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FULLY-DISCRETE COLLOCATION METHODS
FOR AN INTEGRAL EQUATION OF THE FIRST KIND

WILLIAM MCLEAN

ABSTRACT. Using a model boundary integral equation of
the first kind, we study some very simple numerical integration
schemes for implementing spline collocation methods. The
logarithmic singularity in the kernel is handled by combining
special correction terms with standard composite integration
rules of Gauss or Lobatto type. We prove that the stabil-
ity and asymptotic convergence properties of the collocation
method are maintained despite the quadrature errors. Nu-
merical experiments confirm the error analysis.

1. Introduction. Consider the logarithmic-kernel integral equation
of the first kind,

(1.1)
∫

Γ

U(Y ) log
ω

|X − Y | dsY = F (X) for X ∈ Γ.

Here Γ is a smooth, closed curve in the plane, |X−Y | is the Euclidean
distance between the points X and Y , and dsY is the element of arc
length at Y . (The role of the parameter ω is explained below.) A
standard numerical technique for solving boundary integral equations
such as (1.1) is the collocation method. In this paper we use the
theory in [8] to design some new and very simple numerical integration
techniques for handling the integrals that define the entries of the
collocation matrix. The resulting fully-discrete methods exhibit the
same rates of convergence as would be achieved using the collocation
method with exact integration.

Symm’s equation arises in boundary integral reformulations of the
Dirichlet problem for the Laplace equation in two dimensions, see [7].
Other second-order elliptic partial differential equations lead to similar
integral equations of the first kind, with kernels that have the same
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qualitative behavior, i.e., a logarithmic singularity when X = Y . This
singular behavior makes it difficult to use numerical quadratures to
evaluate accurately those entries of the collocation matrix that are on
or near the diagonal.

Equation (1.1) has a unique solution U for every F , provided

(1.2) ω �= cap (Γ),

where cap (Γ) denotes the logarithmic capacity (or transfinite diameter)
of Γ; see [6, Chapter 16] or [15]. Generally we are free to choose any
value for ω, and it is always the case that cap (Γ) is smaller than the
(ordinary Euclidean) diameter of Γ. Thus, if the exact value of cap (Γ)
is not known, then a simple way of ensuring that (1.2) holds is to choose
ω larger than the diameter of Γ. Henceforth, we shall assume that (1.2)
is satisfied.

We introduce a one-periodic parametric representation γ : R → Γ
and put

u(y) = U [γ(y)]|γ′(y)| and f(x) = F [γ(x)],

so as to recast (1.1) as a one-periodic integral equation on the real line,

(1.3) Lu = f,

where the integral operator L is defined by

(1.4) Lu(x) =
∫ 1

0

u(y) log
ω

|γ(x) − γ(y)| dy for x ∈ R.

Next we choose a step-size h = 1/N and define a uniform mesh,

(1.5) tj = jh.

For a fixed integer r ≥ 1, let Sh denote the space of one-periodic
smoothest splines of order r with breakpoints tj . In other words, a
one-periodic function v belongs to Sh if and only if v is a piecewise
polynomial of degree at most r − 1 having, if r ≥ 2, continuous
derivatives up to and including order r − 2. We choose ε ∈ [0, 1) and
define the collocation points

(1.6) xj = tj + εh.
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In the standard collocation method (i.e., with exact integration) the
numerical solution uh ∈ Sh satisfies

(1.7) Luh(xj) = f(xj) for 0 ≤ j ≤ N − 1.

One way of computing uh is to take a one-periodic B-spline basis
{B0, . . . , BN−1} for Sh, and to substitute an expansion of the form

uh(x) =
N−1∑
k=0

ukBk(x)

into (1.7), obtaining an N ×N linear system

N−1∑
k=0

ajkuk = f(xj) for 0 ≤ j ≤ N − 1.

The coefficients in this linear system are given by

(1.8) ajk = LBk(xj) =
∫ 1

0

Bk(y) log
ω

|γ(xj) − γ(y)| dy.

When the ajk are evaluated using some kind of quadrature formula,
the numerical solution uh no longer satisfies (1.7), but instead

(1.9) Lhuh(xj) = f(xj) for 0 ≤ j ≤ N − 1,

where Lh approximates L. In this paper we shall study fully-discrete
methods for which Lh has the form
(1.10)

Lhu(xj) = h
P∑

p=1

κph
npu(np)(xjp) +

N∑
k=1

h

Q∑
q=1

wqu(ykq) log
ω

|Xj−Ykq| .

Here
Xj = γ(xj), Xjp = γ(xjp), Ykq = γ(ykq),

where
xjp = tj + ξph and ykq = tk + ηqh.
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We will choose wq and ηq to be the weights and integration points of
an appropriate quadrature rule, so that

(1.11)
∫ 1

0

g(η) dη ≈
P∑

p=1

wpg(ηp).

The double sum in (1.10) is then just the result of applying the cor-
responding composite quadrature rule to the integral in the definition
(1.4) of Lu(x), with x = xj . We think of the first sum in (1.10) as a
correction term that compensates for the logarithmic singularity in the
integrand.

Table 1 lists six different methods of the form described above. The
number ρ is the order of accuracy of the method, as defined in Section
3. In practical terms, for any Cρ function G we shall see that

(1.12)
∫

Γ

G(Y )U(Y ) dsY =
N−1∑
k=0

h

Q∑
q=1

wqG(Ykq)uh(ykq) +O(hρ).

