JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 7, Number 1, Winter 1995

A WAVELET ALGORITHM FOR THE SOLUTION OF
THE DOUBLE LAYER POTENTIAL EQUATION
OVER POLYGONAL BOUNDARIES

ANDREAS RATHSFELD

ABSTRACT. In this paper we consider a piecewise linear
collocation method for the solution of the double layer poten-
tial equation corresponding to Laplace’s equation over polygo-
nal domains. We give a wavelet algorithm for the computation
of the corresponding stiffness matrix and for the solution of
the arising matrix equation with no more than O(N - [log N]8)
arithmetic operations. The error of the resulting approximate
solution is of order O(N ~2-[log N1°). Finally, we give some re-
marks on the generalization of the algorithm to the piecewise
cubic collocation and present numerical tests.

0. Introduction. The most popular numerical methods for the
approximate solution of boundary value problems for elliptic partial
differential equations are finite difference or finite element methods.
However, there is a well-known alternative, the so-called boundary
element method. Following this scheme, one reduces the boundary
value problem for the differential equation over a given domain to a
certain integral equation over the boundary of the domain. Substituting
the solution of this integral equation into an integral representation
formula yields the solution of the original partial differential equation.
The advantages of this method in comparison to finite element or finite
difference schemes consist in the facts that the approximate solution
fulfills the partial differential equation exactly (of course, the boundary
conditions hold only approximately) and that the discretization of the
boundary is often simpler than that of the domain (in particular, the
discretization of the boundary is easier if the domain is unbounded).
Another advantage should be the reduction of the dimension of the
problem. In fact, if the partial differential equation is to be solved
over a d dimensional domain, then the boundary integral equation is
defined over a d — 1 dimensional boundary manifold. Consequently,
the linear systems of equations which arise after the discretization
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step are much smaller in the case of the boundary element method.
Unfortunately, the boundary element approach leads to linear systems
with dense matrices whereas the matrix of the finite element systems
are sparse and admit very fast and efficient methods for the solution
of the corresponding matrix equation. In other words, the boundary
element algorithm is only efficient if one is able to solve the arising
linear system by a comparable fast method. One should be able to
solve the N x N matrix equation with no more than O(N - [log(N)]*)
arithmetic operation, where p is a certain nonnegative constant.

The first examples of such a fast algorithm are due to Rokhlin,
Hackbusch and Nowak [48, 32] (cf. also [30, 52]) and are based on
certain Taylor or Laurent series expansions for the entries of the matrix
which are far away from the main diagonal. A second algorithm is
built upon the multiscale structure of the discrete operators and is
due to Brandt and Lubrecht [10]. A further method using different
levels of Fourier series expansions for the approximate solution together
with simple parametrices for the boundary integral operator has been
developed by Amosov [4] (cf. also [7, 51]). For boundary integral
operators with oscillatory kernels, fast algorithms have been proposed
by Rokhlin and Canning [49, 12]. The present paper is devoted to the
wavelet approach which goes back to Beylkin, Coifman and Rokhlin
[8] (cf. also [2, 1, 33, 20, 21, 19, 22, 40, 24, 23]). The main idea
of this method consists in choosing wavelet bases in the spaces of trial
and test functions. Since the wavelet functions have small supports and
are orthogonal to polynomials of small degree, a lot of the entries in
the stiffness matrix corresponding to the wavelet bases are very small
and can be neglected. The resulting matrix is sparse and the matrix
equation can be solved quickly by a suitable iterative method. Let
us remark, however, that in general the problem of computing the
matrix corresponding to the wavelet bases has not been solved yet.
If analytic formulas are available, then there is no problem (cf. [40]).
However, a naive application of simple quadrature rules would lead to a
slow algorithm with O(N'*¢) operations, where ¢ is a positive number
depending on the approximation order and the moment condition of
the wavelets. In particular, if the degree of the moment condition of
the wavelets from the space of test functionals is equal to the order of
approximation of the exact solution by functions from the trial space,
then ¢ = 1 and we would arrive at an O(N?) algorithm. Only for
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the special case of integral operators with smooth kernels, efficient
algorithms including one-point quadrature rules for scaling functions
with vanishing “shifted” moments or other special quadratures have
been indicated by Beylkin, Coifman and Rokhlin [8] (cf. also [24]).
These quadratures (cf. Section 4.3 and Appendix B of [8]) are not
sufficient if the integral operator is a pseudo-differential operator or an
operator of Calderon-Zygmund type and if the desired quadrature error
is of the same size as the error of approximation by trial functions.

Now let us consider the double layer potential equation Az = y over
the boundary T of a bounded and simply connected polygon Q C R?,
where Az := [I 4+ 2W ]z with

(0.1)
2Wa(P) s = 201/2 = da(P)a(P) + [ K(P.Q)a(Q) da
Perl
(0.2)
k(P,Q): = %%.

Here d(P) denotes the normalized interior angle of Q at the boundary
point P and ng is the exterior unit normal of the boundary I' := 02
at Q. Note that this second kind integral equation is, for example,
the boundary integral equation of the Dirichlet problem for Laplace’s
equation in Q (cf., e.g., [37]). The kernel k(P, Q) vanishes for P and
Q@ located on the same side of I'. It is a smooth function of P and @ if
the distance between P and @ does not tend to zero. However, k(P, Q)
is of order O(|P — Q|™!) if P and Q tend to a corner point but remain
on different sides of I'. In other words, the integral operator 2W with
kernel k(P, Q) has a strong singularity at the corner points of I'. The
equation Az = y is a second kind integral equation with noncompact
integral operator 2W. Nevertheless, the theorems of, for example, [19,
24] apply to the numerical solution of Az = y since the kernel k(P, Q)
satisfies estimates of Calderon-Zygmund type. Following this line, we
get a wavelet method over uniform partitions of the boundary. The
compression strategy depends on the level of the wavelets and on their
location. The convergence is estimated in L? or in Sobolev spaces.
Due to the singular behavior of the solution x, however, the speed of
convergence is slow.
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In the present paper, we shall solve Az = y by a fully discretized
collocation method with smoothest piecewise linear (or cubic) splines
as trial functions. These trial functions will be defined using an
exponential parametrization of the curve I'. Thus the trial functions are
given over a uniform grid on the parameter domain which corresponds
to a grid with geometric mesh grading near the corner points over I'.
The mesh grading near corners guarantees an asymptotic L*-error
estimate of O(h4*!(logh~!)*) for the collocation solution, where h
is the mesh size, d = 1 (d = 3) is the degree of the trial functions
and g is a nonnegative constant. The uniformness of the mesh in
the parameter domain allows us to introduce simple bases of wavelet
functions. As basis functions in the trial space, we shall consider
biorthogonal wavelets in the sense of [16], where the scaling function
is the linear (or cubic) B-spline and the dual scaling function is an
exponentially decaying function. We choose the dual scaling function
such that our wavelets have two (or four) vanishing moments and
that, beside this moment condition, the supports of our wavelets are
minimal. We remark that small supports of the wavelet functions
result in better constants for the estimates of the compression and
for the estimates of the number of necessary arithmetic operations.
In general, it is an open question which type of wavelets is the most
convenient one. For wavelets with larger supports, the bounds for the
norms of the corresponding wavelet transforms may be smaller. These
bounds play a role in the convergence analysis (cf. Sections 3 and 4).
For the space of test functionals, i.e., for the space spanned by the
Dirac-0 distributions, we shall introduce the basis of [33, 10]. In other
words, the wavelet test functionals are linear combinations of three (or
five) Dirac-¢ functionals. This representation is of great importance
for the computation of the stiffness matrix (cf. Section 1.4). Using
these trial and test wavelets, we consider the standard form of the
stiffness matrix. We shall give an easy a priori compression scheme
for this matrix, i.e., we shall give a strategy for the neglect of entries
depending only on the wavelet level such that the additional error
caused by this neglect has the same order as the discretization error
of the spline collocation without wavelets. The compressed matrix will
contain no more than O(N[log N|) nonzero entries. Consequently, the
matrix equation can be solved in O(N[log N]) operations by a suitable
iteration. We recommend using GMRES for this purpose (cf. [50,
46]). Finally, we shall give a fast algorithm to compute the compressed
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stiffness matrix with no more than O(N[log N]®) operations. It will
turn out that the step size of the quadrature rules applied for the
computation of the entries can be chosen to be larger if the level of the
test functional is high. Indeed, for this case, the entries are small and
a larger relative quadrature error leads still to small absolute errors
(of course, the rigorous estimates have to be shown for the global
quadrature and not for each entry of the stiffness matrix).

The plan of the paper is as follows. In Sections 1.1 and 1.2 we shall
present a fully discrete collocation scheme with piecewise linear trial
functions resulting in a linear system of N equations. For this colloca-
tion, we define a fast wavelet algorithm in Sections 1.3 and 1.4 which
requires no more than O(N[log N]®) arithmetic operations and a stor-
age capacity of O(N[log N]) numbers. A similar algorithm for piecewise
cubic splines is described in Section 1.5. In Section 2 we present some
numerical tests to confirm the effectiveness of the algorithm. We shall
prove in Section 3 that our discretized and compressed collocation is
stable. Finally, the convergence rate O(N ~2[log N1]°) for the piecewise
linear wavelet algorithm will be shown in Section 4.

We remark that our method is not optimal. It has been chosen in such
a manner that it admits a generalization for the case of two-dimensional
polyhedral boundaries. A first step in this direction has been done in
[47], where the stability of a tensor spline collocation has been proved.
For an improvement of the one-dimensional method including better
meshes (we remark that better meshes means meshes admitting better
orders of convergence; however, the compression algorithms may be
more complicated for better meshes), superconvergence, extrapolation,
multi-grid techniques, p- and h-p-methods we refer to [38, 3, 13, 36,
26, 43, 29, 53, 6, 34, 27, 39, 25, 42].

1. Description of the algorithm.

1.1. The collocation method. For our collocation method, we have to
introduce the sets of trial functions and collocation points. To prepare
this, we define a parametrization of the polygonal boundary T'. Clearly,
I" is the union of straight line segments. We divide each straight line
segment into two equal parts and get I' = Uszlf‘j, where I'; = PiQJ,
the point P7 is a corner point of I', and @7 the midpoint of a side of
I'. For each I';, we introduce the parametrization ®; : [—00,0] — I';
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Pi =Py Pin_s .. P;, Pjy Q7 = P;p

fe,
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FIGURE 1. Grid points on (—o0,0] and I

by ®,(s) := P’ + e*P’@Q’, i.e., ®; is the composition of the linear
parametrization [0,1] — I'; and the exponential mapping s — e”.

