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TWO-GRID METHODS FOR NONLINEAR
MULTI-DIMENSIONAL WEAKLY SINGULAR
INTEGRAL EQUATIONS

ENN TAMME

ABSTRACT. The convergence rate of the piecewise con-
stant collocation method for the nonlinear weakly singular
integral equation is investigated by G. Vainikko [8]. For this
method, it is necessary to solve a large nonlinear algebraic
system. This can be done straightforwardly only for compara-
tively rough discretizations. In this paper a two-grid iteration
method is considered which enables us to find practically the
solution of this system for fine discretizations. The main re-
sult is Theorem 3 about the convergence and the convergence
rate of this method. This theorem generalizes for nonlinear
equations the result proved in [7, 8] for linear equations.

1. Integral equation. In this paper we shall deal with the integral
equation

(1) ulz) = /G K(z,yu@)dy+ f@), zeC,

where G C R™ is an open bounded set with a piecewise smooth
boundary 0G. The following assumptions (A1)—(A4) are made.

(A1) The kernel K(z,y,u) is twice continuously differentiable with
respect to z, y and u for x € G, y € G, x # y, u € (—00,0), whereby
there exists a real number v € (—oo,n) such that, for any nonnegative
integer k¥ < 2 and a = (a1,...,a,) € ZY, B = (B1,...,5,) € Z7} with
k+ |al + |8| < 2 the following inequalities hold:

A
(D2 D4y K (9, 0)] < by ([ul) Yok 10 (2,9),

k k

a 9 o )
|D1D5+yﬁK(m7 yaul) - Dsz+yWK($7yvu2)‘

< ba(max{|usl, [ual})|ur — ualvy4jal(2,Y)-
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Here
L, p <0,
'Yu(may): 1+|10g|x_y”7 u =0,
|:E—y|_“, P‘>0'

and the functions b; : R — R and b, : R — R, are assumed to be
monotonically increasing. The following usual conventions are adopted:

o =a1+--+a, fora=(o,...,a,) €z,

lz| = (22 + -+ 22)Y2 for x = (21,... ,2,) € R,

«o_ [ O o o\
Dz_<6x1> <8mn> ’
9 o B1 o o Bn
D, ([ ) ()
oty <6‘x1 + 8y1> (6‘acn + 8yn>

(A2) Integral equation (1) has a solution wy € L°°(G) and the
linearized integral equation

v(z) = /GKo(a:,y)v(y) dy,  Ko(z,y) = [W

] u=uo(y)
has in L>°(G) only the trivial solution v = 0.

(A3) f € C*¥(G) with the same v as in (Al), ie., f is twice
continuously differentiable on G' and, for any multi-index o € Z7} with
laf <2,

1, la| <n—v,
[D*f(z)] < cpq 1+ [logp(z)], [of =n—v,
p(x)mv=lel ol > n -,

where ¢y = const and p(z) = infycpe|r — y| is the distance from z to

0G.
(A4) For any z!,z2% € G with the same v as in (A1),

dg(zt, z?), v<n-—1,
f(@h) = F(a*)] < ¢f { da(e?,@?)[1 +|logdg (z",2?)], v=n~-1,
dg(zt, %), v>n-—1,
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where dg(x!,z?) is defined as the infimum of the lengths of polygonal
paths in G, joining points z! and z?; if z! and z? belong to different
connectivity components of G, then by definition dg(z!,2%) = oco.

In many cases (A4) is a consequence of (A3),e.g.,if v <n—1lorif G
consists of a finite number of connectivity components, whereby each
of them is convex [8, pp. 19-20].

We note that the assumption (A1) holds, for example, for the kernel
K(I, Y, u) = ‘I - y|7uK1(I, Y, u)

where v € (0,n) and K (z,y,u) is three times continuously differen-
tiable with respect to z,y,u for z,y € G, u € (—00,0).

From (A1)-(A3) it follows that, for the solution uy of (1), we have
up € C?¥(G) [8, pp. 137-138].

2. Piecewise constant collocation method. For any h > 0 we
introduce an “approximate” partition of G into measurable sets (cells)
Gjn CR", j=1,...,1l, so that

(2) diam G < h, G’?yh N G%h =g fori#j
(GY}, is the interior of G 1),
(3) (G\Gr) U (Gn\G) C Sh

where S, = {z € R" : p(z) < h?} and Gy, = U}, Gj .

