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REDUCTION OF AN INFINITE SYSTEM
OF INTEGRAL EQUATIONS OF POTENTIAL TYPE ON
A ONE-DIMENSIONAL LATTICE OF CLOSED CURVES
IN THE PLANE TO A FINITE SYSTEM OF
INDEPENDENT PSEUDODIFFERENTIAL EQUATIONS
ON A CIRCLE

VALERY A. KHOLODNYI

ABSTRACT. An infinite system of integral equations which
arises in the reduction of the Dirichlet problem for the
Helmholtz equation in the plane to the boundary is consid-
ered. The boundary is formed by an infinite network of non-
intersecting infinitely smooth simple closed curves obtained
from a fixed one by a parallel translation by vectors belonging
to a one-dimensional lattice. It is shown that if the righthand
side of the system is a T-periodic function on the lattice, then
the system can be reduced to a system of 7" independent pseu-
dodifferential equations on the unit circle with classic elliptic
pseudodifferential operators of order —1 in the Sobolev scale.
Another significant outcome of this work is that this reduc-
tion allows one to apply the many known powerful methods
for the numerical analysis of classic elliptic pseudodifferential
equations on the unit circle to the original system.

1. Introduction. It is well known (see, for example, [1-3]) that the
Dirichlet boundary value problem for the Helmholtz equation in the
plane, with radiation condition at infinity and the boundary formed by
a finite number N of nonintersecting infinitely smooth simple closed
curves, can be reduced to a system of IV integral equations. The
N x N matrix integral operator of this system was proved to be an
N x N matrix classic elliptic pseudodifferential operator of order —1
in the Sobolev scale of IN-dimensional complex vector functions on
the unit circle. The practical benefit of viewing the original system
of integral equations as a system of pseudodifferential equations is
that one can then apply the many known powerful methods for the
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numerical analysis of such systems of pseudodifferential equations (see,
for example, [4] and [5] and references therein).

In the present paper we generalize this idea to the case in which
the boundary is formed in a particular way by an infinite number
of such curves. We specify two natural conditions under which we
are able to reduce our original infinite system to a finite system of
independent pseudodifferential equations on the unit circle with classic
elliptic pseudodifferential operators of order —1 in the Sobolev scale.

Let v be an infinitely smooth simple closed curve in the plane with
coordinates (z1,x2). Without loss of generality, we assume the length
of v to be equal to 2w. Let Z(§) = (x1(£),z2(€)) define the curve
~ parametrically where £ is the natural parameter on v. It is obvious
that Z(€) is an infinitely smooth function. We denote by I" the following
infinite network of curves in the plane:

T ={vm:Zm(&) =%(&) +hm,m e Z,¢ € [0;2n]},

where h is the vector (h,0) with b > sup{|z1(&)—z1(n)| : &, € [0, 27]},
Z, (€) defines the curve v, parametrically, and Z is the set of integers.

Remark. Since 7 is a closed curve, sup{|z1(¢) —z1(n)| : &, 7 € [0, 27}
is finite. This supremum is chosen as a lower bound for A to ensure
that no two curves from ~ intersect. Then I' is an infinite set of
nonintersecting identical curves <y, obtained from a fixed one = by
a parallel translation by vectors hm, m € Z, which form a one-
dimensional lattice with a lattice constant h.

We will treat a complex function on a curve 7, in I' as a complex
function on the unit circle S, and we will identify it with the corre-
sponding 27-periodic function on the real line.

Let us define the following infinite system of integral equations in the
unknown functions u; on v; in I':

(1) Z Amflul = fm7 me Za

l=—00

where f,, is a given complex function on +,, and A,,_; is an integral
operator defined by

- 2w
() (Amou)(©) = | HE (2(€) ~()~hlm—1) () iy
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where k£ > 0, HSQ) is the Hankel function and |-| stands for the standard
Cartesian distance in the plane.

We comment that system (1) can be obtained in a standard way as
a reduction of the Dirichlet boundary-value problem for the Helmholtz
equation in the plane to the boundary formed by the network of curves
I'. This problem arises in radio physics, electrical engineering, acoustic
and so on (see, for example, [6] and [7]).

We recall [1] that the Sobolev space Hy = Hy(S) of complex functions
on S is the completion of the space C*°(.S) of infinitely smooth complex
functions on S with respect to the norm

Hulle = ( S +p2>tcp<u>|2)1/2

p=—o00
where Cp(u) are the Fourier coefficients of the function » with respect
to the system {e?¢ p € Z}.

Also, we recall that if g is an N-periodic map from a set of positive
integers 1,2,..., N into a Banach space, then the discrete Fourier
transform of g is defined by

N
(3) gs = m—)sg Z e i@2m/N)s 9Im»
m=1

where § stands for the discrete Fourier image of g.