Now let us choose a mesh parameter { > 0, let N stand for the
number of collocation points over each I';, j = 1,... , K and define the
mesh size by h := (log N/N. Starting from the “uniform” partition
{te,k=1,... N} withty:=—(k—1h,k=1,... ,N—1,tN := —o0,
we get a graded mesh of collocation points {Pjr),j = 1,..., K,k =
1,...,N} over I, where P ;) := ®;(tx) (cf. Figure 1 and compare the
meshes of class M in Section 5.16 of [42]). Note that this mesh is
geometrically graded towards the corner points P/ = P; y, i.e.,

|Pi rt1) — Piwy = €7"1PG ey — P,

1.1
(L) k=1,...,N—2.

The grading factor e ", however, tends to one for N — oco. The
mesh size sup; [Py — Pjr—-1)| is of order O(1 — e ") = O(h)
and the subinterval adjacent to the corner P/ = P;n is of length
O(e MN=2Iy = O(N—¢).

For the definition of trial functions, we first introduce a piecewise
linear spline basis over the mesh {—(k —1)h,k=1,... ,N —1}. Let ¢
stand for the linear B-spline

1+t if-1<t<0
(1.2) ¢p:RoR, pt):=<¢1-¢t ifOo<t<1
0 else.
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We define ¢y, : [—00,0] — R by @i (s) := ¢(s/h+k—1),k=1,... ,N—1
and set pn(s) := 1 — ZkN:_ll or(s), ie., pn(s) = ¢(s/h + N —1)
if s > —(N —1)h and pn(s) == 1if s < —(N — 1)h. Using our
parametrization we introduce the final basis functions ;) : I'; & R,
j=1,...,K,k=1,...,N by

s) ifj=m
13 pn@a) = { O m=1,... K.
0 else,

Let us note that the ¢(;x) span the whole space of parameter-
ized linear splines over the intervals [®;(—(N — 1)h),®;(0)]. Over
[®;(—0), ®;(—(N — 1)h)] the span contains only the constant func-
tions. However, the last subinterval is of size O(N~¢) and, if ¢ > 2,
then any smooth function can be approximated by a function from
the span of ¢; ;) with order O(h?). In order to simplify the notation,
we introduce the index set I := {(j,k):j=1,... ,K,k=1,...,N}
and denote its elements by ¢, k, i.e., for ¢,k € I we set ¢ = (j,,k,),
K= (jm kn)

Now the collocation method for the numerical solution of Ax = y
consists of seeking an approximate solution zy = >, ; &, with real
coefficients £, satisfying

(1.4) Azn(P.) =y(P.), kel

Note that each end point P?, Q7 of the straight line segment I'; appears
twice in the set of collocation points. We shall distinguish these
points formally and, for a function f piecewise continuous over I' and
continuous over each I';, we set f(P;x)) = limr;5¢-p,, f(Q). With
respect to the coefficients ¢, the collocation equations (1.4) form a
linear system of equations. We denote its matrix ((Ap,)(Px))x,c1
by AN = (@x.)r.ecr. This matrix is called stiffness matrix of the
collocation. It is well known that the collocation (1.4) fits in the frame
of Galerkin-Petrov methods. Indeed collocation seeks an approximate
solution z in the space span {p,,¢ € I'} such that 9(Azy —y) = 0 for
any functional ¢ from the space of test functionals span{dp,_,x € I}.

1.2. The discretized collocation. Method (1.4) represents only a semi-
discretization since the computation of the entries ., of the stiffness
matrix Ay requires an integration. In our discretized collocation
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method we shall replace this integration by simple quadrature rules.
Thus, let us introduce quadrature rules and start with rules over
[—00, 0]. Taking into account that the trial functions ¢, k=1,... ,N
are constant over [—oo, —h(N — 1)], we take the rule

f(z) dm—i—/ f(e*)e’ds

NG .

(1.5) ~ Q1(f30,e” N TIR) + Qa(f; (N —1)h,0)

e~ (N=1)h 0

=: Z flox)@x.

Here Q2(f; —(IN — 1)h,0) denotes the composite trapezoidal rule cor-
responding to the partition {—kh: k =0,... ,N—1} of [-(N —1)h,0]
and applied to the function [—(N — 1)h,0] 5 s — f(e®)e®. The
symbol Ql(f;O,e_(N_l)h) stands for the composite trapezoidal rule
corresponding to the partition {—ke=(N=DP/i .k = 0,...,4,} of
[0,e~(N=D"] and applied to the function [0,e~ N~V 5 z — f(z).
For the discretized collocation without wavelet algorithm, the number
14 is an a priori fixed positive integer which is independent of h and N.
Using the parametrization ®;, we arrive at the quadrature rule

[1@iar =Y [ @ (e)etasPiQ’ ~ Y 1@,
(1.6) j=1v 7> neJ

Ji={n= M) Ju=1,... . K,y =1,... ,N},

—
Qu =2, (O')W), Wy 1= |P7“Q7"|w>\u.

Preparing the application of our quadrature rule to the integral
in oy,, we perform a step which is called singularity subtraction or
regularization or modified quadrature method. Using W1 = 1/2 (cf.
[37]), we write
(1.7)

(Ap)(Py) = 9u(Pe) + pu(Per) + / k(P Q)len(Q) — 0 (Pry)] dol

Here ky := & if P, is not a corner point. If P, is a corner point with
{P.} =T, NTj, then ky := (4, N). That is, for corner points Py, k1
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is just the index of I different from x such that P, = P,,. Applying
(1.6) with mesh size h to (1.7) yields

Qg0 ™~ a’:i,l» = (pL(PN) + []‘ - E”]QO”(P'Q)

+ k(PmQu)wu L(QM)?
(1.8) ;%:J i

Y, = Z k(Py, Q) w,-

pneJ

Thus the discretized collocation is nothing else than the method (1.4),
where the matrix (ax,.)s.cr of the system of equations is replaced by
Ay = (a),,)r.er- In order to motivate the singularity subtraction
let us mention that the replacement of a, , by aj, , corresponds to the
approximation

(Azn)(Px) = zn(Px) + zn(Ps,)
+ [ K(PLQ)en(@) = ay(Pu)]doT
~ &N (P:) + zn(Px,)
+ > k(P Qu)lzn(Qu) — v (Pe,)]wpi.

peJ

No singularity subtraction results in
1
(Aen)(P) = o (P) 42| 5 — dalP)| ()

+ / k(Pr Q)n (Q) doT
(1.10) g )
~ xN(Pn) + 2|:§ - dQ(PN1):|xN(PN1)

+ Z k(Pe, Qu)rn(Qu)wy-

pneJ

Since the kernel function k has a certain strong singularity at the corner
points, the quadratures for [, k(P., @)z (Q) dol' do not converge uni-
formly with respect to k. The expression k(P., Q)[zn(Q) — zn5(Psx,)]
has a milder singularity as k(P,,Q)zn(Q) if zn is smooth. Conse-
quently, the quadratures of [ k(Px, Q)[zn(Q)—2zn(Ps,)] doT converge
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uniformly. In other words, the discretized collocation method without
subtraction technique is not convergent in L*>° whereas the discretized
collocation method with subtraction technique converges with the same
order as the collocation method.

1.3. The wavelet bases. Next we introduce new bases in the space of
trial functions and in the space of test functionals, respectively. Let us
start with the bases over [—00, 0] and with the wavelet basis in the space
of test functionals over the half axis. We consider a fixed IV of the form
N = 7.2 + 1 and the corresponding h := (log N/N. Over the real
axis R we have a hierarchy of grids {—kh2'*V ! k € Z},1=0,... ,lev
and the corresponding partition {—kh,k € Z} = {—kh2!*¥ k € Z} U
Ui=1,... Jev {—(2k + 1)h2'ev =tk € Z}. Analogously, for the grid points
{tr,k =1,..., N}, we get the partition Uj—g__ jev {t, k= 1,... , NI},
where

(1.11)
19 = —(k—1)h2v, k=1,... ,N&Ffl,t?vg == —o00, NI :=8
th == —(2k—1)h2'ev L, k=1,..., NI 1=1,... lev, N/ =7-2!=1,

For | = 0, we set U} := 0o, k = 1,..., Ny, i.e, 90(f) == f(t). For
I > 0, we choose 195c to be the linear combination

2
(1.12) I}, = 6t — Zaidéﬂw
j=1

of three Dirac-§ functionals, where tﬁcjl and tﬁm are the two grid points

of the coarser levels Up,—q, . i—1{tf*,k =0,... , NI} nearest to t%c. In
other words,

e { —h2'ev=(=D(k —1) ifk < NI |

(1.13) ’ —h2lev=U=U(k —2) if k=Nl
e { —p2lev —(U-Dg if k < N[ |

’ —2plev=U=U(k —1) ifk =Nl

The coefficients afw- are chosen such that the wavelet functional 9!
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vanishes at all linear functions, i.e., we define

l {1/2 if k < NF

Xp,1 = . T
-1/2 ifk=Nj
(1.14)
. 1/2 ifk <N}l
ak72 = . T
3/2 ifk=Nj

It is not hard to see that span{¥} : k =1,... ,NI, 1 =0,...,lev} =
span {d0;,,k = 1,...,N}. This wavelet basis is a special case of the
wavelets in [33].

Now we turn to the wavelet basis for the space of trial functions. Let
us start with the wavelets over the real azis. Analogously to [55, 16],
we introduce

(1.15) w6 =33 (2) -0t —i+ )

=0

and obtain that span {¢(s—k), k € Z} is the direct sum of span {p(s/2—
k),k € Z} and span {¢(s — (2k — 1)),k € Z}. Hence a wavelet basis
over R can be given by

(1.16) d};g(s): o(s/(h2Y)—k), ke,

Ph(s) = (s/(h2' ) - (2k=1)), ke€Zil=1,...,lev.

Note that all 1%6 with [ > 0 are orthogonal to linear functions, i.e., they
have two vanishing moments [ 9% (s)ds = 0, [t(s)sds = 0. In the
class of all wavelet bases with this orthogonality property our wavelets
have minimal support.