We call cell G ;, boundary-incident, if 0GNco G, # I, where co G
is the convex span of G ;,. We assume that for any boundary-incident
cell G there exists a nonvoid measurable part G, C G;n NG so
that

(4) dg — diam G’ ;, < h, Gjn\Gjp C Sk
with

dg —diam G’ , = sup dg(z,y)-
z,y€Gj n

Note that for inner cells (i.e., for cells with G N co G, = @) one has

dG — diam Gth = diam Gj7h S h.
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In any cell G, we choose a collocation point ; 4:

5) &,n = (meas Gj’h)_l/c ydy if0GNcoGjn =0,
J,h

&jn € Gy, arbitrary  if G NcoGjp # 2.

We assume that ;5 belongs to Gjp,.

In the case of the piecewise constant collocation method, the approxi-
mate values u; » o = un (& n) of the solution ug of the integral equation
(1) are calculated from the following systems of equations [8, p. 141]

In
(6) Ui,h = Z/ K(gi,hvyvuj,h) dy+f(€i,h)7 1= 17 7lh-
j=17Gin

Let us define the following Banach spaces and operators:

E = BC(QG), the space of bounded continuous functions u : G — R,
with the norm
|lull = sup |u(z)];
zeG
Ej, = C(Ep), the space of grid functions uy, : Ep — R, with the norm
llun|| = max |un(&jn)l, En ={&nts J=1

& ,hEER
pn € L(E, E},), the connection operator,

(pru)(&n) = u(&n) foru € E, & € En;

T : E — E, the integral operator of equation (1),

(Tu)(ac):/GK(x,y,u(y))dy forue E, z € G

Ty, : Ep, — Ej, the approximation to 7T,

3
(Thun)(&in) = Z/ K(&inyy, un(&jn)) dy
j=17%n

for up, € Ep, fth € =p.
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Making use of these definitions, we can write system (6) in the form

(1) up = Thup + prf, up € Ep.

Theorem 1 (Theorem 8.3 in [8]). Let the assumptions (Al)—(A4)
hold, and let the partition of G and collocation points satisfy (2)—(5).
Then there exist hg > 0 and §y > 0 so that, for h < hg, the system (6)
has unique solution upo = (uin o) in the ball ||up — prug|| < dg. The
following error estimation holds

(8) llun,0 = phuo|| < const (e,,n)
where
h, v<n-—1,
evh =14 h(1+|logh|), v=n—-1,
h™Y, v>n-—1.

3. Two-grid method. For the solution of the large nonlinear
system (6), the two-grid iteration method can be used. Let h < h,. Let
us introduce approximate partitions of G into cells G, j = 1,... s,
and Gji p.,j =1,...,1,, and choose corresponding collocation points
&n € GinNGand &y, € Gjp, NG as in Section 2. For simplicity,
we assume that the following compatibility conditions are fulfilled:

(i) everycell Gjpn,j=1,...,l, is contained in some cell (“panel”)
Gji h,, 1 < j' <lp,, and, conversely, every panel G p,,, 7' =1,... ,lp,,
is a union of some cells G, 1 <5 <lp;

(ii) every collocation point &/ n., 7 = 1,...,ls,, occurs as a
collocation point for some cell G; 1, C G/ p,, i-e., Ep, C Ep.

Let us introduce the connection operators between the spaces Ej and
E},, as follows: pp.p € L(Eh, Ep,), the restriction operator,

(Pr.hun)(&Gn.) = un(&n.) for up € Ep, §jn, € En.;
Dhh, € L(Eh,, Ey), the piecewise constant prolongation operator,

(Prh,un, ) (&) = un, (Mp,n€n) for un, € Ey,, &n € Ep
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where Hh*hgj,h = §j’,h* with j/ such that Gjl7h* D Gj7h.

