,
by Theorem 2.6 of [19], the solution semiflow ® : Ry x Cy — Cy is
strictly order-preserving if f satisfies the following “quasimonotonicity”
condition (QM):

file) < fi(¥) o, € Casp<c+ ¢ and ¢;(0) = ¢;(0).
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To obtain the quasi-strongly order-preserving property of ®, we need
the following one-sided Lipschitz condition, an ignition condition and
an irreducibility condition of the vector field f:

(LI). There exists a functional h : Cy x C, — R such that f;(¢)) —
fi(e) > h(e,¥)[¥:(0) — ¢;(0)] for all ¢ = 1,...,n, provided that
2 ch" Y.

(IG). There exists ¢; > 0 such that for any continuous functions
z,y + R — R" with zo <+ yo and z(t) = y(t) for ¢t € (0,¢1] there
exists k € {1,... ,n} such that sup{fx(y:) — fx(2¢);0 <t <t} > 0.

(IR). There exists a constant t2 > 0 such that if ¥ is a proper,
nonempty subset of {1,...,n}, 7 > t2 and z,y : R — R™ are given
continuous functions such that
(i) ;(t) <y;(t) forall j € ¥ and t € [T —ta,T];
(ii) z;(t) =y;(t) for all j € X9 and t € [r — ta,7];
(ili) ¢ <g+ ye for t € 0,7 — 1o

then there exists a k € X such that fi(y,) — fx(z,) > 0.

Theorem 3.1. If f satisfies (QM), (LI), (IG) and (IR), then the
solution semiflow ® : Ry x Cy — Cy, defined by (3.1) is set-contractive,
strictly order-preserving and quasi-strongly order-preserving.

Proof. Employing the same argument as that of Theorem 2.7 of [19],
we can show that if ¢ <+ v, then z;(t,¢) < z;(t,9) foralli =1,... ,n
and all t > t1 + (n — 1)t,.

Let Ey denote the space of all constant mappings from (—o0, 0] into
R™. Ey can be identified with R™ with the natural positive cone
Py = R. Clearly, every equilibrium of ® belongs to Ey, the Euclidean
norm of Ej is weaker than the induced topology from C,, and for any
x,y € Ey we have z <gm Y if and only if z <+ y.

Suppose y € Ey and A is a given compact invariant set such that
y < A.

Claim 1. y = y(t) <gn ©(t) for every ¢ € A and t < 0.

In fact, if this claim is not true then there exists t* < 0, an integer
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m € {1,...,n} and ¢ € A such that

Ym = Ym(t*) = om(t*).

Let 7 = 14+¢; 4+ (n— 1)ty —t*. Since A is invariant, there exists ¢* € A
such that ¢ = z,(¢*). So

z(r 4+ t%,9%) = (z-(¢")) (") = o(t7).

On the other hand, since y < ¢*, from the first part of our proof it
follows that

Ym = mm(T+t*;y) < mm(T+t*;<P*) = (pm(t*)v

a contradiction to Ym, = @um (t*).

Claim 2. Let J denote the vector in R™ with each component 1.
Then there exists § > 0 such that

y+0J <gr o(t)

for everyt <0 and p € A.

By way of contradiction, if this claim is false, then there exists a
sequence of real numbers {t;} C (—o0,0] such that

1
y+ 3 J Ery ete),

so there must be an integer [ € {1,... ,n} such that
1
(3.2) y+ EJ > pu(te)

for infinitely many k. Note that ¢;, € A and A is compact. So
there exists a subsequence, denoted by {¢y, } for simplicity, such that
0, = Y € Aas k — oo for some ¢ € A. Therefore, ¢, (0) — 9(0) in
R™. That is, ¢(tx) — ¥(0) in R™. Taking the limit as k — oo in (3.2),
we get y; > ¢;(0), a contradiction to Claim 1.

Let yo = y + (6/2)J. Then yy € Ey and y <r7 Yo et A. This
completes the proof by Proposition 2.5. ]
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Applying Theorem 2.6 to retarded equation (3.1), we get the following
result.