In particular, by taking G(Y ) = log(ω/|X − Y |) for X /∈ Γ, we
obtain an O(hρ) approximation to the single layer potential of U , away
from Γ. As an illustrative example, consider the first and simplest
method in Table 1, using piecewise-constant, midpoint collocation
(r = 1, ε = 1/2) with the two-point Gauss rule and a one-point
correction term (Q = 2, P = 1). In this case the B-spline Bk is just
the (periodized) characteristic polynomial of the k-th subinterval, and
the entries of the discrete collocation matrix are given by

(1.13) ajk = LhBk(xj) =
(
κ1δjk +

1
2

Q∑
q=1

log
ω

|Xj − Ykq|
)
h,

where δjk = 1 if j = k and 0 otherwise. For the particular value of κ1

listed in the table, this method has order ρ = 3, the same as would be
achieved using exact integration as in (1.8). However, if κ1 takes any
other value, in particular, if the correction term is omitted altogether,
then the order of the fully-discrete method is only ρ = 1. A related
result (Lemma 5.2) is that if the diagonal entries ajj are computed
exactly but the off-diagonal entries ajk for j �= k are evaluated using
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TABLE 1. Discrete collocation methods.

r ε ρ np ξp κp ηp, wp

1 1/2 3 0 0.5 0.45437 86189 24146 2-point Gauss
2 0 3 0 0.0 0.20894 80843 10412 2-point Gauss
3 1/2 5 0 -0.5 -0.00288 62720 33753 4-point Lobatto

0 0.5 0.33493 64898 26654
0 1.5 -0.00288 62720 33753

3 1/2 5 0 0.5 0.32916 39457 59148 4-point Lobatto
2 0.5 -0.00288 62720 33753

4 0 5 0 -1.0 0.00024 39406 66840 3-point Gauss
0 0.0 0.10418 00739 24350
0 1.0 0.00024 39406 66840

4 0 5 0 0.0 0.10466 79552 58029 3-point Gauss
2 0.0 0.00024 39406 66840

the two-point Gauss rule, then the order is also only ρ = 1. Thus,
quadrature errors arising from the near-diagonal entries degrade the
asymptotic rate of convergence as h → 0. (However, Lemma 5.2 also
shows that in practice this degradation should not be apparent until h
is quite small.) Thus, the higher convergence rate achieved by using
(1.13), with only the diagonal entries involving κ1, is a little surprising.

The conventional approach to studying the effect of numerical inte-
gration in the boundary element method is based on a perturbation
analysis of the coefficient matrix, and typically involves estimating the
quadrature error for each entry; see, e.g., Wendland [16, Theorem 3.4].
Our approach is quite different, being based on the theory developed
in [8], and is thus related to the qualocation method, see Chandler
and Sloan [5] and the survey paper [14], and also to the fully-discrete
Galerkin methods in [10] and [11]. There are many other fully-discrete
schemes for the log-kernel equation (1.1), such as the one studied in
a recent paper of Bialecki and Yan [3]. These schemes, however, have
no direct interpretation as full discretizations of the standard spline-
collocation method.
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The paper is organized as follows. Section 2 gathers together some
preliminary matter needed for applying the results in [8]. In Section
3 we describe how the stability and order-of-accuracy properties of
the collocation method (1.7) and its fully-discrete version (1.9) hinge
upon certain conditions involving ε, r and the parameters that define
the quadrature formula and the correction term. Next, in Section
4, we derive the methods in Table 1 and show that they are stable
and achieve the order of accuracy ρ shown. This result is stated as
Theorem 4.4. In Section 5 we look at a related method that uses exact
integration on subintervals where the integrand is singular or near-
singular, combined with a quadrature formula (1.11) on the remaining
subintervals. Finally, Section 6 presents the results of some simple
numerical experiments that confirm the theoretical analysis in Sections
3 5.

2. Fourier analysis of the collocation method. We begin this
section by showing that the integral operator L defined in (1.4) fits into
the framework of the theory in [8]. Denote the kernel of L by

K(x, y) = log
ω

|γ(x) − γ(y)| ,

and write

(2.1) K(x, y) = KA(x− y) +KB(x, y),

where
KA(x− y) = 1 + log

1
|2 sinπ(x− y)|

and

KB(x, y) =

{
−1 + log |2ω sin π(x−y)|

|γ(x)−γ(y)| , if x− y is not an integer,

−1 + log 2ωπ
|γ′(x)| , if x− y is an integer.

The splitting (2.1) means that

(2.2) L = A+B,

where A is the one-periodic, translation-invariant operator

Au(x) =
∫ 1

0

KA(x− y)u(y) dy,
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and B is the one-periodic smoothing operator

Bu(x) =
∫ 1

0

KB(x, y)u(y) dy.

Define a function σ : R → R by

(2.3) σ(0) = 1 and σ(y) = 1/(2|y|) for y �= 0,

and denote the complex Fourier coefficients of u by

û(m) =
∫ 1

0

u(x) exp(−i2πmx) dx for m ∈ Z.

It follows from the Fourier expansion

(2.4) log
1

|2 sin πx| =
∞∑

m=1

1
m

cos 2πmx =
∑
m �=0

1
2|m| exp(i2πmx)

that σ(m) = K̂A(m), and so σ is the global periodic symbol of the
operator A, i.e.,

Au(x) =
∞∑

m=−∞
σ(m)û(m) exp(i2πmx).

Thus, the symbol of A is even and is positive-homogeneous of degree
−1, so β = −1 in the notation of [8], and thus L : Hs → Hs+1 is a
bounded and invertible linear operator for all s ∈ R, where Hs denotes
the usual one-periodic Sobolev space of order s.

Next, we recall some more facts from [8]. Define

Δr(ξ, y) = yr
∑
m �=0

1
(m+ y)r

exp(i2πmξ) for ξ ∈ R and |y| ≤ 1/2,

and

(2.5) Ωk(ξ, y) =
yk

σ(y)

∑
m �=0

σ(m+ y)
(m+ y)k

exp(i2πmξ),
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for ξ ∈ R, |y| ≤ 1/2 and k is an integer. Let

Λh = {μ ∈ Z : −N/2 < μ ≤ N/2},

define ψr,0(x) = 1 and

ψr,μ(x) =
∑

m≡μmodN

(
μ

m

)r

exp(i2πmx) for μ ∈ Λh,

and put
φm(x) = exp(i2πmx) for m ∈ Z.

It turns out that {ψr,μ : μ ∈ Λh} is a basis for Sh, and that we can
think of ψr,μ as a spline substitute for φμ. In fact,

(2.6) ψr,μ(x) = φμ(x)[1 + Δr(Nx, μh)] for μ ∈ Λh,

so Δr(Nx, μh) is the relative error in the approximation φμ(x) ≈
ψr,μ(x).