Let us use for the solution of equation (7) the two-grid iteration
method in the following form

U]ii = Thulfcz +phf7
9)  wy, —Th.w, =pn.f— Th.(Pr.nvf) + Pr.nThor,

up ™t = v + pan, (W, — Pr.nvE), k=0,1,...,

where v is the initial guess of the solution. The two-grid methods of
this type for integral equations originate from works of H. Brakhage [3]
and K.E. Atkinson [1]. For the linear equation, method (9) coincides
with the two-grid method in [8, p. 84]. For the nonlinear case similar
methods are considered by W. Hackbusch [4] and C.T. Kelley [5, 6],
for boundary integral equations by K.E. Atkinson [2].

To apply method (9), it is necessary, for every k, to solve the nonlinear
equation in the form

(10) (In, — Th,)wn, = gn., 9h, = Ph.f —Th, (Ph.non) +Ph, n Thon.

Note that, to compare with the equation (7) which corresponds to fine
discretization, equation (10) corresponds to rough discretization and
thus the dimension of this system is essentially less than the dimension
of (7). About the solvability of (10) the following result holds.

Theorem 2. Let the assumptions of Theorem 1 hold, vy, = Thupn +
prf and ||lup|| < const. Then there exists hy > 0 so that, for
every hy, < hy, h < hy, the equation (10) has a unique solution
wh, = (In, — Th.)"tgn. in the ball
(11) |[wn, — ph, uol| < o

where &y is the same as in Theorem 1. The following error estimation
holds:

(12) ||wh, — Pr,uol| < conste, p, .

To prove this theorem, we shall use the following Lemmas 1 and 2.
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Lemma 1. Let the assumptions of Theorem 1 hold, and

sup |u(y)| < const.
yeGUGH,

Then

__|K(z,y,u(y))|dy < const (g,,3)?
(G\Gr)U(GA\G)

and, for any z',z% € G,

|(Tu) (") — (Tu)(wQ)\

2

dg(zt,z?), v<n-—1,
< const { dg(zt,z?)[1 + |logdg(zt,2?)|], v=n—1,
[da(zt, z23)]" v, v>n-—1.

Proof. The proof of Lemma 1 is analogous to the proof of Lemmas
2.3 and 5.1 in [8].

Lemma 2. Let the assumptions of Theorem 2 hold. Then

(13) max. |vn (U, n&in) — vr(&in)| < conste, p,

Proof. Due to (2), (4) and (5), we have

(14) de(In,nin,&in) < h

Let us assign to uy € Ej, the piecewise constant function

I
= Z up (&5,0)X5,n(2),
=1

1, z€Gjp,

Xj,h(x): {0 e ¢ Con
bl J,n
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Making use of Lemma 1, we get

|(Thun)(h, nin) — (Thun)(Ein)|

113
Z/G (K (In,n&iny Y5 un(&5in)) — K (&inyy, un(8,n))] dy‘
j=17Gin

= /G (K (Th 16 ns 9> Un(y)) — K (&iny y, Un(y))] dy‘

< |(Tun)(Mp, n€in) — (Tan)(€in)| + const (€,,4)* < conste, p, .
From (A4) and (14) it follows that
|f(In, n&in) — f(&in)| < consteyp, .
Therefore,

(U, n€in) — va(&in)l < [(Thun)(Tp,éin) — (Thun)(Ein)l
+ [f(In, w&in) — f(&in)| < conste, p,,

which proves the estimate (13). u]

Proof of Theorem 2. We have

llgn. — pr. fll = |Th, (Pr.nVR) — Ph.nTHOR]|

lh,

= max |3 /G K (€, 9> 0n(Ern.) dy
i'=1"5" hu

1<i<ly,,
J

In
B K i her Y . d
jz_;/cj,h (& ¥ vn(EGin)) y‘

= max
1<i<lp,

I
Z/G (K (&i,hes Y Un (R, nEjin))
j=17Gin

— K (& h.,y,vn(&5n))] dy

< ) — vn (&)l
< const  ax \on(In, w€5,n) — vn(&5n)]
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By Lemma 2, now

llgn. — pn, fI| < conste, pn,

and we can complete the proof similarly to the proof of Theorem 8.3
in [8]. O

4. Convergence rate. For convergence analysis, we rewrite the
formulas (9) in the form
(15) uptt = duf, k=0,1,...,
where

Pup, = (In — prn.Ph.n)(Thun + prf)

+ prh. (In, — Tn.) Mpn. f — Th. (ProwThun + pu, f)
+ ph hTh(Thun + prf))-

Thus, the two-grid method (9) is considered here as an iterative method
to solve the equation

(16) Up = <I>uh.
To study the convergence of the iterative method (15), the following

well-known result is used.