Theorem 3.2. Suppose that U C Cy is a subset invariant with
respect to the semiflow ® generated by equation (3.1).

(i) Assume that f satisfies (QM). If ¢ <o+ % are order related
equilibria of ® and X := [p,¥]c,, contains no equilibria of ® except
@ and ¢, then there exists a monotone heteroclinic orbit connecting ¢

and .

(ii) Assume that f satisfies (QM), (LI), (IG) and (IR). If ¢ € U
1s a subsolution and ¢ € U 1is a supersolution with ¢ <ct Y and
V = [p,¥]c, C U, and if every equilibrium of ® in V is stable with
respect to V, then every solution in V' converges.

4. An application to stage-structured population growth
models. In [3] a system of retarded functional differential equations
was proposed as a model of single-species population growth with
dispersal in a multi-patch environment, where individual members
of the population have a life history that takes them through two
stages, immature and mature. The global stability of a unique positive
equilibrium is proved by using a convergence theorem of Hirsch [6] for
strongly monotone semiflows, under the assumption that the length of
time from birth to maturity is a constant which is uniform for each
individual in all patches. However, in real situations there is bound
to be some spread of the maturation period about the mean value.
Therefore, the proposed model in [3] is only a crude approximation,
and a distributed delay should be used to allow for stochastic elements
in the maturation process. The purpose of this section is to apply our
results in previous sections in order to establish a global stability result
for the unique positive equilibrium of a model incorporating stochastic
elements in the maturation process.

Suppose that the system is composed of n patches connected by
dispersal and occupied by a single species. Let I;(t) and M;(t) denote
the concentration of immature and mature populations in the ith patch,
t=1,...,n. We make the following assumptions:

(H1). The birth rate into the immature population in the ith patch
is proportional to the existing mature population with proportionality
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constant «; > 0.

(H2). The death rate of the immature population in the ith patch is
proportional to the existing immature population with proportionality
constant v; > 0.

(H3). The death rate of the mature population in the ith patch is of
a logistic nature, i.e., proportional to the square of the population with
proportionality constant (3; > 0.

(H4). The net exchange of mature and immature populations from
the jth patch to the ith patch is proportional to the difference of
the concentrations M;(t) — M;(t) and I;(t) — I;(t), respectively, with
proportionality constants Dj; > 0 and d;; > 0 for ¢ # j. Moreover, the
dispersal matrices D = (D;;) and A = (d;;), where ;; = D;; = 0 for
i1 =1,...,n, are irreducible.

(H5). The probability distribution of the maturation period in the

ith patch is a bounded continuous function p; : [0,00) — [0,00) with
fooo pi(s)ds =1 and p;(s) > 0 for all s > 7, where 7; > 0 is a constant.

Under the above assumptions, we obtain the following model equa-
tions

SL0) = —wli(t) + 3 Gl (0) — 6]+ asMi(t)
JFi
- / z;(t,s)pi(t — s)ds
(4.1) . oo
EMZ(t) = —BM](t) + Z Dji[M;(t) — M;(t)]
J#i
+ /_ zi(t, s)pi(t — s)ds

where 1 < i < m, z;(t,8), —oo < s < t, denotes the growth rate at
the instant ¢ of the immature population in the ith patch born at the
instant s < ¢t. Obviously,

(4.2) Zi(t,t) = OziMi(t).

To derive an explicit formula for x;(¢, s) in terms of I;(¢) and M;(t),
we denote by y;(t, s) the concentration of the immature population in
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the ith patch born at the instant s < ¢. Then
(4.3) 0yi(t,s)/0t = x;(t, s), —oo<s<t
and
0
(44) ayi (ta S) = Y (ta S) + Z 5ji[yj (ta S) — Y (ta 5)]
i
Let A = (aij) with
{ dji, ifo#j
Q;5 = op - .
! —Yi — 24 0ji, =]
Then (4.4) can be solved with respect to ¢,
(4.5) y(t,s) = ey (s, 9),
where
y(t,S) = (yl(tas)a"' 7yn(t78))T7 s <t.
So

D (t5) = AAEIy(s,5),  s<t.