Similarly to the wavelets over the interval (cf. [5, 15, 17]), the wavelet

basis of the trial space over the half axis will consist of interior wavelets
and boundary wavelets. The interior wavelets are just those wavelets on

the real axis the support of which is contained in (—(N — 1)h,0). The
boundary wavelets are certain modifications of those wavelets defined
on the axis which do not vanish at 0 or at —(N — 1)h. We shall
choose them in such a way that the transformation from the basis of
scaling functions {¢g,k = 1,..., N} into the new basis of wavelets is

bounded. We do not care about the moment condition for boundary
wavelets. To introduce the basis we observe that all piecewise linear
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FIGURE 2. Supports of the functions ¢y over [—oo,0].

functions over [—o00,0] can be extended to an even function of the
space span {O(s) := ¢(s/h — k) + ¢(s/h+ k),k = 0,1,...} over R
by reflection. Taking the wavelet basis {O(s) := ¢(s/(h2!V) — k) +
o(s/(h2") + k), k =0,1,... }U{OL(s) := ¢(s/(h2"" 1) — (2k — 1)) +
Y(s/(h2V =Y + (2k — 1)),k = 1,2,...,1 = 1,... ,lev} of this spline
space, and restricting it to the half axis [—o0, 0], we arrive at a wavelet
basis on [—o0,0] with bounded wavelet transform. Together with a
corresponding modification over [—o0o, —(N — 1)A], we get the following
definition (cf. Figures 2 and 3 for the supports of the functions):

P0(s) :=p(s/(h2V) + k — 1), E=1,...,N! —1,Ng =38,

0 (s):i= o(s/(h2'V)+ NSt —1) if s > —h(N —1)
Nt : 1 if s < —h(N —1),

P1(8) == (s/(h2'* 1) — 1) +9(s/(h2' ') + 1),

(1.17)
Ph(s) = (s/(h2" "N+ (2k—1),  k=2,...,NA-1,NA:=7-2171,
Y(s/(h2eV ~1) + (2NA - 1)) if s > —h(N —1)
Una(9) = s/ (a2 ) + QN+ 1))
1 if s < —h(N -1),

l=1,...,lev. Clearly, the w;c with £k =2,... ,NlA —-1,1=1,...,lev
are interior wavelets and 1/} as well as 1/15\, 4 are boundary wavelets.
l

After the introduction of the wavelet bases over [—oo, 0], we get the
final wavelet bases over the curve I' using our parametrizations. We
define the index sets I4 := {v = (j,,l,k) : j, = 1,...,K,l, =
0,...,lev,k, = 1,...,NA} and IT := {& = (ju,lukn) : Ju =
1,...,Kl. =0,...,lev,k; = 1,... NI} (note that I4 = I for
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—o0 —(N-1)h —ho

FIGURE 3. Supports of the functions 1/J,lC over [—o0,0].

the case of linear splines). For ¢+ € I, we define the wavelet function

Y, by

(1.18) Vit k) (B (8)) i= {1/121(8) if j, =m

0 else.

Obviously, span {¢,,¢ € I} = span{¢,,. € I*}. To define the basis in
the space of test functionals, we take x € I” and set

~

(1.19) P 1k (f) = ﬁﬁci(f °0®;. ).

For simplicity of notation, let us look at the functionals/\ﬁ,i as if they
were Dirac-d distributions at a point P, and write f(P,) instead of
PK/ (f)'

Using the just defined wavelet bases, we arrive at a transformed
stiffness matriz By := (AY,(Px))xerr cr4. It turns out that the entry
A¢L(ﬁn) is small and negligible if the levels [, of the wavelets are
large and if v, is not a boundary wavelet. Thus we replace By by

~

the compressed matriz By := (bf ,)xcrr c14, Where by, == Ay, (Py) if
¥, # 0 over supp ﬁn or if 9, is a boundary wavelet or if [, < lev — [,
and by, , := 0 otherwise. (For a compression with a larger number of
neglected entries we refer to Remark 4.4.) This compressed matrix is a
small perturbation of By and contains no more than O(NJlog N]) (cf.
Section 1.4) nonvanishing entries. The matrix equation with matrix
B¢, can be solved with at most O(N[log N]) arithmetic operations.
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1.4. The wavelet algorithm. Our next concern is to give an algorithm
for the computation of a discretized version of the matrix Bf. To
this end let us proceed analogously to Section 1.2. However, before
we describe the algorithm for the computation of the entries a,,, let
us introduce a quadrature rule similar to (1.6) but with coarser mesh
size. Clearly, Q2(f; —(IN — 1)h,0) in (1.5) is the trapezoidal rule over
a partition with mesh size h. Therefore, we call (1.6) including this
Q2(f; —(N — 1)h,0) the rule (1.6) with mesh size h. Now suppose
N =17-2"¢ 41, 1 <lev, and consider the mesh size hqu == 2L 1 for the
quadrature. We replace Q2(f; —(N — 1)h,0) in (1.5) by the composite
trapezoidal rule applied to the function [—(N — 1)h,0] 3 s — f(e®)e®
over the partition Part of [-(N — 1)h,0], where Part is the union of
{~khqu,k=0,...,27"- (N — 1)} with

(1.20)
U {-kk-2m):k=01,23}
m=0,... ,[—1
U {-kr-2m):k=2""-(N-1)-3,...,27" - (N-1)}.
m=0,...,[—-1
Furthermore, we shall choose i, := lev? in the definition of Q;(f;0,

e~ (W=Dh) " These two modifications result in a new quadrature rule
(1.6) which we call (1.6) with mesh size hg,. Note that the partition
Part in this quadrature rule is chosen such that the quadrature rule is
exact for all trial wavelet functions which remain after the compression
step (cf. the compressed matrix at the end of Section 1.3 and the set
I A(ﬁﬁ) in the following algorithm). The uniform partition {—khgy, k =
0,...,27" - (N — 1)} guarantees the exactness of the quadrature to
the integrals of the wavelets v(;, ;, r,) With level [, less than or equal
to lev — . The node points from (1.20) guarantee the exactness of
the quadrature for the integrals of the boundary wavelets v ;, ;, 1) and

PG N
By definition (cf. (1.12)) each functional P, is the linear combination

of at most three Dirac-¢ functionals, i.e., there exist a1, @, a3 € R and
P.1,P.2,P.3 €T such that f(P,) = Z?:l o;f(Py,;). Hence, for the
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singularity subtraction, we get

(121) (Azy)(Pe) =) ai{wN(Pn,i) +an(P])

3
=1

i

+ [ kP Qlen(@ - (1) er},

where P,:i := P, ; if P, ; is not a corner point of I'. If P, ; is a corner
point and @y (P ;) is the limit of zy from the side T';, of T, then P
stands for the same corner point Py ; but mN(P,j: ;) is the limit from
the side I'\I';,. Following the compression strategy of the matrix B,

we replace Ty = ), ;a4 {0, by 2% = ZLE]A P )@1/%7 where IA(P ) is
the set of all ¢ € I such that ¥,(P.;) # 0, i = 1,2,3 or that ¢, is a
boundary wavelet or that [, <lev —I[,. Since z% (P i) =N (Pa), we
get

NE

(1.22) (Azy)(P,) ~ ai{wN(Pn,inN(P;i)

i=1

+ [ K(Pes QL@ = #5(PE) dQF}

Let us choose kg, =min(h-2'~, h-2!¢V ~1evo) with lev; := 7[loglev / log 2]
and apply (1.6) with mesh size hy, to (1.22). We obtain

(o) (B ~ S asf ax(Pes) + 1= S low(PE)

i=1

+y k(Pn,z-,anyv(Qu)wu}

pned
(1.23) +Za’ . nz$N(P+)

+ Zk PmQu xN(QM)w/M

pneJ

S = > k(Pris Qu)wy

pned
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For the approximate value b, , of the entry b, , of BY, this leads to

BB+ X0, oull — Sl (B i e e IA(P)
(1.24) b, = + ey k(ﬁm Qu)Y.(Qu)wy

0 else.

Simply applying (1.24), we arrive at the following algorithm for the
computation of the transformed, compressed, and discretized stiffness
matriz Bl = (b;,L)HEIT,LGIA'

For all x € I do (i.e., compute successively all the rows of By):

i) Before summing up all the terms of b, , and ¥, ; indicated in

(1.24), set b, , =0, Xr; =0 for any ¢ € I* and i = 1,2,3.
ii) In accordance with (1.12) and (1.19), compute the o;, P, ; and

~

P,:i with ¢ = 1,2, 3 for the test functional P,.

iii) Set hgy, = min(h -2 k- 21¢V~levo) and compute the nodes Q,
and the weights w, of the quadrature rule (1.6) with mesh width hg,
(cf. the beginning of this section).

iv) For all p € J do:

a) Compute the values of the kernel function k(P ;, Qu), i = 1,2,3.

b) Add k(Pn,iaQu)wu to E,%i, Z = ]_,2,3.

c¢) Determine the index set I4(u) of all . € I4(P,) such that
¥.(Qu) # 0.

d) For any ¢ € I*(p) and i = 1,2,3, add a;k(Py;, Qu)wutb.(Q,) to
bl ..

v) Determine the index set JA(/-c) of all v € I such that ¥, (Pei) #0
or ¢, (P,) #0,i=1,2,3.

vi) For any ¢ € J4(k), add a;t),(P. ) to b, ,, i =1,2,3.
vii) For any ¢ € J4(k), add a;[1 — E,ﬂ,i]wb(P:’i) to b/

o i=1,2,3.
Let us count the number of arithmetic operations of this algorithm.
We observe (cf. Figure 3) that the number of wavelet functions not
vanishing at a fixed point of I is less than or equal to 2lev. Hence the
index sets I (p) and J4 (k) contain no more than O(lev ) indices. The

number of arithmetic operations for the computation of the xk-th row
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of By is less than O(lev) times the number of quadrature nodes, i.e.,
less than O(lev - [lev® + 2!V ~lx]) = O(lev - 2!V ~l=) if [, < lev —lev
and O(lev - [lev® + 2!¢Ve]) = O(lev?®) otherwise. For the computation
of the whole matrix we need a number of operations of order

lev lev —levo—1
0( S 2levi4 D 2llev -2 —’~>
(125) lx=lev —lev g l,.=0
= O(lev®-2')

= O(N[log N]®).

Let us count the number of nonzero entries in Bjy,. The number in one
row is just the cardinality of 4(P,). There exist no more than O(lev)
indices ¢ such that v¢,(P,;) # 0 or wL(P,:fi) #0,47=1,2,3 or that ¥,
is a boundary wavelet. The number of indices ¢ with [, < lev — [, is
O(2'*V ~!x). Hence the s-th row of B}y contains at most O(2!°V =~ +lev)
entries different from 0. Consequently, the number of nonzero entries
of the whole matrix B is less than

(1.26) 0< Zv olw[olev—le 4 lev]> = O(lev - 2!*") = O(N[log N}).

1.=0

In other words the storage of the matrix B, requires a storage ca-
pacity of O(N[log N]) numbers. The computation of Bf, requires
O(N|log N|®) operations and the multiplication of B) by a vector
O(N]log NJ).