Lemma 3. Let equation (16) have a solution upo € Ey, and let
Qn = {un : |lun —uppl| < 6}. If

H¢l(uh)” S q< ]-a vuh € Qh7

then up, o is the unique solution of equation (16) in Q. For every initial
guess u% € Qy, the iterative method (15) converges to w0 with the rate

(17) lup ™ = unoll < gllu —unoll,  k=0,1,....

Theorem 3. Let the assumptions of Theorem 1 hold. Then there
exist hg > 0 and §p > 0 so that,for every h < hy, the equation (7) has
a unique solution upo in the ball

(18) ||uh —phu0|| < dp.
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The two-grid iterative method (9) with h. < hg, h < hy, converges, for
sufficiently good initial guess u%, to this solution with the rate

(19)  Jlup™ —unoll < cevplul —unoll,  k=0,1,...,

where the constant c is independent of h and h,.

Proof. By Theorem 1, there exist hy > 0 and dg > 0 so that, for
h < hi1, equation (7) has a unique solution up ¢ satisfying (18). It is
easy to see that this solution uy, o is a solution of the equation (16) too.

We shall check up the assumptions of Lemma 3. The Fréchet
derivative of ® is

(20) @' (un)Aun = (In — prn.Ph.n) Ty (un) Auy
+ prn, I, — Th, (wn,)] " [pr.nTh (vn)
— Ty, (ph.non)Ph. 1) T (un) Aup,

where

113
(T, (un ) Aup) (&in) Z/ K&, h’y’uh(£] n)) dyAuj p,

wp,, is the solution of equation (10) satisfying (11) and vy, = Thup+prf.
By Theorem 2, there exists hs < hj so that, for h, < hg, equation
(10) has the unique solution wy,, satisfying (11) and, for this solution,
estimation (12) holds. Thus,

1T (wn.) = T, (pn.wo)|| < const |[wh., — pr. uoll
< conste,p, — 0, he — 0.
It is proved in [8, p. 142] that T} (pn,uo) — T'(up) compactly.

Therefore, Ty (wp,) — T'(uo) compactly, too. As a consequence of
this (see [8, p. 54]), there exists hg < hg so that, for h, < hs,

(T = T3, (wn )] ] < const.

Now from (20) for h < h, < h3 and for uy satisfying (18), we get the
following estimation
12" (un)l < [|(n — Prn.phon) T (un)]

21
(2 + const || [pn.n T (vn) — T (prnon)pnalTh(un)|l
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Let us estimate both terms on the right side of (21). Denote z, =
17} (un)Aup. For the first term,

[(In = Phi.Phon) Ty (un) Aup] (€ n)
=zn(&i,n) — 2n(n n&in)

& OK (Einyy,un(€i0))  OK (Wn.n€iny, un(€n))
:Z/ [ Oou : ; Oou ’

dyAu; p

and, similarly, to the estimation of the analogical expression in the
proof of Lemma 2, we get

(22) max ‘Zh(fi,h) — Zh(Hh*hgi,h” S const E,j’h*HAuhH,
1<i<ly,

ie.,

(23) |(Th = Prh.Phn) T (un)|| < constey,p, -

For the second term,
{lpr.nTh(vn) = Tp, (Pr.nOR)Ph. k) T (un) Aun) }Ein. )

ln
_ Z/ £z huy:vh(g] h)) dyzh(gj,h)

Ih,

- Z/G R, h*’g’uvh(fj ) dyzn(&jr,h.)

I aK(ai,h*,y,vh(a-,h))
= ;/Gj,h [ ou ’

K(&,h*,y,;g(ﬂh*hfj,h)) dyzn(E;n)

+ Z/ & h*’y,;z(nh -15in) dy[en(&n) = 2n(n.n&jn)]

and, by (13)and (22), we get
(24)
I[Ph.wTh(vn) — T, (Ph.h VR )RR Ty (un)




110 E. TAMME

By the estimations (21), (23) and (24), we finally find
19" (un)l| < e, -

Further, let us choose hg < hg so that ¢ = ce, p, < 1for hy < hg. Then
estimation (19) follows from (17) and, for this hg, all the assertions of
the theorem are fulfilled. mi

Note that, for the two-grid method (9), Theorem 3 gives for the
nonlinear equation the same rate of convergence as Theorem 5.2 in [8]
for the linear equation.