(4.6) o

Substituting (4.2) and (4.3) into (4.6), we get

(4.7) (M (t), ... ,anM, (1)) = Ay(t,t)

from which it follows by (4.6) and (4.7) that

(4.8)  (x1(t,8),... ,zn(t,s))T = A (a1 My (s), ... ,anM,(s))T.

Substituting this equality into the second equation of (4.1), we obtain
the following system of integrodifferential equations

d 2
M) = —BiM(8) + Y Dy M;(t) — Mi(t))

J#i

(4.9) no o
+ Z/; pi(t — s)bij(t — s)a; M;(s)ds,
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1 <i < n, where e = (b;;(t)).

Remark 4.1. Substituting (4.8) into the first equation of (4.1), we can
get

(1 (t)s s In()T = X[ (1 (0), ., 1 (0))"

/ /dlag p1(0—38),... ,pn(0—35))db

(g My (8),. .. yan M, (s)* ds]
+ [0 ["dag (@)oo pale)
(g My (8),... ,anMy,(s))T ds.
Therefore, if et — 0 and M;(t) — M} ast — oo for i = 1,... ,n, then
(Ii(t),...,L,()*

o /OOO eAu /:O diag (p1(£), .. , pu()) dE(rME, ..., anM*) du

as t — oo. Consequently, in what follows we will concentrate on (4.9)
only.

Note that a;; > 0, if ¢ # j, E" 10 ==y <0fori=1,...,n. So

every element of e?? is positive for all ¢ > 0 and e4t — 0 as t — oo.

This implies that there exist constants NV > 0 and « > 0 such that
(4.10) 0 < by(t) < Me™™

forallt >0and alli,5=1,...,n
Let F = (Fy,...,F,)T :C, — R" be given by
Fi(¢) = —Bipi(0) + > _ Djilp;(0) — ¢i(0)]
i

n 0
+Z/ﬁ pi(—0)bij(—0)a;p;(0) db
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for p € Cy and i = 1,... ,n. Because each [~ p;(s)ds = oo and by;
satisfies (4.10), F' is completely continuous. It can be easily verified that
F satisfies (QM), (LI), (IG) and (IR) with ¢; =ty = maxi<;<n 7; > 0.
Consequently, the solution semiflow of (4.9) is strictly order-preserving
and quasi-strongly order-preserving.

Let M(t,p) = (My(t,9),...,My,(t,©))T be the unique solution of
(4.9) with p € CF. Clearly, M(t,0) = 0 for all ¢ > 0. So, by the
order-preserving property, C.I" is positively invariant with respect to
the solution semiflow. That is, ¢ € C implies that M(t,¢) > rr 0 for
allt > 0.

Lemma 4.2. Let J denote the vector in R™ with each component 1.
If € > 0 is sufficiently small, then €J is a subsolution of the solution
semiflow defined by equation (4.9), where for every x € R", & € C,
denotes the constant mapping with the value x.

Proof. Let M(t) = M(t,;\]). If there exists t* > 0 and an integer %
such that M;(t*) =€ and M(t) Zgr eJ for all ¢ € [0,¢7], then

n t*
M;(t*) > —Bie® + Z/ pi(t* — s)b;;(t" — s)ajeds
j=17 =0
= [ — Bie + Zaj / p,(9)b,](9) d9:|€
=1 70
>0,

provided

Therefore, M;(t) > e forallt > 0and ¢ =1,...,n. This completes the
proof. ]

Similarly, we can prove
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Lemma 4.3. If N > 0 is a constant such that

1<i<n

N 00
(4.11) N> max 5;12aj/ ps(6)b3;(0) d6,
=1 70

then NJ is a supersolution of the solution semiflow defined by equation

(4.9).
We now are in the position to state the main result of this section.

Theorem 4.4. Assume (H1)—(H5) are satisfied. Then equation (4.9)
has a unique positive equilibrium §. Moreover, we have:
(i) If ¢ € CH\{0} is given so that supi<i<n i(f) < oo, then
9<0
lim; oo M(t,0) =q.