Using the collocation points (1.6), we define a discrete inner product

〈f, v〉h =
N∑

j=1

hf(xj)v(xj),

that approximates the L2-inner product

〈f, v〉 =
∫ 1

0

f(x)v(x) dx.

We then define three discrete sesquilinear forms,
(2.7)
lh(u, v) = 〈Lu, v〉h, ah(u, v) = 〈Au, v〉h, bh(u, v) = 〈Bu, v〉h.

In view of (2.2), these satisfy lh(u, v) = ah(u, v) + bh(u, v), and the
collocation method (1.7) is equivalent to the discrete Petrov-Galerkin
method

(2.8) lh(uh, φμ) = 〈f, φμ〉h for μ ∈ Λh.



FULLY-DISCRETE COLLOCATION METHODS 545

It is shown in [8, subsection 3.3] that for μ, ν ∈ Λh and for k ∈ Z,

(2.9) ah(ψμ, φν) =

⎧⎨⎩
dh, if μ = ν = 0,
D(μh)σ(μ), if μ = ν �= 0,
0, if μ �= ν,

and

(2.10) 〈φμ+kN , φν〉h =
{
Dk, if μ = ν,
0, if μ �= ν,

where

(2.11) dh = 1, D(y) = 1 + Ωr(ε, y), Dk = exp(i2πkε).

As we shall explain in Section 3, the behavior of the function D
determines the stability and convergence properties of the collocation
method.

Likewise, the fully-discrete collocation method (1.9) is equivalent to a
discrete Petrov-Galerkin method of the form (2.8), but instead of (2.7),

lh(u, v)=〈Lhu, v〉h, ah(u, v)=〈Ahu, v〉h, bh(u, v)=〈Bhu, v〉h.

Here Lh = Ah +Bh is defined as in (1.10), with

Ahu(xj) = h

P∑
p=1

κph
npu(np)(xjp) +

N∑
k=1

h

Q∑
q=1

wqKA(xj−ykq)u(ykq)

and

Bhu(x) =
N∑

k=1

h

Q∑
q=1

wqKB(x, ykq)u(ykq).

The relations (2.9) and (2.10) are again valid, but now

(2.12)

dh = 1 + h

( ∑
np=0

κp +
Q∑

q=1

wq[KA(ε− ηq) − 1]
)
,

D(y) = 2|y|
P∑

p=1

κpT1(r, ε, np, ξp, y) +
Q∑

q=1

wqT2(r, ε, ηq, y),
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where

(2.13)
T1(r, ε, n, ξ, y) = (i2πy)n[1 + Δr−n(ξ, y)] exp[i2π(ξ − ε)y],

T2(r, ε, η, y) = [1 + Δr(η, y)][1 + Ω0(ε− η, y)].

These formulae follow from (2.6) and [8, subsections 3.6 and 3.7].

To conclude this section, we collect together some more notation and
cite some results that will be needed later. Following [5], let

(2.14)

F+
α (ξ, y) = G+

α (ξ, y) + iH+
α (ξ, y) =

∑
m �=0

1
|m+ y|α exp(i2πmξ),

F−
α (ξ, y) = G−

α (ξ, y) + iH−
α (ξ, y) =

∑
m �=0

sign (m)
|m+ y|α exp(i2πmξ),

and note that

(2.15) Δr(ξ, y) =
{
yrF−

r (ξ, y), if r is odd,
yrF+

r (ξ, y), if r is even,

and

(2.16) Ωk(ξ, y) =

{
sign (y)|y|k+1F−

k+1(ξ, y), if k is odd,

|y|k+1F+
k+1(ξ, y), if k is even.

We shall also make use of the trigonometric series

Gα(ξ) = 2
∞∑

m=1

1
mα

cos(2πmξ),

Hα(ξ) = 2
∞∑

m=1

1
mα

sin(2πmξ),

that arise in the Taylor expansions of G±
α (ξ, y) and H±

α (ξ, y) about
y = 0. Brown et al. [4] discuss some relevant properties of G±

α and
H±

α , including the following two lemmas (see also the Appendix of [5],
but note the erratum).
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Lemma 2.1. Let α > 0.

(i) The functions Gα and Hα are infinitely differentiable on the open
interval (0, 1), and satisfy Gα(1−ξ) = Gα(ξ) and Hα(1−ξ) = −Hα(ξ)
for 0 < ξ < 1.

(ii) The function Gα is strictly decreasing on the interval (0, 1/2)
where it has a unique zero ξ∗α that is a monotonically increasing function
of α.

(iii) The function Hα is strictly positive on (0, 1/2).

Lemma 2.2. For α > 0, 0 ≤ ξ ≤ 1 and 0 ≤ y ≤ 1/2,

(i) 1 + yαG+
α (ξ, y) ≥ 0 with equality if and only if ξ = y = 1/2;

(ii) 1 + yαG−
α (ξ, y) ≥ 0 with equality if and only if ξ = 0 or 1, and

y = 1/2;

(iii) H+
α (ξ, y) ≤ 0 if 0 ≤ ξ ≤ 1/2 and H+

α (ξ, y) ≥ 0 if 1/2 ≤ ξ ≤ 1;

(iv) H−
α (ξ, y) ≥ 0 if 0 ≤ ξ ≤ 1/2 and H−

α (ξ, y) ≤ 0 if 1/2 ≤ ξ ≤ 1.

Notice that, by (2.4),

(2.17) KA(ξ) = 1 + (1/2)G1(ξ).

Also we point out that for k ≥ 1 the restrictions of H2k−1 and G2k to
the unit interval are polynomials of degree 2k− 1 and 2k, respectively.
In fact, apart from constant factors they are just Bernoulli polynomials;
see Abramowitz and Stegun [1, p. 805].