Now the algorithm for the computation of the approximate solu-
tion x of equation Ax = y via discretized collocation and wavelet
transform looks as follows. We determine the righthand side yy :=
(y(Px))xer of the collocation system (1.4) and solve Ayzy = yn by an
iterative method (e.g., by GMRES). If we choose the initial vector for
our iteration to be the solution of a collocation over a coarser grid, then
we need only a finite number of iteration steps to solve the collocation
system up to the discretization error. The main part of this process
is the matrix multiplication of the iteration vectors zy by Ax. This
multiplication will be realized in three steps. All the three steps require
no more than O(N[log N|®) operations. Thus the whole algorithm for
the computation of zy requires no more than O(N[log N|®) operations
and a storage capacity of O(N[log N]) numbers.
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Now let us describe the three steps of the multiplication of Ayx by a
vector zp. To this end, let us identify the vector zy = {£,},er with the
function 2y = >, ; &4, of the trial space, i.e., we identify the function
zy with the vector {§, = zn(P,)}.er- Analogously, we identify the
vector [Ayzn| with the function [Ayzn] =),/ [Anvzn].p, such that
the x-th entry of vector [Anzy] is equal to the value [Anzn](Px) of the
function [Anzy]. With this notation the function zy is given by the
vector {&, },er of its coefficients and to compute the multiplied vector
Apnzy means to compute the vector {[Anzn](Pys)}rer- In the first
step we apply the wavelet transform, i.e., we compute the coefficients
n. of the representation zy = >, ;4 7,%,. This step can be realized
with the aid of a pyramid type scheme and is well known to require no
more than O(N) operations (cf., e.g., [18, 14]). We shall describe this
pyramid type scheme at the end of this section. In the second step of
the multiplication procedure we multiply {7,},cr4 by the sparse matrix
Bly. Since By is a small perturbation of By := (Awb(ﬁﬁ))REIT,LEIA7
we arrive at an approximation for {{Anzn](P:)}ecrr. It remains to
apply the inverse wavelet transform which computes, for the function
f =[Anzn], the vector {f(Py)}ser from {f(Ps;)}.cecrr- This third step
can also be realized with the aid of a fast pyramid type scheme which
we shall present next.

It remains to describe the pyramid type scheme for the wavelet
transform. Since the trial functions and test functionals are defined by
a parametrization, the transforms over I' reduce to the corresponding
wavelet transforms over the half axis. Let us first consider the inverse
wavelet transform for the test functionals. Suppose that, for f given
on [—00,0], the values {J\(f),k = 1,...,NI,l = 0,...,lev} are
known. We have to determine the values {f(¢x),k = 1,... ,N}. To
get these, we successively compute the values {f(t}),k = 1,... , N[},

(1.12))
F(tR) = k() + D it ),

where the values f(t} ;) belong to the given sequence {f(t}),k =
1,...,NI}. Knowing {f(t1),k=1,...,N{}, we compute {f(t3),k =
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1,...,NI} by (cf. (1.12))

2
F&R) =9%(F) + D ok i F (& )

j=1

where f (7 ;) is taken from the just computed sequence Ur—o 1 {f(t}), k=
1,...,NF}.  Similarly, we compute {f(t3),k = 1,...,NI} from
{92(f),k=1,...,N¥} and from Uj_g12{f(t.),k=1,... ,NI'}. Fol-
lowing this procedure we finally compute {f(t}*V ),k =1,... , NI } and
arrive at the set of values {f(t),k =1,... ,N} = Ui—o, . 1ev {f(tL), k =
1,...,NT}.

To describe the pyramid type scheme for the wavelet transform in
the trial space, we suppose that the function zy = Zk:l,...,N Pk

over [—00,0] is given and seek the coefficients n!, of the representation

A
ZN = 2}2’0 kNél ntyl. Let us set N2 := N, denote the spline basis

function @), by ¢¥, and introduce (compare Section 1.1) ¢! (s) :=

ev— NS 1
o(s/(h2Y Y +k—1),k=1,... ,N°—1, wévls(s) =1-370 ¢h(s)

with NlS =7-2"+1and ! =0,1,...,lev — 1. Clearly, the spaces
V= span{go%c,k =1,... ,NlS} satisfy Vy C Vi -+ C Viey . Beside the
basis {¢k,k = 1,..., N} also the system {¢, ',k =1,...,N° ,}U
{¢t,k=1,... N} forms a basis of Vj, I = 1,... ,lev. Moreover, we
get so-called two-scale relations (cf. [14] and (1.15), (1.17))

(1.27)

_ 1
P =t e
-1 l L, L, s
Pr = = Par-1 Tt 5% T 5 P22 k=2...,N -1,
1
-1 _ 1 l
‘PNl{1 = SONlS + 5901\([9,17
1
Vi = —¢h + 5h+ e,
! ! L, L, A
Y = —pgp, + 3 P2k+1 + 3P2k-1> k=2,... N -1,
1
Yna = —Phys_ +Pys + gsoﬁvlsfz
valid for [ =1, ... ,lev. Now let us denote the basis transform mapping

the coefficients {55;1,]{: =1,...,NZ Ju{nt,k=1,... ,NA} of f =
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Zk Lty Z nfcz,bi onto the coefficients {¢L,k=1,... , N}

of f = Zk:l el by 7). From (1 27) we infer that the matrix of

: - 1 -
T; mapping the vector {&71, nt, €b= nh el .. ,névls 1,5 } onto

{eh, e, ... ,§§Vs} is tridiagonal. Hence, the application of Tl requlres
l

O(le ) arithmetic operations. Even the inverse transform applied to

a vector can be computed with O(N;) operations using tridiagonal

solvers. Now the pyramid type scheme looks as follows. Applying
the inverse of Tiey including the tridiagonal solver to the given vector

{€ev = fk,k = NS Y of zy Ziv lfkgak,, we compute
{ne k= lev} and {&V Lk = 1,... N2, _}. Next we
apply the inverse of Tev -1 to {51‘3"71 k= Nlev—l} and get
77}:‘,_1 ko= , Nigy 1} as well as {flev_Z k -5 Nigy o}

Similarly, we proceed until the application of T} to {¢, k =1,...,N’}
and obtain {n},k=1,... ,N{'} as well as {¢),k =1,... ,N5'}. Since

Nlev Nlev 1
E é-lev lev __ E lev lev + E é-levfl lev —1
k=1
Nlev Nlev 1 Nlev 2

— anevwlev + Z nlevfl lev —1 + Z glev 2 levf

lev N/ N
!
Z S+ Yol
I=1 k=1 k=1
and since Y2 = ¢?, 1) = €9, the computed coefficients {n},k =
1,... ,NlA,l =0,...,lev} represent the wavelet transform.

1.5. Piecewise cubic collocation. The algorithm with piecewise cubic
spline functions in the trial space looks quite similar to the piecewise
linear collocation. Analogously to the notation from Sections 1.1-1.4,
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we introduce the collocation points by

N:=7-2° 41, h := (log N/N,
t; :=0, ty := —h/2,

(1.28) tp:=—(k—2)h, k=3,...,N—1,
tn 1= —00,
P, = P(jL,kL) = <I>jL (tkb), v e I.

By ¢ we now denote the cubic B-spline such that supp ¢ = [—2, 2], that
¢ is continuously differentiable, that the integral of ¢ is one, and that
the restriction o|j x4+1), K = —2,—1,0,1 is a cubic polynomial. We set
or(s) :=¢(s/h+k—2),k=1,... ,N—1and pn(s) := 1—22’;11 oK(s).
Thus the basis functions in our cubic trial space over I' are given by

(1.29) 0, (@ (5)) = @i, ) (B (5)) := {ikb(s) leflsje =m o

Using this notation, the cubic collocation method is the method (1.4).
For the discretization of the cubic spline collocation we use the quadra-
ture (1.5), (1.6), where now Q1 (f;0,e~V=1") and Qo(f; —(N —1)h,0)
denote the composite Simpson rule over the same partitions (i.e., we
take the points of the partitions in Section 1.2 and the midpoints of each
subinterval as quadrature nodes) as in Section 1.2. The quadrature rule
(1.6) with mesh size hy, = k-2 is the rule, where Q2(f; —(N — 1)h,0)
is Simpson’s rule applied to [—(N — 1)h,0] > s — f(e®)e® over the
partition Part of [—(N — 1)h, 0] with

(1.30)

Part :={~khgy : k=0,... .27 (N-1)}|J
U {=k(h2™): k=0,... ,2[c00+0011ev]+3}U
m=0,...,[—-1

U {*k®k2™):k=2""(N-1)-7,...,2 ™(N-1)}.

m=0,... ,[—1

Here cop and co; denote suitable nonnegative constants. Using the
quadrature rules with minimal mesh size h, we get the corresponding
discretized collocation by (1.8).
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In order to define our wavelet algorithm let us introduce the wavelet
test and trial functions. We introduce the partition {tx,k=1,... ,N} =
Ul:O,... Jev {ti;a k= ]-; e 7NIT} by

(1.31)
t9:=0, t5:=—h/2, t):=—(k—2)h2",
k=3,...,Nj —2,
tyr_1i=tNo1, e = —oo,
thi=—Ck—-1h2 " k=1,... N, 1=1,...lev.
The numbers NT are chosen such that t(IJVT 5 > tNT 1 = tno1 2>

—(NF —3)h2'¥ and ¢ Nr >t 2 (2NT+1)h2lev i JI=1,... lev
is satisfied. For [ = 0, we set 99 := §t0, k=1,...,N& and, for [ >0,

(1.32) 0% - —5tl Zak,] ¢l
where tﬁw-, j =1,...,4 are the four grid points of the coarser levels
Um=o,... i—1{t7 : k=1,... ,NL} nearest to t,. In other words,
(1.33)
tfc,1 — _polev—(-1)
(k—3) if —p2!v "Dk +1) <ty_y < —h2lev-(-Dg
(k—4) if —p2lev -V <ty
(k—-1) ifk=1
(k—2) else,
tho = th, — h2Y (7D, thg 1= th, — 2h2!V (7D,

th g 1=ty — 32V (7D,

The coefficients ak are chosen such that ﬁl vanishes at all cubic
polynomials, i.e., we deﬁne

(1.34)
—5/16 if —h2ev - U-"DE <ty

1/16 if —h216"_(l_1)(k +1) <ty_1 < _polev—(I-1),
5/16 ifk=1
—1/16 else,

l
Oék71 =
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21/16 if —h2V =D <ty 4
! ~5/16 if —h2!V D (k4 1) < ty_y < —h2lev (D
2N 4506 k=1
9/16  else,
35/16 if —h2e (D <ty
. 15/16  if —h2ev =U=D(k 4+ 1) < ty_y < —p2lev —(=D
3TN 56 ifk=1
9/16  else,
—35/16 if —h2'ev ~U-DE <ty 4
! 5/16  if —h2'V (D (k4 1) <ty_y < —h2Y TV
TN 6 k=1
—1/16  else.