The inverse discrete Fourier transform is given by

1 N
_ = 27r/N)ms'~

In this paper we will reserve the subscript s to denote the image g5 of
the discrete Fourier transform of g, omitting the hat.

Let us formulate the following conditions:

Condition 1. Periodicity. There exists a positive integer 1" such
that fo7 = fm and %47 = Uy, for each m in Z. Hereafter 7' will
stand for the least such integer.
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Condition 2. Nonresonance. The product khT # 0 mod 2.

Remark. Our periodicity condition is a very natural one and holds
in numerous applications dealing with wave propagation, that is, with
processes periodic with respect to the network of curves I'.

Remark. The T-periodicity of the function f,, on the lattice corre-
sponds to the Th-periodicity of an incident field (for example, an elec-
tromagnetic or acoustic field) in the z; direction in the plane. Since k
has the physical meaning of a wave number, the nonresonance condi-
tion means that the corresponding wave length of free space A = 27 /k
does not fit into the distance Th an integral number of times.

We denote by Ay the following operator:

T
(4) P R W

=1

where the operator A4; is given by

(5) A=Y Apr. leZ

vV=—00

We consider the following system of 7" independent equations in the
unknown functions wug:

(6) Asus:fs, 3:1,...,T,

where the functions fs are given by
T
fs — Z 671(27r/T)smfm-
m=1

We are now ready to present the main result of this paper.

Theorem. Let Conditions 1 and 2 hold, and let f,, belong to H; for
allm=1,...,T. Then:
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(i) Systems (1) and (6) are equivalent in the sense that their
solutions u; and us are discrete Fourier images of each other:

1 T
u = T Zez(Qﬂ/T)lsus;

s=1

(ii) The operators As for all s = 1,...,T are classic elliptic
pseudodifferential operators of order —1 in the Sobolev scale on S;

(i) All solutions u; of system (1) belong to Hy_1 for alll =1,...,T.

Remark. Under Conditions (1) and (2) the theorem reduces the
problem of solving system (1) to that of system (6) which consists of T
independent pseudodifferential equations on the unit circle with classic
elliptic pseudodifferential operators of order —1 in the Sobolev scale.
Also, since the kernel subspaces of such pseudodifferential operators are
at most finite dimensional [1], the operators Ay, for all s = 1,...,T,
are invertible except at most on some finite dimensional subspaces.

2. Proof of the Theorem. In order to prove the theorem, we need
some preparation.

Lemma 1. The function

oo

Giem =Y HP (k) - z(n) + h(l +vT)|)

vil+vT#0

is infinitely smooth on the torus S X S whenever | € Z and khT #
0 mod 27.

Proof. In order to prove Lemma 1 it is enough to demonstrate that
the series

@ _Z ggiaa—,;Hé”(klf(ﬁ) — 2(n) + h(l +vT)))

v:lIvT;éO
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converges uniformly to a continuous function on S x .S, whenever [ € Z,
khT # 0 mod 2w and i,j € Z, (Z, stands for the set of nonnegative
integers). Using the asymptotic behavior of the Hankel function HSZ)
and its derivatives for large values of their arguments [8] and the infinite
smoothness of the function Z(£), it is easy to show that the summands
of the above series have the following asymptote as |v| — oo:

efik:hT|v|

o Cua€m) + O(el %),
where C; ;(§,m) € C™(S x S) for all 4,5 € Z4, C;,(&,n) does not
depend on v and the asymptote O(|v|~?/2) is understood in the sense
of the topology on C*°(S x S). Note that C*°(S x S) stands for the
space of infinitely smooth complex functions on the torus S x S with
the standard topology.

From the Dirichlet convergence test for Fourier series and from the
absolute convergence of a series with summands of the form O(|v|~%)
for & > 1 as |v| = o0, we conclude that series (7) converges uniformly
with respect to £ and 7 to a continuous function on S X S whenever
l € Z, khT # 0mod 27 and 4,5 € Z;. This completes the proof of
Lemma 1. o

For each I € Z we consider the following sequence of operators:

;L = Z Al+vT; n e Z+.
lv|<n

We denote by || - |[(¢,—¢,) the norm in the Banach space O, _,,) of
bounded linear operators acting from H;, to Hy,.

In what follows, whenever we refer to the order of an operator we
mean the order in the Sobolev scale on the unit circle S.

Lemma 2. Let Condition (2) hold. Then the operator A; defined in
expression (5) has the following properties:

(i) A; is a classic elliptic pseudodifferential operator (PDO) of order
—14fl=0mod T and is an operator of order —oco if I £ 0 mod T}

(ii) For eachl € Z andt € R, ||A; — A?||(t—t4+1) — 0 as n — oo;
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(i) For eachl € Z, Aipr = Aj.