(ii) There exists a monotone heteroclinic orbit connecting 0 and §.

Proof. (ii) is an immediate consequence of Theorem 3.2 since F
satisfies (QM), (LI), (IG) and (IR). To prove (i), we notice that system
(4.9) has exactly the same set of equilibria as that for the following
system of ordinary differential equations

(4.12) 2 = —ﬂizf + Z Dji(Zj —Zi) + Z Qa; / p,(@)bw(ﬁ) dQZj,
— — 0
J#i Jj=1

1 < i < n. It can easily be shown that all solutions of (4.12) are
bounded and the zero solution of (4.12) is not a global attractor. So,
by the theorem of Hirsch [5, Theorem 6.1], system (4.12) has a unique
equilibrium ¢ € int R} such that every solution of (4.12) in R’} |{0} is
convergent to g.

Consequently, § is a unique equilibrium in C |{0} of (4.9). Moreover,

since ¢ is asymptotically stable as an equilibrium of (4.12), by Theorem
3.2 of [19], ¢ is asymptotically stable as an equilibrium of (4.9).

For any ¢ € Cf|{0} with
0< inf ¢;(0) < sup ¢i(f) < oo,

1<i<n 1<i<n
6<0 6<0
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@Ere exists € > 0 and N > 0 /SllCh that gj/\is a subsolution and
NJ is a supersolution of (4.9), e¢J < ¢ < NJ, and § is the only

equilibrium in [;],m]ca. So applying Theorem 3.2 to [;],]/VT]]CQ,
we have lim;_, o, M (t,p) = q.

It remains to prove that lim;_,o, M (t,¢) = ¢ for all p € C}|{0} with
supi<i<n @;(0) < oo and infi<;<np;(f) = 0. From the first part of
<0 9<0

the proof of Theorem 3.1, M;(t,) > 0 for all i = 1,...,n and all
t > 7% :=nmax;<;<n 75. Choose T' > 7* sufficiently large so that

T—7"-1
Zaj/ pi(8)b;;(0)df > - Za]/ pi(0)bi;(0) db.

Since M;(t,) > 0 for all ¢ = 1,...,n and for ¢ > 7*, there exists
e* > 0 such that

M;(t,p) > €* fori=1,...,n, te[r*+1,T].
Without loss of generality, we may assume that
* W LY b 0)b;;(6) do
¥ < i 55 2 [, OO
J:

We now prove that M;(t,6) > e* fori=1,... ,n, and for all ¢ > T. By
way of contradiction, if this is not true, then there exists t* > T and
an integer ¢ € {1,...,n} so that M;(t*;¢) = ¢* and M;(t;¢) > * for
allt € [r* +1,t*] and all j = 1,... ,n. So M;(t*;¢) <0, but

Mi(t59) > —Bie”” + iaj /too Pi(t* — 8)bi; (1 — s)M;(s; ) ds
> —,615 +Za1/*+1 (t — )by (t* —s)ds}

- 7@5 +ZaJ/ TH)
fﬂls +ZaJ/

(r +1)

v
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a contradiction.

Fix ¢ € w(p). Since M;(t,p) > &* for all ¢ > 7* + 1, we have
infi<i<n®i(0) > e*. Therefore, lim;, o M(t;¢) = ¢. Note that §
9<0

is stable. So for any € > 0 there exists § > 0 such that if £ € C,
and ||€ — §||la < 0 then ||M(§) — d|lo < € for all ¢ > 0. For this
chosen § > 0, since lim; ,o M;(1)) = §, there exists T* > 0 so that
[| Mz« () — §|la < 6. On the other hand, since 9 € w(yp), there exists a
sequence t; — oo such that My, (¢) — ¢ as k — co. By the continuity
of solutions of (4.9) on initial data, My, 7+ (¢) = Mr=(¢) as k — oo.
Therefore there exists K > 0 such that ||[My, 17+(¢) — §||laM < 6.
This implies that ||[Mi(¢) — §|la < € for all ¢ > tx + T*, that is,
lim; oo M;() = ¢. This completes the proof. o
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