Let us turn to the trial functions. Analogously to (1.15) and (1.17) we
introduce

1< .
(1.35) g]Z < ) s—j)
and set
(1.36)
U = p(s/(h2')),
¥ = p(s/(h2"V) +1) + w(S/(hZIeV) - 1),
V(s):=o(s/(h2*)+k—1), k=3,. A—1,N =7,

PP ;ﬁ o(s/(h2Y) +k—1) ifs>—(N—1)h
ifs<—(N-1)h
(s/(h2' 7Y +3) + ¢(s/(h2'V 1) + 1),

(s/(h2'Y 1) +5) + y(s/(h2'V 1) - 1),
(s/(h2'V Y+ (2k + 1)), k=3,...,N* -2
2! 1

»
~—
Il

@
li

<
< . & Z°
il e +S
I
ﬂ@ee,_/Hﬁ € 6
=

=
hS
ii
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P(s/(R2' ~1) + 2(NA — 1)) if s> —(N —1)h
+(s/(h2' ') + (2N +5))
+(1/8)p(s/(h2'* ) — 2N
1/8 ifs<—(N-1)h
Y(s/(h2'® =1 + (2N + 1)) if s> —(N —-1)h
+(s/(h2' ) + (2N +3))
+(7/8)p(s/(h2' 1) — 2N{)
7/8 if s < —(N —1)h
l=1,...,lev -1
(s/h—1),
(s/h+3)+¥(s/h+1),
(s/h+5)+¢(s/h—1),
(s/h+2k—1), k=4,..
s 1,
Y(s/h+ (2N{, —3)) if s> (N —1)h
o (s { TVE/RE (NG +3)
+(1/8)p(s/h — 2N, —2)
1/8 if s < —(N —
¥(s/h+ (2N, — 1)) if s > —(N—1)h
+y(s/h+ 2N, +1))
o +(7/8)¢(s/h — 2Ny, —2)
7/8 if s < —(N —1)h.

._.
®
<

~—~ ~ —~

\./in/\/\./
Il

A
. 7Nlev _27

2
¥
¥
¥
7

2
i
[

Now we define v, and P, by (1.18) and (1.19), respectively. Analo-
gously to the beginning of Section 1.4 we get f(P,) = 2?21 a; f(Pr,i)

with appropriate o; and Py ;. For a fixed x € I, the set I4(P,) of in-

dices for which the entry (A%, )(P,) of By is not neglected in the com-
pression step is now introduced as follows. An index ¢ = (4, k,,1,) € I4
belongs to I4(P,) if I, < lev — I, or if 1, (P, ;) # 0 withi =1,... ,5 or
if 1, is a boundary wavelet or if k&, < cop + coqlev. Using this new set
I*(P,), the wavelet algorithm with cubic trial functions is the same as
that presented in Section 1.4. It leads to a compressed stiffness matrix
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with a number of nonzero entries less than a constant times IV times a
power of log N. The number of necessary arithmetic operations in the
algorithm is also less than a constant times N times a power of log N.

Let us remark that, for our choice of wavelets in the trial space,
the compression x4, := ZLEIA(E;N) &,1, of a smooth cubic spline zy =
> .c14 &, is not smooth in the neighborhood of the points Q= P o
if co, = cop = 0. In fact, the introduction of 1}*" instead of a basis
function ¢(s/(h2!®V) — 1) on level zero ensures the boundedness of the
wavelet transform but leads to nonsmoothness in the neighborhoods of
the midpoints Q7 = P 0y of the sides of I'. In order to compensate
this effect we have introduced the constants cog, co.

2. Numerical tests. For a numerical example we take the
equilateral triangle Q@ = AABC with corner points A := (—1/2,0),
B := (1/2,0), and C := (0,/3/2). We consider the harmonic function
U(P) :=U(sp,tp) :=log+/(sp — 0.1)2 + (tp — e — 0.2)? and get

1

(2.1) UP) =3 [ HP.Qu@dor,  Peq

where z is the solution of Az = y := 2U|r. In accordance with Section
1.1 we divide the boundary I" into K = 6 equal parts and determine
an approximate solution xx of x by the algorithm of Section 1.5. We
compute, for P; = (0.1,0.2), the approximation

(2.2) Un(P) = 2 3 k(P Quen ()
pneJ

of U(Py) = 1. By DEpN we denote the error of the Dirichlet so-
lution |Un(Py) — U(Py)| and by SEN- the supremum norm error of
the solution for the integral equation ||y — zn'||L> ~ ||z — zN/|| L
(an approximate value of this supremum is computed by a maximum
over a large number of points of I'), where N := 7.2V 4 1 and
N':=7-2'v=1 11 Furthermore, we determine the approximate value
v = [log SEN — log SEN-]/[log hy — log hy] with hy := (log N/N
and hys := (log N'/N' for the order v of the error SEy ~ h),. In
Table 1 (cf. also Figure 4) we present the corresponding numerical re-
sults. These results show that, for an approximate solution Uy of
the Dirichlet problem away from the boundary I' := 0f2, a small mesh
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TABLE 1. Approximation properties of the algorithm.

Cllev | Ny=6-N | SEy v~ | DEN
110 49 | 0.089 0.000027
1 90 | 0.058 0.99 | 0.0000050
2 174 | 0.036 0.96 | 0.00000098
3 342 | 0.023 0.83 | 0.00000015
4 678 | 0.015 0.80 | 0.000000017
5 1350 | 0.0094 0.78 | 0.0000000015
6 2694 | 0.0065 0.62 | 0.00000000016
7 5283 | 0.0042 0.76 | 0.0000000000069
8 10758 | 0.0027 0.75 | 0.00000000000063
21 0 49 | 0.035 0.000075
1 90 | 0.014 2.02 | 0.000010
2 174 | 0.0058 1.85 | 0.0000048
3 342 | 0.0024 1.66 | 0.00000097
4 678 | 0.00099 | 1.59 | 0.0000014
5 1350 | 0.00041 | 1.55 | 0.00000060
6 2694 | 0.00018 | 1.40 | 0.00000046
7 5283 | 0.000080 | 1.36 | 0.00000060
8 10758 | 0.000033 | 1.48 | 0.000000021
9 21510 | 0.000015 | 1.22 | 0.000000028
10 43014 0.000000034

parameter ( is sufficient. We observe a convergence rate DEx ~ h%
if ( = 1. The error DEy is larger for ( > 1. However, we conjecture
that the results for larger ¢ can be improved if a better quadrature
rule is applied in (2.2). Since we are interested in an approximation
of U over the whole of €2 and since this error can be estimated by the
supremum norm, we are mainly interested in SEy and not in DEy.
We compute DE only to demonstrate the closeness of zy to z. For
the supremum error, we remark that the function x has an asymptotic
behavior of z(s,0) —x(—1/2,0) ~ (s41/2)3/5 if s = —1/2 (cf. Section
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TABLE 1. (Continued)

Cllev | Ny=6-N | SEyN Y~ | DEN
310 49 |1 0.013 0.00023
1 90 | 0.0035 3.08 | 0.000074
2 174 | 0.00088 2.77 | 0.0000060
3 342 | 0.00023 2.47 | 0.0000013
4 678 | 0.000063 2.35 | 0.00000063
5 1350 | 0.000017 2.32 | 0.00000012
6 2694 | 0.0000048 | 2.15 | 0.000000071
7 5283 | 0.0000014 | 2.08 | 0.000000011
8 10758 | 0.00000058 | 1.48 | 0.0000000027
9 21510 | 0.00000018 | 1.87 | 0.00000000071
10 43014 0.000000000049
41 0 49 | 0.005 0.000055
1 90 | 0.00082 4.09 | 0.000010
2 174 | 0.00013 3.71 | 0.0000010
3 342 | 0.000022 3.20 | 0.00000056
4 678 | 0.0000040 | 3.26 | 0.0000026
5 1350 | 0.00000077 | 2.88 | 0.000000035
6 2694 | 0.00000052 | 0.69 | 0.00000020

4 and [38]). Hence, we expect yy ~ min(4, (3/5) (cf. Corollary 4.2 and
Remark 4.3). Table 1 seems to confirm this asymptotic rate.

Now let us consider the compression properties. The compression
rate CR is the quotient of the number of nonzero entries of B}, per
number of all entries N2, where N, := 6- N is the number of equations
in the collocation system (1.4) and N is the number of collocation
points over each part I';, 7 = 1,...,6. The compression algorithm
of Sections 1.4 and 1.5 has been established to obtain a compression
error of order O(h*[log h~1]#), where u denotes a certain nonnegative
constant. Since the approximation error without compression is of
order O (h™in(4:¢3/5)[log h~1]#), a better compression is possible. Thus,
we introduce a parameter p with 1 > p > 0 and define IA(ﬁH) to be
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FIGURE 4. Orders of convergence.

the set of all . € I such that I, < p-lev — I, or that ¥, (Py,i) # 0 with

t=1,...,5 or that 1, is a boundary wavelet or that k, < cog + cojlev.
Analogously to the estimates of Section 4, we get a compression error
of O(h*[log h=1]#). Consequently, we can choose p = 0.375 for ¢ = 2
and p = 0.6 for ( = 3. Moreover, in our numerical examples we choose
levy = 0. This leads to smaller powers of log N in the estimates.
Though the stability proof fails for levy = 0, we have not observed any
instability. In the Tables 2 and 3 (cf. also Figures 5 and 6) we present
the compression rates, the computation time TW in CPU seconds for
the assemblage of the compressed matriz B, and the time T for the
computation of the corresponding matrix A’y (cf. Section 1.2). Note
that the most time consuming part of the computation is that for the
computation of the stiffness matrix. It turns out that the computation
time T grows by factor four if the dimension N, = 6 - IV of the linear
system is doubled. The time T'W grows by a factor between 2.5 and 3.
For ¢ = 2, the wavelet algorithm is faster if the number of levels lev is
greater than or equal to four. Since our computer has a main memory
of 512 MB, we had to restrict our computations without wavelets to
at most seven levels. The compression algorithm allows us to go up to
ten levels. For ( = 1 and the small errors DEy presented in Table 1,
the compression parameters of the wavelet algorithm should be chosen
as in Table 3 and the resulting computing time is similar. Finally,
let us mention that we have also tested a boundary curve, where one
straight line segment of the triangle is replaced by a sine shaped arc.
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The obtained results have turned out to be quite similar.

All the computations have been performed on a DEC 3000 AXP 500

workstation.

TABLE 2. Compression rates and computing time for

(=2, p=0.375 and cop = 0 = coy.

lev | N,=6-N|CR T™W T
0 49 | 1.00 0.26 0.16
1 90 | 0.93 1.05 0.63
2 174 | 0.62 3.18 2.20
3 3421 0.43 9.71 8.88
4 678 | 0.25 23.87 34.06
) 1350 | 0.16 56.06 | 136.15
6 2694 | 0.086 141.06 | 548.58
7 5382 | 0.048 320.47 | 2191.87
8 10758 | 0.027 775.11
9 21510 | 0.015 | 1721.56

10 43014 | 0.0079 | 3775.10
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FIGURE 6. Time for the computation of the matrix in CPU-seconds, { = 2.