3. Stability and order of accuracy. The error analysis in [8] in-
volves three stability conditions and three order-of-accuracy conditions,
labelled S1 S3 and O1 O3, respectively. Conditions S1, S2, O1 and O2
relate to the approximations ah(u, v) ≈ 〈Au, v〉 and 〈f, v〉h ≈ 〈f, v〉,
whereas S3 and O3 relate to the approximation bh(u, v) ≈ 〈Bu, v〉. For
the methods considered in this paper we have Dk = exp(i2πkε) and
consequently condition O2 is satisfied, and O1 implies S1. Thus, of the
first group of four conditions, it suffices to verify only two:

S2. There is a positive constant c such that

|D(y)| ≥ c for 0 < |y| ≤ 1/2.
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O1. There is a number ρ > 0 such that

dh = 1 +O(hρ) as h→ 0+,

D(y) = 1 +O(|y|ρ) as y → 0.

The number ρ appearing in condition O1 is called the order of the
numerical method because (see below) we cannot do better than O(hρ)
convergence in any Sobolev norm. (Strictly speaking, the order is the
largest ρ for which O1 holds.) The second group of conditions, S3 and
O3, involve Sobolev indices s and t. LetM denote the order of precision
of the quadrature rule (1.11) used to define Lh, i.e., suppose that the
rule integrates any polynomial of degree M − 1 exactly. In the case of
the collocation method (1.7) with exact integration, we formally define
M = ∞. By [8, Theorems 6.3 and 6.5], conditions S3 and O3 hold for

r −M − 1 < s < r − 1/2 and 0 ≤ t− s ≤M.

We will say that the numerical method (1.7) or (1.9) is stable and of
order ρ if conditions S2 and O1 hold, and if

(3.1) M ≥ ρ.

This restriction on M guarantees that conditions S3 and O3 hold for
s and t satisfying (3.2) below. Therefore, [8, Theorem 5.2] yields the
following error estimates where, as usual, || · ||s denotes the norm in the
Sobolev space Hs.

Theorem 3.1. Consider the collocation method (1.7) or its fully-
discrete variant (1.9) applied to the logarithmic-kernel integral equation
(1.3), and let s and t be real numbers satisfying

(3.2) r − ρ ≤ s ≤ t ≤ r, s < r − 1/2, −1/2 < t.

If the numerical method is stable and of order ρ, and if the exact
solution u belongs to Ht+max(−1−s,0), then for all h sufficiently small
there exists a unique numerical solution uh, and

||uh − u||s ≤ cht−s||u||t+max(−1−s,0).
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In particular, we can easily recover the results of Arnold and Wend-
land [2] and Schmidt [13] for the standard case, in which the entries of
the collocation matrix are computed exactly. Recall the definition (1.6)
of the collocation points, and remember that we assume 0 ≤ ε < 1.

Theorem 3.2. The collocation method (1.7) applied to the logarith-
mic-kernel integral equation (1.3) is stable and of order (at least) r+ 1
if

r is odd and ε �= 0,

or if
r is even and ε �= 1/2.

Proof. By (2.3), (2.5) and (2.11), we have

D(y) = 1 +O(|y|r+1),

so O1 holds with ρ = r + 1. Furthermore, since

(3.3) Ωk(ξ,−y) = Ωk(ξ, y),

we have
D(−y) = D(y),

and if 0 ≤ y ≤ 1/2, then

ReD(y) =

{
1 + yr+1G−

r+1(ε, y), if r is odd,
1 + yr+1G+

r+1(ε, y), if r is even.

By Lemma 2.2, condition S2 holds except if r is odd and ε = 0, or if r
is even and ε = 1/2.

Saranen [12] observed that in some cases the order of accuracy is in
fact greater than r + 1. Indeed, by Taylor expansion,

D(y) = 1 + |y|r+1

×
{
iHr+1(ε)sign (y) − (r + 1)Gr+1(ε)y +O(y2), if r is odd,

Gr+1(ε) − i(r + 1)Hr+1(ε)y +O(y2), if r is even,



550 W. MCLEAN

so if
r is odd and Hr+1(ε) = 0,

or if
r is even and Gr+1(ε) = 0,

then D(y) = 1 + O(|y|r+2), and thus by Lemma 2.1 the following is
true.

Theorem 3.3. The collocation method applied to the logarithmic
kernel integral equation is stable and of order r+2 for the special choice

ε =
{

1/2, if r is odd,
ξ∗r+1 or 1 − ξ∗r+1, if r is even.

Before proceeding to the next section we show that the error estimate
(1.12) holds, as claimed in the Introduction.

Theorem 3.4. Assume that r ≤ ρ ≤ M and u ∈ Hρ−1. If the
hypotheses of Theorem 3.1 hold, then∣∣∣∣ ∫ 1

0

g(y)u(y) dy −
N−1∑
k=0

h

Q∑
q=1

wqg(ykq)uh(ykq)
∣∣∣∣ ≤ chρ||g||ρ||u||ρ−1

for any g ∈ Hρ.

Proof. Without loss of generality, we can assume that u and uh

are real-valued, then our task is to estimate 〈g, u〉 − 〈g, uh〉h, where
〈·, ·〉h is the discrete inner product based on the composite form of the
quadrature rule (1.11). By Theorem 3.1,

|〈g, u〉 − 〈g, uh〉| = |〈g, u− uh〉|
≤ ||g||ρ−r||u− uh||r−ρ

≤ chρ||g||ρ||u||ρ−1,

and since ρ ≤M we can apply [8, Lemma 6.2 ii)] to obtain

|〈g, uh〉 − 〈g, uh〉h| ≤ chρ||g||ρ||uh||0.
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Taking s = t = 0 in the error estimate of Theorem 3.1, we see that
||uh||0 ≤ c||u||0, and the result follows.

4. Derivation of the fully-discrete methods. Throughout this
section we shall assume that the collocation points are given by

(4.1) ε =
{

1/2, if r is odd,
0, if r is even.

This is the case for each of the methods in Table 1, and the next lemma
will allow us to simplify their analysis. Recall the definitions of T1 and
T2 given in (2.13).

Lemma 4.1. Assume that the collocation points are chosen according
to (4.1).

(i) If the correction term satisfies

np is even, κP−p+1 = κp

and
ξP−p+1 = 2ε− ξp

for 1 ≤ p ≤ P , then the sum
∑P

p=1 κpT1(r, ε, np, ξp, y) is a real-valued,
even function of y.