Proof. From expressions (2) and (5) we obtain the following expres-
sion for the kernel of the operator A;:

(8) Ki(&m) Z H? (2(€) ~ &(n) + R +0T))), L€ Z.

V=—00

In order to prove (i), we split the kernel (8) into two summands:

where
Kolen) = 3 HS® (klz(6) Z 5(1 +0T),
Kiem =7 > HPHae) —a(m) + b +oT))),
v:ql)-&:-;TO;O

and 6(m) is the Kronecker symbol.

By Lemma 1, the function Kj(&,7) belongs to C*(S x S) for every
l € Z. In this case it is well known [1] that the operator with the
kernel (9) is a classic elliptic PDO of order —1 if = 0 mod 7" and is
an operator of order —oo if [ # 0 mod 7.

Let us prove (ii). Consider the kernel AK[*(§,n) of the operator
AA} = Ay — A} given for n > |I/T| by

AKP(E,n) = Z H (k|z(€) — Z(n) + A1 + vT))).

\ [>n

To prove (ii) it is enough to show that, if ] € Z and khT # 0 mod 2,
the kernel AK}'(&,n) converges to the zero function in the topology of
C>*(S x S) as n — oco. But this follows directly from Lemma 1.

In order to finish the proof of Lemma 2, it is enough to notice that
(iii) follows directly from the explicit form (8) of the kernel K;(&,n) of
the operator A;. |
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Now we are ready to prove the theorem stated in the introduction.

Proof of the Theorem. Using the operator A; from expression (5) and
Conditions (1) and (2), we rewrite system (1) in the following way:

T
(10) ZAm_,u, = fons m=1,...,T.
1=1
Let us prove (iii) first. Let A be the T' x T' matrix operator with the
elements A, ; where m,l =1,... ,T. Then system (10) becomes
Au = f,

where u and f are T-dimensional vector functions with the elements
w; and f,, respectively. According to Lemma 2 and to reference [1],
A is a matrix classic elliptic PDO of order —1 in the Sobolev scale of
T-dimensional complex vector functions on S. Therefore, all solutions
u; of system (10) belong to H;_; for every I =1,...,T.

Now let us prove (i). The action of the 7" x T matrix operator A
on the T-dimensional vector function u given by the lefthand side of
expression (10) can be viewed as a discrete convolution over variables
m and [. Diagonalizing the matrix operator A by applying the discrete
Fourier transform to both sides of system (10), we arrive at system (6)
where the functions us are given by the discrete Fourier transform of
ur:

T
Us = E 6_2(2W/T)SlU[.
=1

Let us comment that use of the discrete Fourier transform is justified
since A; € O—1-54), fm € Hy and w; € Hy 4 for every m,l =1,...,T,
where O(;_1_), Hy and H; ; are Banach spaces. Since the discrete
Fourier transform is nondegenerate, we conclude that system (10) and
system (6) are equivalent. The solution of system (10), and hence of
system (1), can be found as the inverse discrete Fourier transform of
the solution of system (6), as we stated in the Theorem.

In order to prove (ii), it is enough to notice that, according to
expressions (4), (5) and to Lemma 2, the operator As for every
s =1,...,T is the linear combination of T' operators: A;|;—r, which is
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a classic elliptic PDO of order —1, and A; with [ =1,...,T7 — 1, which
are operators of the order —oo. ]

Conclusion. Under natural conditions of periodicity and nonreso-
nance we reduce the infinite system (1) of integral equations on the
infinite network I' of nonintersecting infinitely smooth simple closed
curves to a finite system (6) of independent pseudodifferential equa-
tions on the unit circle with classic elliptic pseudodifferential operators
of order —1 in the Sobolev scale. The curves are obtained from a fixed
one by parallel translation by vectors belonging to a one-dimensional
lattice. System (1) is equivalent to the Dirichlet boundary-value prob-
lem for the Helmholtz equation in the plane with the boundary formed
by the network of curves I'. This problem arises in radio physics, elec-
trical engineering, acoustic and so on. Another significant outcome of
this work is that this reduction allows one to apply the many known
powerful methods for the numerial analysis of classic elliptic pseudod-
ifferential equations on the unit circle to the original system (1).

The result presented in this paper can be generalized easily to the case
of a finite number N of layers of networks I' with, generally speaking,
different curves for each layer. In this case, the operators A, of system
(6) are N x N matrix classic elliptic pseudodifferential operators of order
—1 in the Sobolev scale of N-dimensional complex vector functions on
the unit circle. Also, we point out that the periodicity condition may
be dropped from the theorem. In this case, system (6) becomes a one-
parameter family of pseudodifferential equations whose properties we
will investigate in the forthcoming papers.
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