TABLE 3. Compression rates and computing time for

(=3, p=0.6 and coy = 2, co; = 0.5.

lev | N,=6-N|CR T™W T
0 49 | 1.00 0.26 0.18
1 90 | 0.93 1.11 0.57
2 174 | 0.79 4.25 2.15
3 342 | 0.48 12.43 8.29
4 678 | 0.34 34.86 32.73
) 1350 | 0.21 93.57 | 130.59
6 2694 | 0.13 265.35 | 524.06
7 5382 | 0.073 655.73 | 2111.37
8 10758 | 0.044 | 1585.44
9 21510 | 0.025 | 3809.31

10 43014 | 0.015 | 10544.19

3. Stability of the method. Let us consider the operator equation
Az = y in the space C(T') of all bounded and piecewise continuous
functions over I" which are continuous on each straight line segment I'.
Clearly, there is a constant C' (here and in the following we denote by
C a nonnegative constant which varies from instance to instance) such
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that, for any sequence {&,},c7 of real numbers,

Zgbsal/ Zé‘l/sob

el el

(3.1)

<supl,|<C
Lo eIl

1
c Loo
Hence we have to consider the approximate operators Ay and A’y in
the space £ (I°°(I)) of bounded linear operators over the space [*°(I) of
bounded sequences {¢, },cr. From the boundedness of A € £ (C(T')) it is
not hard to see that Ay is uniformly bounded with respect to V. Now
the sequence {Ay} and the corresponding collocation method (1.4) is
called stable if Ay € £ (I°°(I)) is invertible for N large enough and if
(An)~*! is uniformly bounded with respect to N. It is well known that
the derivation of the stability is the main part in the proof of optimal
convergence rates for the collocation.

Theorem 3.1. The piecewise linear collocation method (1.4) is
stable. Moreover, the discretized collocation (cf. (1.8)) is stable if only
the quadrature parameter i, (cf. the definition of Q(f;0,e~ ™ —1") in
Section 1.2) is large enough.

Proof. There exist several methods for proving Theorem 3.1 (cf.,
e.g., [11, 38, 13, 3, 44, 26, 36, 45, 42]). Therefore, we shall give
only some ideas and references without going into details. In any case,
we sketch a proof which can be applied also for piecewise cubic trial
functions.

It is a well-known fact that localization techniques apply to the
stability theory of numerical methods for operators of local type (cf.
[35, 54, 41, 42]). This allows us to restrict our consideration to the
simpler case of a curve I' equal to the boundary of a plane sector, i.e.,
to the union of two half axes. It is not hard to show that in this special
case the matrix Ay takes the form

I KEy\_(1/V2 1/v2

Ky I ) \1/vV2 —-1/V2
I+ Ky 0 1/vV2 1/V2
(70 1) (W3 20)

where K stands for the discretized double layer operator mapping
from one half axis of I' onto the other. Consequently, it remains to

(3.2)
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prove the stability of I + K. Following [47], it is not hard to see that
Ky is a Toeplitz operator the symbol of which is differentiable and
satisfies ||[symboly|| < ¢ < 1. Hence, {An} is stable.

Moreover, following part a) of the proof to Theorem 4.2 in [47], one
easily gets stability for the discretized method. O

Remark 3.2. Theorem 3.1 holds also for the piecewise cubic colloca-
tion.

Our next concern is to prove stability also for the approximate opera-
tor corresponding to the wavelet algorithm of Section 1.4. This operator
is the one used in the multiplication step of the iteration process, i.e.,
AY = TriB\Tra, where Bj is the transformed, compressed, and
discretized stiffness matrix (cf. Section 1.4), Tr% is the wavelet trans-
form in the space of test functionals, and Trﬁ stands for the wavelet
transform in the trial space. In other words, Trf\‘] maps the vector
{&}ier of coefficients of the function zy = >, ;& ¢, into the vec-
tor of coefficients of the same function z,, with respect to the wavelet
basis {9, },cra. For any continuous function f over I', the transform
Trk maps the vector {f(P)}uerr into {f(Px)}eer. Clearly, in view
of (3.1) we have to consider A% in the space £ (I°°(I)). Let us start
our investigations showing the boundedness of the wavelet transforms.

Obviously, the transform T'rY; is bounded if the transform T3 over the
interval [—o0, 0] mapping {9}, (f)}x_1, . NT 1=0,... lev 1O {f (k) h=1,... . N
has this property. Before we consider 7% let us introduce the corre-
sponding mapping over the whole axis R. We set t9 := —(k — 1)h2!¢V
k € Z and # = —(2k — DR2V L kK € Z, 1 = 1,...,lev.
Further we introduce the wavelet functionals 99(f) := f(¢}) and
O (f) = FE) = [f(y) + F(Eh2)]/2 with I = 1,... ,lev, k € Z and
ty = —h2e =Dk — 1), &, := —h2 "Dk By T7 we de-
note the transform 77 : {52(f)}l:0’,,_,1ev7kez — {f(—=(k — 1)h}rez.
This mapping has just the pyramid form, i.e., setting n' := {nfc}keZa

¢l = {€l hez with 7t = OL(f) and £ := f(—(k — 1)h2"" 1), we
get TT : {&% 0, ... ,n'} — &' and the two-scale relation (refinement
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equation)

-1 .
fk=2s+1

(3.3) &= S+1 1 s
775+1 + [554—1 + §S+2] ifk=2s+2.

Thus £V can be calculated following the scheme
&° ¢ ¢ .

(3.4 / / /
0! n’ e

lev

where €0, 9, ... n'® are given and ¢!V is to be determined.

1
£,

Lemma 3.3. The wavelet transform TT : [[°]'V — 1°° is bounded
by 2(lev +1).

Proof. Identifying ¢ and 7' with the functions ¢!(t) :=
S kez &P 0t (t) := Y ez mit" ! defined over the umit circle, Equa-
tion (3.3) implies

(35) &) =t'(t*) +9E),  g(t)=1+ %[t +t7).

Hence,

(3.6)

lev —1

ev ev — i1 lev
& ( Z a0 T (E ) + gy (DE(ET),
1=

(3.7) o) =1, a(t) = g-1(t*)g().

+
Since g (¢ )t2l = Zf 1+1 Ait1, we observe that, for a fixed coefficient

lev lev —1
)

, to f,lf" there contrlbute at most two coefficients of each n
l = l ,lev and two of £°. Thus

lev

(3.8) Y| < 25up I sup €01 +2) sup [AFY sup k|-
=1 J



80 A. RATHSFELD

It remains to check the boundedness of sup; \)\é |. Since the )\é, j € Z are

the Fourier coefficients of the function g;, We get |)\§| < fol |91 (e%™%)]| ds.
Consequently, we only have to show that

1 1
/ lgi(e2™*)| ds = / gi(e®™)ds = 1.
0

0

We prove this by induction. Clearly, fol go(e2™%) ds = 1. Let us suppose
that fol g1-1(e?™)ds = 1. The symmetry g;_;(e2™) = g;_1(e2"(1=%))
implies that g;_1(e®"%) = ZJO.';O cjcos(2mjs) and gj_1(e*™?%) =
> =0 ¢j cos(2m2js). Thus, gi—1(€2™2%) is orthogonal to cos(27s) and
we conclude

(3.9)
1 . 1 )
/ gl(eﬂws) ds = / gl71(6227r25)g(627rs) ds
0 0

1 1
= / g1 1(e"*™%) ds + / g1-1(e*™%%) cos(27s) ds
0 0

2 1
:/ g,_l(emt)dt/z:/ Gt (€™ dt = 1.
0 0

In other words, sup;; [A] <1 and the proof is finished. o

Now let I°°(n) stand for the space R™ supplied with the supremum
norm and consider T4 : % (NT) & I®°(NL) @ --- @1 (NL, ) — I°°(N).

lev

Lemma 3.4. The wavelet transform T%; is bounded by C -lev , where
the constant C' is independent of lev and N.

Proof. Together with 77 the restriction Tx of T7 to I®°(Ng) @
1°(NL)®---®l°°(NL, ) — 1°°(N) is bounded by C-lev. The difference
between T4 and T4 is that the restricted version

1
l _ 0l -1
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of relation (3.3) is replaced by (cf. (1.12))

§éNT 77NT + §2NT - _£2NT -
(3.11) nhr + 3§2NT/2 = 52NT71/2 if1=1

nNT+3§2NT /2 — szT /2 if 1> 2.

If the entries (T% ), @.5) of TE are defined by &V = ZJ. (Tg)k,(o,j)f? +
Y 1<i<lev Z] (T k(1 ’])77] and the entries of T similarly, then (Tg;)k’(l’j)
is equal to the entry (T3 )y, if 7 < N, 1 >0o0rif j < Ny —1,1=0.
Indeed, the new relation (3.11) affects only the entries (Tx); N7y and
(Tg;)k,(()’Ng"_l) There are two ways to pass from 77NT to £V via (3.3)
and (3.11), respectively. If t3r <t <t then one can go from
1
77NT to &5y using relation (3. 11) and from that to £V by (3.3) or one

goes from 77NT to £/ using (3.11) and from that to £V by (3.3).

2NT L
Let a and b denote the factor by which nNT is multiplied during the

application of (3.11) on the way from 77NT to szT and & 5, respec-

2NT L
tively. Then we get (T5)p,,nT) = a(Tg) ko (roNT) + O(TR )k (ro1,NT )
Next we shall prove that a and b are bounded. If this is done, then the
previous proof implies |(I5%)x, ;)| < Csup, , [(T%)k,(rs)] < C. Argu-
ing analogously to the previous proof, we also observe that, for each k
and [, there are at most two values j with (T )k ,;) # 0. Thus

lev Nz

(3.12) |ITE]| —supZZ| Ta )k, 1,5y < Clev.

=0 j=1

Let us estimate a and b. If we proceed from §§VT to &5 yr using (3.11),
1 T

we can choose between a step over two levels with factor —1/2 and a
step over one level with factor 3/2. Summing up all products of these
possible factors during the way from level [ to 7, we get a. We observe
that a = a; depends only on the difference j = r — [ and that

aj:3aj,1/2—aj,2/2, j:2,3,...,
(3.13) 3

a():]., a1:§.
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Hence, the values a =a; =2 — 277 are bounded by 2, and b = aj_1 is
bounded too. O

Now let us consider the wavelet transform TT]‘\‘,.

Lemma 3.5. The wavelet transform Trj(‘, is bounded by a constant
independent of lev and N.