(ii) If the quadrature rule satisfies

wQ−q+1 = wq and ηQ−q+1 = 1 − ηq for 1 ≤ q ≤ Q,

then the sum
∑Q

q=1 wqT2(r, ε, ηq, y) is a real-valued, even function of y.

Proof. For ε = 0 or 1/2,

Δr(2ε− ξ, y) = Δr(ξ, y) and Ωk(2ε− η, y) = Ωk(η, y)

and thus, provided n is even,

T1(r, ε, n, 2ε− ξ, y) = T1(r, ε, n, ξ, y)
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and

T2(r, ε, 1 − η, y) = T2(r, ε, η, y).

Therefore, both in part (i) and in part (ii) the symmetry condition
implies that the sum is real. Also, it follows from the identities (3.3)
and Δr(ξ,−y) = Δr(ξ, y) that

T1(r, ε, n, ξ,−y) = T1(r, ε, n, ξ, y)(4.2)

and

T2(r, ε, η,−y) = T2(r, ε, η, y),

so in the symmetric case each sum is an even function of y.

The next lemma will help in establishing stability.

Lemma 4.2. Let 0 ≤ η ≤ 1.

(i) If r is odd, then

min
0≤y≤1/2

ReT2(r, 1/2, η, y) > 0 for 0 < η < 1,

but T2(r, 1/2, η, 1/2) = 0 for η = 0 or 1.

(ii) If r is even, then

min
0≤y≤1/2

ReT2(r, 0, η, y) > 0 for η �= 1/2,

but ReT2(r, 0, 1/2, 1/2) = 0.

Proof. If r is odd, then by (2.13), (2.15) and (2.16),

T2(r, 1/2, η, y) = [1 + yrF−
r (η, y)][1 + |y|F+

1 (1/2 − η, y)],

so

(4.3)
ReT2(r, 1/2, η, y) = [1 + yrG−

r (η, y)][1 + |y|G+
1 (1/2 − η, y)]

− yr|y|H−
r (η, y)H+

1 (1/2 − η, y).
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Lemma 2.2 implies that for 0 ≤ y ≤ 1/2,

[1 + yrG−
r (η, y)][1 + yG+

1 (1/2 − η, y)] ≥ 0,

with equality if and only if η = 0 or 1, and y = 1/2. Moreover,

H−
r (η, y)H+

1 (1/2 − η, y) ≤ 0,

so part (i) follows after noting that 1 + (1/2)rF−
r (0, 1/2) = 0.

If r is even, then

T2(r, 0, η, y) = [1 + yrF+
r (η, y)][1 + |y|F+

1 (−η, y)],

so, because G+
1 and H+

1 are one-periodic in their first arguments,

(4.4)
ReT2(r, 0, η, y) = [1 + yrG+

r (η, y)][1 + |y|G+
1 (1 − η, y)]

− yr|y|H+
r (η, y)H+

1 (1 − η, y).

Part (ii) follows after using Lemma 2.2 and noting that 1+
(1/2)rF+

r (1/2, 1/2) = 0.

The following lemma will help in determining the order ρ of the
various fully-discrete methods. For a proof, see [10, Lemma 4.5] and
[5, Lemma A.2].

Lemma 4.3. As y → 0,

Q∑
q=1

wqΔ(ηq, y) = O(ymax(r,M)).

and

ReΔr(η, y)Ω0(ε− η, y) =
{
O(yr+2), if r is odd,
O(yr+1), if r is even.

We are now ready to prove the main results of the paper.
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Theorem 4.4. Each of the fully-discrete methods defined in Table 1
is stable and of order ρ, where

ρ =

⎧⎪⎪⎨⎪⎪⎩
3, for the piecewise-constant (r = 1)

and piecewise-linear (r = 2) cases,
5, for the piecewise-quadratic (r = 3)

and piecewise-cubic (r = 4) cases.

Proof. In every case, the correction term and quadrature rule are
symmetric in the sense of Lemma 4.1, so we see from (2.12) and (2.17)
that

(4.5)

dh = 1 + h

( ∑
np=0

κp +
1
2

Q∑
q=1

wqG1(ε− ηq)
)
,

D(y) = 2|y|
P∑

p=1

κpReT1(r, ε, np, ξp, y) +
Q∑

q=1

wqReT2(r, ε, ηq, y).

By (2.13) and Lemma 4.3,

(4.6)
Q∑

q=1

wqReT2(r, ε, ηq, y) = 1 +
Q∑

q=1

wq|y|G+
1 (ε− ηq, y) +O(|y|ρ)

and using Taylor’s theorem one finds that

(4.7) G+
1 (ε− η, y) = G1(ε− η) +G3(ε− η)y2 +G5(ε− η)y4 + · · ·

for |y| < 1. Note also that D(−y) = D(y), so when verifying condition
S2 it suffices to show that D(y) �= 0 for 0 ≤ y ≤ 1/2.

We shall deal with the six methods in the order in which they are
listed in Table 1.

Method 1. In this case r = 1, ε = 1/2 and (1.11) is the two-point,
Gauss-Legendre rule for the unit interval, i.e., Q = 2 and

(4.8) η1 =
1
2

(
1 − 1√

3

)
, η2 =

1
2

(
1 +

1√
3

)
, w1 = w2 =

1
2
.
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The order of precision is M = 4. Regarding the correction term we
assume for the moment simply that P = 1 and ξ1 = 1/2. Using Taylor
expansions, we find that

(4.9) ReT1(1, 1/2, 0, 1/2, y) = 1 + yG−
1 (1/2, y) = 1 +O(y2),

so (4.5), (4.6) and (4.7) imply that

dh = 1 + (κ1 + e1)h and D(y) = 1 + 2(κ1 + e1)|y| +O(y3),

where

e1 =
1
2

2∑
q=1

wqG1

(
1
2
− ηq

)
=

1
2
G1

(
1

2
√

3

)
= − log

[
2 sin

(
π

2
√

3

)]
.