Remark. Making use of the one-node quadrature formula, the opera-
tor Ty, in (7) can be approximated by the following operator Tj,:

ln

(Thun) (&) = Z K (& ,ns §5,ho un(&,n) ) meas Gj .
i=1
dist (§i,h‘7yC0 Gj,n)>h

This gives us the method
(25) up = Thuh + o f, up, € Ey,.

The convergence conditions and the rate of the convergence of the
method (25) are studied in [8], Theorem 8.3. The system (25) can
be solved by the two-grid method similarly to the case of the system
(7). We get the following formulas instead of (9):

UZ = Tkuz +phfa

(26)  wp. — Th.wf, =pn.f — Th. (Pr.nvf) + pronThor,
k+1
Up

v’ﬁ +phh*(wl,§* —ph*hvf{), k=0,1,....

All the assertions of Theorem 3 hold for the two-grid method (26).
This can be proved analogically to Theorems 2 and 3, making use of
the estimations

HThuh - ThuhH S const Eu,h, HT'(uh) - T'(uh)H S const 6,,7h.
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These estimations can be established in the same way as it is done for
the linear case in [8, Lemma 5.5].

5. Linearized two-grid method. It is necessary, on every step
of the two-grid method (9), to solve the nonlinear system (10). For
that we can use some iterative method, for example, Newton’s method.
In the case if uﬁ is a sufficiently good approximation of uj,0, we can
use only one step of Newton’s method and get the following linearized
two-grid method

vp = Thuy + pnf,
[In. — T (Prow0)J(wF, = Phonvr) = Phon(Thvl + prf — vh),

k+1 _  k k k
up = vy + Prh, (Wh, — Ph.RVR)-

6. Numerical example. Consider the integral equation

ulz) = / & — g~V (y) dy + f(z)

where f(z) is selected so that ug(z) = 2%/? is a solution. It is easy to see
that for this equation the assumptions (A1)—(A4) hold with v = 1/4.
For the collocation method, let us choose cells G = (z;_1,z;) and
collocation points &, = x; —h/2,j=1,...,l, = N, where h = 1/N
and z; = jh.

In this case the system (6) has the form

N
(27) Ui h = Zaij,huih + fin, 1=1,2,...,N
j=1

where f; , = f(&;n) and the integrals

Tj
aijh = / &n—yl"dy
Tj_1

j7
are easy to find.

We calculate the solution uy, o of the nonlinear system (27) for h =
h« = 1/N, by Newton’s method. The same system for h < h, we solve
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by two-grid iteration method (9) where initial guess is u) = ppn, un, o-
In this case it appears that, for the solution of the system (10), it is
sufficient to make only one step of Newton’s method, i.e., the linearized

two-grid method is suitable.

Some results of the numerical experiments are presented in the
following table where k is the number of steps of two-grid method and

E. TAMME

ek = llub — pruoll = max fufy —uo(&n)l-
Number Norm of | Time of solution
N, | N | of steps k | the error gy, (in seconds)
3 9 4 8.1E-3 0.10
3 | 27 6 9.3E-4 0.17
9 | 27 3 9.1E-4 0.15
3 | 81 7 1.1E-4 0.75
9 | 81 4 1.0E-4 0.50
27 | 81 3 1.0E-4 0.56
3 | 243 8 1.5E-5 6.5
9 | 243 5 1.3E-5 4.1
27 | 243 3 1.3E-5 2.7
81 | 243 2 1.4E-5 3.4
3 | 729 9 2.1E-6 63
9 | 729 5 2.4E-6 35
27 | 729 4 1.8E-6 28
81 | 729 3 2.4E-6 23

We see that a good strategy is N, ~ N'/2. Then it is sufficient to

make four steps of two-grid method.

The experiment was carried out on the computer IBM 4381 (in double

precision).
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