Proof. Recall the definition of the wavelets in Section 1.3 (cf. (1.17)).
Analogously, to the wavelets in the test space, it suffices to consider the
wavelet transform mapping {&x} -y to {nk}i—o.. tev k=1... NA, where

A
Z;cvzl Eepr = Z}ZO kNél ntyl. These wavelets are an adaptation of
the wavelets over the real axis to the interval [—oo,0]. However, to
any function zy = Zszl &rpr, over [—oo, 0] there corresponds a unique

extension Zy over the real axis obtained by the reflections
(3.14)

an(s—2(N —1)h) if (N=1)h<s<2(N—1)h
. zn(—s) if0<s<(N-1h
N an(s) if ~(N-1)h<s<0
an(=2(N —1)h—s) if —2(N —1)h < s< —(N — 1)k

The coefficients of z with respect to the bases {px} and {t}} coincide
with those of Zy with respect to the corresponding bases over the real
axis (cf. (1.16)). Therefore, it is enough to prove the boundedness of
the wavelet transform over the real axis. The corresponding wavelets
over the axis are biorthogonal wavelets in the sense of [16]. The dual
wavelets, however, have exponential decay instead of finite support.
More precisely, setting h(z) = v/227(2+1)%/4 and h(z) = v2[4z" 1 (2+
1)?]/[z7%(z + 1)* + 27%(2 — 1)*] and following the definitions of [16],
we get biorthogonal wavelet bases. Indeed, it is not hard to prove that
the assumptions of [16], Proposition 4.9 are satisfied with L = 2 and
k = 1. Moreover, one can show that the dual scaling function ) decays
exponentially and is continuous. The wavelet function in this setting is

(3.15) P (@) = V2D (-1)"h_n1®(22 + 1),

nez
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where h(z) = Y oncz hnz" and ® is our hat function ¢ from (1.2).
However, h(z) = g(2)v/2z7'(2+1)2/4 with g(z) = 8/[z7 246+ 2] such
that g(z) # 0 for |z| =1 and g(—2) = g(z) = 3_,,cz 92n2>". Therefore,
the span of translates of the wavelet 1/ is equal to the span of translates
of the wavelet ¢ from (1.15). We get the same multiresolution analysis
for 4¢ and for ¥. The wavelet coefficients of the wavelet basis defined
with 1 can be obtained from those defined with ) by a simple discrete
convolution on each level and vice versa. Since % is a linear combination
of the translates of ¥, we conclude that there also exists a dual wavelet
® for our 9. This ¥? is continuous, decays exponentially and defines
a dual basis wﬁk(s) = d(s/(h2'V 1) — (2k — 1))/ (h2V 7Y, k € Z,
l=1,...,lev with (wldl,kl,i/?fc) = 81,1, 0k k- For zy = Y niel and its
extension Zy = S kil (cf. (3.14)), we conclude

il = |G it < [0t
Slu]flnfcl < Cllzn]lLe-

)

FENI S
(3.16)

Using this, zy = Y. nivl = Y &k, and (3.1), we arrive at the
boundedness of the wavelet transform 7'r%. O

Theorem 3.6. The approzimate operator A%, := Trk B\ Tr4 of the
wavelet algorithm from Section 1.4 is stable. More precisely, A% is a
small perturbation of the stable (cf. Theorem 8.1) approximate operator
An = TrE ByTr4 (cf. the end of Section 1.3) of the collocation method
and there holds:

i) ||[Ay —TrEBSTri]| < C-h?-lev?,
ii) ||AY — TrT B Trd|| < C/lev.

Proof. Clearly, the stability of Ay and ||Ay — A%|| — 0 for N — oo
imply the stability of AY. Thus the stability of A% follows from
Theorem 3.1 and the assertions i) and ii). Let us prove the estimate
for the compression error in i).

We have to estimate the kernel function (P, Q) for P € supp ﬁ,i and
Q@ € suppv,, where ¥, is not a boundary wavelet. Suppose without
loss of generality,

(3.17) ng =, I~ (t) = R + €'v, @I (t) = R + €',
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If j. = j, and ¥ = W, then ng - (P — Q) = 0 and k(P, Q) vanishes. For
U # W, we get
. . . n . S N _ t 7
K@ (), 87 (5))| Do (5)] = T ET =) oy

lesw — etv)?

(3.18)

ﬁ-w—et_sﬁ-17|_,|
= —— ||
| — et—57|2

This kernel function is smooth. Moreover, it is easy to see that any
derivative of this function with respect to ¢ or s can be estimated by
a constant. Using the representation f(P,) = Y% | a;f(P.;) and the

notation P, ; = ®/=(t, ;), we conclude

(3-19) (Av)(P) :Zail R(@7 (te,q), @7 () DD (s) |, (5) ds.

Let Tay, stand for the Taylor series expansion up to linear terms
of k(®I=(t), ®I(s))| DD (s)| with respect to t at the point t = t 1.
Furthermore, let Tay o stand for the Taylor series expansion up to linear
terms of k(®7=(t), ®%(s))|D®’(s)] — Tay, with respect to s at the
midpoint s = s, of the support of ¢,. Then we set Tay = Tay 1 + Tay
and get

(8.20) k(7 (t), @ (5))| DB (s)] — Tay | < Clt — tou[2ls — s,

In view of the moment conditions of our wavelets, we know that ﬁn
vanishes at the linear function Tay ; if [,, > 0 and that z/;}c‘b is orthogonal

to Tay o if [, > 0 and if z/)fc‘L is not a boundary wavelet. Thus, let us
suppose that [, > 0, [, > 0 and that 9, is not a boundary wavelet.
From (3.20) we conclude

(40)(P) = 3o [ (@9 (2,07 (5)

|D®7 (s)| — Tay }1,&21 (s)ds,
(3.21) |(A¢L)(ﬁn)\ < C(diam supp ﬂfc“n)z(diam supp 1/)21)2

/ 4.(Q)drQ
< Ol tey(n2lev 2 / 4,(Q)] dr Q.
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Since ¢ € IA\IA(ﬁK) implies that [, + [, > lev, we arrive at

DT (Ag)(Po)| < Cht2He sup > 1.(Q)]
(3.22) LEIM\IA(B,) Ol era
' < Ch*[h™ ' log h™']?lev

< Ch2lev?.

Thus HBN — BICV||L(IOO(IA)7ZOO(IT)) S Ch2lev3. By Lemmas 3.4 and 3.3
as well as by Ay = Trk BNTr4, we get assertion i).

Let us turn to the discretization error on the lefthand side of ii). We
have to estimate the entries Cy , of C' = B§, — Bfy, where

Cr, = Za / B(Prty Q0(Q) — 6, (Pe)] doT

- Q; Z k(P,w', QM)WL(QM) - wb(Pn,i)]wu

i= neJ

3
(3.23) =Y a{Te} + Tej1h,(Pei)},

i=1
Tell = /Fk(PIi,ia Q)¢L(Q) dQF
> k(Peiy Q¥ (Qu)wy,

peJ

Te? := /Fk(P,w», Q) dol = Y k(Pei, Quwy.

ped

The quadrature error Te? is the sum of the quadrature error taken
over the subintervals adjacent to the corners and of that taken over the
rest. Since the kernel (cf. (3.18)) is smooth over the rest, we get the
usual O(hZ,) estimate for the trapezoidal rule. For the error over the
subintervals adjacent to the corner points, we obtain the estimate (cf.
the definition of @, (f;0,e~(V=Dh))

329 [ okEQldar- (1)
subinterval ?

*
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Here Og is the derivative in the tangential direction tq, |tg| = 1, of
I’ and m is the length of the subinterval. Without loss of generality,
we may suppose that the P, ; and the subinterval are placed on two
different sides of I' adjacent to the corner point R. Hence,

(3.25)
Igpicﬁ)t@ (Q—P),
620 eP @S2l

Since P, ; is a collocation point, we get |P, ; — Q| > C~!-m and (3.24)
can be estimated by C [ |k(Pyi, Q)| dgT' /i, < C/i,. Collecting terms,
we arrive at

1
(3.27) |Tef| < O{hgu + ,—}.

Ly
The estimation of the quadrature error T'el over the subintervals
adjacent to the corner points is analogous to that of T'e? since the trial
functions are constant over these subintervals. Thus, let us suppose

that supp, does not contain a corner and apply the substitutions
(3.17). We get

Tel = / B(Pa sy @ (5))| D27 (3|01 (s) ds
S K(Pasy @ (53)| DB (53) [ (51)60n,

A

(3.28)

where &y := e **@, (cf. Section 1.2). Now observe that our quadrature
rule is exact at functions from the trial space. Hence, if we choose an
s’ € supp ¢§€”L, we arrive at

Tel = / (k(Pr s, ()| DB ()
(P, (s'>>|D<1>fL(s'>uw;1<s>ds
- Sk, 52) DR 5)

— k(Pri @7 (s) [ DR (') 195, (51)n.

(3.29)
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Taking into account the properties of the kernel k(®7=(t), ®J«(s))| D®%(s)|,
it is not hard to derive

(3.30) |Te}| < C(diam supp 1/121) . /r [¥.(Q)] doT.

Taking into account that diam supp ‘/’5@ ~ h2'¢V =l and that h2'¢" ~
lev, we get the bound C - lev 3 [ |,(Q)|dol for |Te}| if I, >
4[loglev /log2]. On the other hand, the usual first order estimate for
the quadrature, together with the smoothness of the kernel implies

\Te“ < Chqu sup |6Q¢L(Q)| dQF’

(3.31) @ SUPP .

< Chgu(h2'e¥ 1)t / dgl.
supp ¥,

Together with hg, < h2!¢V~1¢Vo and levy = 7[loglev /log2] we con-
clude [Te}| < C -lev 3 [ dol if I, < 4[loglev /log2]. Hence, for

supp .
any [,, we get the bound C - lev —3 dol.

supp ¥,
From Equations (3.23), (3.27), and the last estimation we conclude
that

3

1
Cud < O+ £} 3 (P

i=1
1 3
+C{—+16V3}2/ dQF,
(3.32) bx i—1 Y/ supp ¥,
1 1
Z |Cn,b| < C{h3u+_}lev +C{,—+16V3}16V,
Ty (3

LGIA(ﬁn) :
1

< C{hgu + = +lev 3}1ev.
L

In view of hg, < h2!eV1evo i =1lev? and levy = 7[loglev /log 2], we
conclude

(3.33) > |Chul < C{lev?27V0 4 lev P Hev < Cflev’.

(ETA(P)
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Hence, || BS, — By || < C/lev? and Lemmas 3.4 and 3.3 lead to assertion
ii). O

Remark 3.7. We conjecture that Theorem 3.6 holds also for the
piecewise cubic wavelet algorithm of Section 1.5. Of course, the second
order convergence is to be replaced by fourth order convergence and
the exponents of the logarithm change. The proof should be analogous
to that presented above. The only open problem is to prove analogues
of Lemmas 3.4 and 3.5. We have not tried to show the boundedness
of the transforms correpsonding to the boundary modification of the
wavelets.