In Table 1 we have chosen κ1 = −e1 so that O1 holds with ρ = 3.
By (4.9) and Lemma 2.2 we see that ReT1(1, 1/2, 0, 1/2, y) ≥ 0 for
0 ≤ y ≤ 1/2, so it follows from Lemma 4.2 that condition S2 holds.
(Note that κ1, w1 and w2 are all positive.) Since M = 4 and ρ = 3
satisfy (3.1), we have proved that the method is stable and of order 3.

Method 2. Now r = 2 and ε = 0, but we continue using the two-
point Gauss rule (4.8). Assuming for the correction term that P = 1
and ξ1 = 0, we find since G2(0) = π2/3 that

(4.10) ReT1(2, 0, 0, 0, y) = 1 + y2G+
2 (0, y) = 1 +O(y2),

so

dh = 1 + (κ1 + e3)h

and

D(y) = 1 + 2(κ1 + e2)|y| +O(y3),

where

e2 =
1
2

2∑
q=1

wqG1(−ηq) =
1
2
G1

(
1
2
− 1

2
√

3

)
= − log

[
2 cos

(
π

2
√

3

)]
.
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Putting κ1 = −e2 as in Table 1, we see that condition O1 holds with
ρ = 3. By (4.10) and Lemma 2.2, we have ReT1(2, 0, 0, 0, y) ≥ 0 for
0 ≤ y ≤ 1/2, so it follows from Lemma 4.2 that condition S2 holds.
Since M = 4 and ρ = 3 satisfy (3.1), the method is stable and of order
3.

Method 3. We use r = 3, ε = 1/2 and the four-point Lobatto rule
for the unit interval: Q = 4 and
(4.11)

η1 = 0, η2 =
1
2

(
1 − 1√

5

)
, η3 =

1
2

(
1 +

1√
5

)
, η4 = 1,

w1 = w4 =
1
12
, w2 = w3 =

5
12
.

The order of precision is M = 6 and, in the correction term, P = 3 and
n1 = n2 = n3 = 0. We find that

(4.12)
ReT1(3, 1/2, 0, ξ, y) = [1 + y3G−

3 (ξ, y)] cos 2π(ξ − 1/2)y
− y3H−

3 (ξ, y) sin 2π(ξ − 1/2)y
= 1 − 2π2(ξ − 1/2)2y2 +O(y4)

so

dh = 1 +
(
e3 +

3∑
p=1

κp

)
h

and

D(y) = 1+2
(
e3+

3∑
p=1

κp

)
|y|+4π2

(
e4−

3∑
p=1

κp(ξp−1/2)2
)
|y|3+O(y5),

where

e3 =
1
2

4∑
q=1

wqG1

(
1
2
− ηq

)
=

1
12

[
G1

(
1
2

)
+ 5G1

(
1

2
√

5

)]
= −0.329163945759148

and, evaluating G3 as in [9],

e4 =
1

4π2

4∑
q=1

wqG3

(
1
2
− ηq

)
=

1
24π2

[
G3

(
1
2

)
+ 5G3

(
1

2
√

5

)]
= −0.005772544067506.
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The correction term has the form

(4.13) ξ2 = 1/2, ξ3 = 1 − ξ1, κ3 = κ1,

so to satisfy condition O1 with ρ = 5 it suffices to choose ξ1, κ1 and κ2

such that

(4.14) 2κ1 + κ2 = −e3 and 2κ1(ξ1 − 1/2)2 = e4.

Here there are three unknowns but only two equations, so we have one
degree of freedom. The method given in Table 1 arises by taking

ξ1 = −1/2, κ1 = e4/2, κ2 = −e3 − e4,

and in this case we find using (4.12) that

3∑
p=1

κpReT1(3, 1/2, 0, ξp, y) = [κ2 + 2κ1 cos 2πy][1 + y3G−
3 (1/2, y)].

Since κ2 > 2|κ1|, we conclude with the help of Lemmas 2.2 and 4.2
that condition S2 holds. It follows that the method is stable, because
M = 6 and ρ = 5 satisfy the condition (3.1).

Method 4. As in Method 3, r = 3, ε = 1/2 and (1.11) is the four-
point Lobatto rule (4.11). However, this time, in the correction term
we have P = 2, ξ1 = ξ2 = 1/2, n1 = 0 and n2 = 2. Since

ReT1(3, 1/2, 2, 1/2, y) = −4π2y2[1+yG−
1 (1/2, y)] = −4π2y2+O(y4),

we find that
dh = 1 + (e3 + κ1)h

and

D(y) = 1 + 2(e3 + κ1)|y| + 4π2(e4 − 2κ2)|y|3 +O(y5).

The method shown in Table 1 has

κ1 = −e3 and κ2 = e4/2,
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so condition O1 holds with ρ = 5. Moreover, because κ1 > 0 and
κ2 < 0, it follows by part (ii) of Lemma 2.2 that

2∑
p=1

κpReT1(3, 1/2, np, 1/2, y) = κ1[1 + y3G−
3 (1/2, y)]

− 4π2κ2y
2[1 + yG−

1 (1/2, y)] ≥ 0

for 0 ≤ y ≤ 1/2. Thus, condition S2 holds and we conclude that the
method is stable.

Method 5. We use r = 4, ε = 0 and the three-point Gauss-Legendre
rule for the unit interval: Q = 3 and

η1 =
1
2

(
1 −

√
3
5

)
, η2 =

1
2
, η3 =

1
2

(
1 +

√
3
5

)
,

w1 = w3 =
5
18
, w2 =

8
18
.

The order of precision is M = 6, and in the correction term P = 3 and
n1 = n2 = n3 = 0. We find that
(4.15)

ReT1(4, 0, 0, ξ, y) = [1 + y4G+
4 (ξ, y)] cos 2πξy − y4H+

4 (ξ, y) sin 2πξy
= 1 − 2π2ξ2y2 +O(y4),

so

dh = 1 +
(
e5 +

3∑
p=1

κp

)
h

and

D(y) = 1 + 2
(
e5 +

3∑
p=1

κp

)
|y| + 4π2

(
e6 −

3∑
p=1

κpξ
2
p

)
|y|3 +O(y5),

where

e5 =
1
2

3∑
q=1

wqG1(ηq) = −0.104667955258029
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and

e6 =
1

4π2

3∑
q=1

wqG3(ηq) = 0.000487881333679.