4. Asymptotic rates of convergence. Let x denote the solution
of Av = (I + 2W)z = vy, and suppose the righthand side y is
continuous on I' and infinitely differentiable on each closed side of
I'. Then the function z is infinitely differentiable at any point of T’
which is not a corner point. If R is a corner, then the asymptotics
of z(P) for P — R takes the form z(P) — z(R) ~ |P — R|"R, where
kg = 7/ max(a,2m — a) and « is the interior angle of the polygon
I at R (cf. [37, 28]). In particular, « belongs to the Holder class
over I with exponent kp := min{kg, R corner of I'} and the functions
(—00,0] 2 s+ z(®I(s)), j=1,..., K are smooth.

Theorem 4.1. Let x denote the exact solution of the double layer
potential equation Ax = y, and suppose that xy is the approzimate
solution obtained by the algorithm of Section 1.4, i.e., xxy =Y ;€.
is obtained by solving A%{&.}er = {y(Px)}uer iteratively. Note
that xy = Y, cra Mtp. with the solution {n,},cra from the equation
Bi\{n}iera = {y(P:)Yuerr. If the righthand side y is continuous on
I' and infinitely differentiable on each closed side of T, then there holds

(4.1) ||z — zx]||ze < Cmax(lev N=¢"r lev *h?),

where C' is independent of N and h.

Corollary 4.2. The estimate (4.1) expressed in terms of the step
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size h or in terms of the degree of freedom N takes the form

Chmin((np,Z) [log h*l]lll

42)  le=anllim < { N e e

where p; = —Ckp + 1, pe = 1 for (kr < 2 and p1 = 4, pus = 6 for
Ckr > 2.

Proof. Let L denote the interpolation projection Ly f:=)_, o, f(P,)p..
Then we can identify the function zy of the trial space im Ly with the
sequence {zn(P,)}er € 1°°(I) of its coefficients. Using ||Ly|| = 1 and
the stability of A%, = Trf,BgvTrﬁ € L (imLy) (cf. Theorem 3.6), we
get

t—xny =z — Lyz+ (A%) TAY Lyx — (A%) 'Ly,
(4.3) [z —an|| < |lz — Lyz|| + [[(AR) [ |A¥ Lve — Ly Az||
S C||£IJ — LNJJH + C||A%LN$ — LNALNJ,‘H

The operator Ly Alim 1, is nothing other than the collocation operator
Ap of Section 1.1. Hence, we obtain

[lz — zn|| < C|lz — Lyz||
(4.4) + C||ITry B Tris — Anl| |||
+Tryl[[BY — By)Try Lyl

Using the smoothness of z and the special choice of the grids (cf. Section
1.1), it is not hard to obtain

(4.5) lz — Lya||pe < Cmax(h? N ¢Fr).

The term ||Tr% B$Tr4 — Ay|| has been estimated in Theorem 3.6, i)
and ||Tr%|| in Lemma 3.4. Hence, it remains to consider

(4.6) [[[By — By]Try Lyal]

= sup |B§VTTﬁLNI(ﬁn) - BJCVTTI/\lILNx(ﬁHN
relIT
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Obviously, we have
N N 3
BNTryLyo(Ps) — ByTryLya(Ps) = > aiTe;,
=1

(47) Te; = / B(Prir Q)2 (Q) — @y (Pr.i)] dgT

3 (P Qu)ln (Qu) — 5 (P,

where z}; is the compression EbeIA(? ) N, of Lyz = ZLQA my,.

Let us first estimate the quadrature error (4.7) over a subinterval
I', adjacent to the corner points. Without loss of generality, we may
suppose that P, is not a corner point and that P,; and I', belong to two
different sides of I having the corner point R in common. For Q € T'y,
the value 2} (Q) is equal to Lyz(Q) and to the value of x at the corner
point R. Moreover, z}3(Px;) = Lnz(Py;) = z(Ps,). Consequently,
we get

(4.8)  [zN(Q) — 2y (Pui)| = [2(R) — #(Pui)| < C|R = Pey|™.

(4.9)
‘ /F k(Pri, Q)N (Q)—2N (P )] dol

< C/ Pi—Q| YdoT|R— P, ;|°"
T

a

<CIR - Pm\kffl/ dol
Ca
< C|R— P, |"" IN"¢ < N ¢rr,

The quadratures over I';, can be estimated similarly.
Now let us turn the quadrature error over the union of all subintervals
which are not adjacent to corner points. We write

3
Z a;Te; =Te' +Te",
i—1
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Te'_/[zal P Q)] 3(@) dor

(4.10) -3 [Za (Preis Qu) ]x}*v(Qu)wu,

peJ

TeHZ/[ZOéﬁN nz nzaQ):| dQF

3

Y [ZalmN P Q)|

ned

Without loss of generality, we suppose _that ﬁ,i is not a corner point
and that the domain of integration and P, belong to two different sides
of I' adjacent to a corner point R. Let the domain of integration be
part of I';. Using the substitutions (3.17), the quadrature error of Te’
can be estimated by

2
(4.11) A2,

{[Zaz (Pass ()P (5)]|5:(27 () } .

Since the second derivative of this piecewise linear function is zero (note
that the points of discontinuity of the first derivative of the piecewise
linear functions are node points of the trapezoidal rule), we get

(412) 2] | Y- k(P () D2 (9] (210 |

i=1

-3 (7)) ’[Zaz (Pass () D (5) | (@7 (9)]

=0

Now we take into account the smoothness of the kernel function (cf.
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the proof of Theorem 3.6) and apply the estimate (cf. Section 1.3)
(4.13)

3
. 1 ) .
> aif (Peg)| = ‘f((lﬂ“ (5)) — S{A(@7(t, ) + F( @7 (8 )}
i=1
<C sup o7 [f ° ‘I)j“] (t) ;: 1 tt,2|2,

l l
1 SESH

<O sup  |OF[f o ®7%](t)][diam supp O °

tEsupp 79;";

to get

ds

/

e2{ [gakw ¥ (6D (5[5 (2(5) |

< C|diam supp ﬁ;‘n]Q{sup [z o <I>j](8)|
+ sup |9 [z}y © D7](s) [}

(4.14)

Similarly, we can estimate Te” by

(4.15) hZ, - /

_ 12
= hZ, -

o: [Z ;@ (P i)k( Py i, ®7(5))| D® (s) ] ds

[ 3 (PP (5 D9 5] |

< O 12, {sup [z 0 37](s)| + sup |Oufe 0 7](s)|

+ sup |0%[z o ®7|(s)|} - [diam supp 19,;;]2
<C- h(zw [diam supp 192’1]2.

Now it remains to estimate sup |[z% o ®7](s)| and sup |0s[z% o ®7](s)|.
Since the estimate of sup |z% o 7| is similar to that of sup |9s[z} o

®7](s)|, we shall concentrate on the latter. From
(4.16

)
0, Zn ,(/} 21ev l :| an/ 21ev l (/(h2levfl)7k)

1k
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and from the boundedness of supp ¢ = supp ¢’ (cf. (1.15)), it is easy
to see that

sup |0y [zl 0 @7](s)| < C-lev  sup
LEIA(I/D\K

‘ ub
lev —1,
(4.17) ) "2

< C-lev sup
el

up
h21ev -1,

In order to estimate 7,/(h2'®V ~%), we introduce the extension Zy of
[-(N —1)h,0] 5 s — Lyz(®'(s)) by

(4.18)
Lye(®i(s—2(N-1)h))  if (N—1)h < s < 2(N=1)h

. . Lyz(®i(—s)) if0<s<(N-1)h

AN = L a(@i(s) if —~(N—1)h<s<0
Lya(®/(—2(N-1)h —s)) if —2(N—-1)h < s < —(N—1)h

Note that, since the wavelets over [—o0, 0] are defined with the help of
reflection, the wavelet coefficient of Lz corresponding to {1} } is the
same as that of Zy corresponding to the wavelet basis defined by (1.16)
over the real axis. The wavelet coefficients of Zy can be computed via
the biorthogonal wavelet functions dng (cf. the proof of Lemma 3.5)
such that

lev

(4.19) =) > W 2L

=0 keZ

Now fix [ with 0 < [ < lev. Surely Zy has a bounded deriva-
tive. Consequently, there exists a piecewise linear function Z} in
span {47, 0 < m < I,k € Z} such that ||y — 2§||p~ < C(h2!V —HH1),
Since 1,&;%,9 is orthogonal to Z%;, we get

77;9 = (wld,kazN) = (¢ld,k72N - z}\,),

(4.20) il < N[l ]2y — 2y Iz < CR2' L

If | =0, then |n)| = (1/137,‘,,21\;) <O < C(h2).
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Collecting the estimates (4.10)—(4.20), we conclude that the quadra-
ture error |BN\TraLnz(P) — B$TriLyz(P,)| taken over all the
subintervals of I' which are not adjacent to a corner can be estimated

by

Chgu[diam supp 192"‘;]2 lev < C(h2'%)%(h2!Y ~1%)2 . lev

(4.21)
< C -lev (h?2'V)2 < C -lev 3h2.
From this estimate, Lemma 3.4, Theorem 3.6, and the inequalities
(4.4)—(4.6) and (4.9), we obtain
(4.22)
|z — zy|| < C{max(h?, N=¢°T) 4+ h%lev* + lev [N~¢~T 4 lev 3h?]},

which proves (4.1). O

Remark 4.3. If the conjecture of Remark 3.7 is true, then a result
analogous to Theorem 4.1 can be proved for the piecewise cubic col-
location together with the wavelet algorithm of Section 1.5. Clearly,
the exponent two in (4.1) is to be replaced by four since this exponent
corresponds to the polynomial degree of the trial functions and to the
convergence order of the quadrature rule.

Remark 4.4. Let us note that a better compression than that of
Section 1.4 is possible. Indeed, define I*(P,) to be the set of all . € T4
such that v,(Py ;) # 0, i = 1,2, 3 or that ¢, is a boundary wavelet or
that [, < [lev —[,]/2. In this case the bound of Theorem 3.6, i) takes
the form C - h - lev®. However, arguing analogously to (4.20), one can
prove that |n,| < C'- (h2!* ~)? for Lya =, 74 M. Using this, it
is not hard to get (cf. (3.21))

(423) [Ty BRTri — An]Lyz|
SITrill-sup >0 |(Ad)(Prnl

rel ~

LeIA\TA(P,)
< C - h2lev?®.

Hence we arrive at a convergence estimate of ||z — zn|| < C - h%lev®
for this kind of compression if (kp > 2.
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