Now we specify that ξ2 = 0, ξ3 = −ξ1 and κ3 = κ1. To satisfy condition
O1 for ρ = 5, we have only to choose ξ1, κ1 and κ2 satisfying

2κ1 + κ2 = −e5 and 2κ1ξ
2
1 = e6,

giving us one degree of freedom. The method shown in Table 1 arises
from the solution

ξ1 = −1, κ1 = e6/2, κ2 = −e5 − e6,

and in this case we see from (4.15) and Lemma 2.2 that

3∑
p=1

κpReT1(4, 0, 0, ξp, y) = [κ2 + 2κ1 cos 2πy][1 + y4G+
4 (0, y)] ≥ 0,

for 0 ≤ y ≤ 1/2. Condition S2 then follows from Lemma 4.2, and we
note that M = 6 and ρ = 5 satisfy (3.1). Hence, the method is stable.

Method 6. This differs from Method 5 only in its correction term.
We have P = 2, ξ1 = ξ2 = 0, n1 = 0 and n2 = 2, and since

ReT1(4, 0, 2, 0, y) = −4π2y2[1 + y2G+
2 (ξ, y)] = −4π2y2 +O(y4),

we find with the help of (4.15) that

dh = 1 + (e5 + κ1)h

and

D(y) = 1 + 2(e5 + κ1)|y| + 4π2(e6 − 2κ2)|y|3 +O(y5).

The method shown in Table 1 has

κ1 = −e5 and κ2 = e6/2,
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so condition O1 holds with ρ = 5. To verify condition S2, it suffices to
show that the quantity
(4.16)
2∑

p=0

κpReT1(4, 0, np, 0, y) = κ1[1+y4G+
4 (0, y)]− 4π2κ2y

2[1+y2G+
2 (0, y)]

is nonnegative for 0 ≤ y ≤ 1/2. Given any α > 1, the function
y �→ 1 + yαG+

α (0, y) is nonnegative and monotonically increasing for
y ∈ [0, 1/2], having at y = 1/2 the maximum value

1 +
(

1
2

)α

G+
α

(
0,

1
2

)
= 2

∞∑
m=0

1
(2m+ 1)α

= 2(1 − 2−α)ζ(α),

where ζ is the Riemann zeta function. Since ζ(2) = π2/6, the righthand
side of (4.16) is bounded from below by κ1 − π4κ2/4 > 0.

Remark. In the third method, the choice ξ1 = −1/2 makes verifi-
cation of the stability condition S2 particularly easy, and also has the
practical advantage that xi,1 = xi−1,3 and xi,3 = xi+1,1. However,
other choices of ξ1 also lead to reasonable methods, assuming of course
that the other ξp and the κp are selected according to (4.13) and (4.14).
For instance, it would be natural to take

ξ1 = 0, κ1 = 2e4, κ2 = −e3 − 4e4,

in which case xi1 = yi1 and xi3 = yi4. Numerical investigations of the
behavior of D(y) did not detect any values of ξ1 for which condition S2
failed, but as ξ1 approaches 1/2 the values of κ1 and κ2 tend to −∞
and ∞, respectively.

5. A modified method. In this section we consider collocation
methods in which L is replaced by the partially-discrete linear operator

(L̃hu)(xj) =
∑
k∈Sj

∫ tk+1

tk

u(y) log
ω

|Xj − γ(y)| dy

+
∑
k∈S′

j

h

Q∑
q=1

wqu(ykq) log
ω

|Xj − Ykq| ,
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where, for some fixed, small nonnegative integers n1 and n2,

Sj = {k ∈ Z : j − n1 ≤ k ≤ j + n2},
S′

j = {k ∈ Z : j + n2 + 1 ≤ k ≤ N − n1 − 1}.
Thus, the integration is exact on subintervals where the integrand
is singular or near-singular, but elsewhere the quadrature formula
(1.11) is used. This modified method approximates many standard
implementations of the collocation method, in which special techniques
are used to evaluate the singular or near-singular integrals, combined
with conventional quadratures for the smooth case (cf. the second part
of Section 6). The method will also shed light on the fully-discrete
methods of Section 4.

Defining l̃h = ãh + b̃h in the obvious way, we have the following
analogue to formula (2.9).

Lemma 5.1. For μ, ν ∈ Λh,

ãh(ψμ, φν) =

⎧⎨⎩
d̃h, if μ = ν = 0,
σ(μ)D̃h(μh), if μ = ν �= 0,
0, if μ �= ν,

where

d̃h = 1 − h

n2∑
k=−n1

{∫ 1

0

log |ε− k − η| dη −
Q∑

q=1

wq log |ε− k − ηq|
}

+
h

2

Q∑
q=1

wqG1(ε− ηq) +O(hM )

and

D̃h(y) = 2|y|
n2∑

k=−n1

exp(i2πky)
{∫ 1

0

T1(r, ε, 0, η, y)KA[(ε−k−η)h] dη

−
Q∑

q=1

wqT1(r, ε, 0, ηq, y)KA[(ε−k−ηq)h]
}

+
Q∑

q=1

wqT2(r, ε, ηq, y).
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Proof. Since ãh is invariant under translation by h, we can apply [8,
Lemma 3.1] and deduce that ãh(ψμ, φν) = 0 if μ �= ν. Next

(Ãhu)(xj) =
∑
k∈Sj

{∫ tk+1

tk

u(y)KA(xj − y) dy

− h

Q∑
q=1

wqu(ykq)KA(xj − ykq)
}

+
N−1∑
k=0

h

Q∑
q=1

wqu(ykq)KA(xj − ykq),

so
ãh(ψμ, φμ) = 〈Ãhψμ, φμ〉h = Iμ − IIμ + IIIμ,

where

Iμ =
N−1∑
j=0

h
∑
k∈Sj

∫ tk+1

tk

ψμ(y)KA(xj − y) dy φμ(xj),

IIμ =
N−1∑
j=0

h
∑
k∈Sj

h

Q∑
q=1

wqψμ(ykq)KA(xj − ykq)φμ(xj),

and, recalling (2.12) and (2.13),

IIIμ =

{
1 + h

∑Q
q=1 wq[KA(ε− ηq) − 1], if μ = 0,∑Q

q=1 wqT2(r, ε, ηq, y), if μ �= 0.

With the help of (2.6), we see that the inner sums of Iμ and IIμ are
independent of j, and that

Iμ =
n2∑

k=−n1

h

∫ 1

0

exp[i2πμ(k + η − ε)h]

· [1 + Δr(η, μh)]KA[(ε− k − η)h] dη,

IIμ =
n2∑

k=−n1

h

Q∑
q=1

wq exp[i2πμ(k + ηq − ε)h]

· [1 + Δr(ηq, μh)]KA[(ε− k − ηq)h].
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The formula for D̃h(y) follows after noting that h = 2|μh|σ(μ) for
μ �= 0.

In the case μ = 0, we have

I0−II0 = h

n2∑
k=−n1

{∫ 1

0

KA[(ε−k−η)h] dη−
Q∑

q=1

wqKA[(ε−k−ηq)h]
}
.

Write
KA(ξh) = R(ξh) − log 2πh− log |ξ|

where

R(ξ) = 1 + log
∣∣∣∣ πξ

sinπξ

∣∣∣∣,
and observe that R is C∞ on the open interval (−1, 1). Since the
quadrature formula (1.11) has order of precision M ,

(5.1)
∫ 1

0

R[(ε− k − η)h] dη −
Q∑

q=1

wqR[(ε− k − ηq)h] = O(hM ),

and the formula for d̃h follows.

For simplicity, we shall study in detail only the piecewise-constant
case.

Lemma 5.2. If r = 1, ε = 1/2 and n1 = n2 = n, and if we use the
two-point Gauss-Legendre rule (4.8), then for any fixed n ≥ 0,

d̃h = 1 + ẽnh+O(h4)

and
D̃h(y) = 1 + [2ẽn +O(h4)]|y| +O(|y|3(1 + | log h|)),

where the coefficient ẽn is given by (5.3) below, and satisfies

ẽn = − 1
1080(n+ 1)3

− 1
720(n+ 1)4

+O(n−5) as n→ ∞.
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Proof. By Lemma 5.1 the formula for d̃h holds with

(5.2)

ẽn = −
n∑

k=−n

{∫ 1

0

log
∣∣∣∣12 − k − η

∣∣∣∣ dη − Q∑
q=1

wq log
∣∣∣∣12 − k − ηq

∣∣∣∣}

+
1
2

Q∑
q=1

wqG1

(
1
2
− ηq

)
.

Using the closed form H1(η) = −2π(η − 1/2) we see that

T1(1, 1/2, 0, η, y) = [1 + yG−
1 (η, y) + iyH−

i (n, y)] exp[i2π(η − 1/2)y]
= [1 + iH1(η)y +O(y2)][1 + i2π(η − 1/2)y +O(y2)]
= 1 +O(y2),

and it follows from the symmetry of the Gauss rule that D̃h(y) is real.
Thus, by (4.6), (4.7) and Lemma 5.1,

D̃h(y) = 2|y|
n∑

k=−n

{∫ 1

0

KA

[(
1
2
− k − η

)
h

]
dη

−
Q∑

q=1

wqKA

[(
1
2
− k − ηq

)
h

]}

+ 1 + |y|
Q∑

q=1

wqG1

(
1
2
− ηq

)
+O(|y|3(1 + | log h|)),

and, after using (5.1) to simplify the expression in braces, we arrive at
the formula for D̃h(y).

To complete the proof, we consider ẽn in more detail. Evaluating the
integral in (5.2), and inserting the values of the weights and integration
points given in (4.8), we obtain

(5.3)

ẽn = (2n+ 1) − (2n+ 1) log
(
n+

1
2

)
+ log

(
1

2
√

3

)
+

n∑
k=1

log
(
k2 − 1

12

)
− log

[
2 sin

(
π

2
√

3

)]
.
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The standard infinite product representation of the sine function [1,
4.3.89] implies that

log
(

1
2
√

3

)
+

n∑
k=1

log
(
k2 − 1

12

)
− log

[
2 sin

(
π

2
√

3

)]

= 2 log(n!) − log(2π) −
∞∑

k=n+1

log
(

1 − 1
12k2

)
,

and so, using an asymptotic expansion of the logarithm of the Gamma
function [1, 6.1.40], we find that

(5.4) ẽn = In + IIn + IIIn as n→ ∞,

where

In = (2n+ 1) log
(

n+ 1
n+ 1/2

)
− 1, IIn = −

∞∑
k=n+1

log
(

1 − 1
12k2

)
,

and, with Bj denoting the j-th Bernoulli number,

IIIn ∼
∞∑

m=1

B2m

m(2m−1)(n+1)2m−1
=

1
6(n+1)

− 1
180(n+1)3

+O(n−5).

The Taylor expansion of log(1 − x) gives

In = −
∞∑

m=1

(n+ 1)−m

m(m+ 1)2m

= − 1
4(n+1)

− 1
24(n+1)2

− 1
96(n+1)3

− 1
320(n+ 1)4

+O(n−5)

and

IIn =
∞∑

m=1

1
12mm

∞∑
k=n+1

1
k2m

.

By the Euler-Maclaurin summation formula,
∞∑

k=n+1

1
k2m

∼ 1
(2m− 1)(n+ 1)2m−1

+
1

2(n+ 1)2m

+
∞∑

k=1

(
2m+ 2k − 1

2k

)
B2k

(2m+ 2k − 1)(n+ 1)2m+2k−1
,
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so

IIn =
1

12(n+1)
+

1
24(n+1)2

+
13

864(n+1)3
+

1
576(n+1)4

+O(n−5).

Substituting the expansions for In, IIn and IIIn into (5.4), we obtain
the asymptotic behavior of ẽn.

The expansions of d̃h and D̃h(y) given in Lemma 5.2 show that for
any fixed n the method is only first-order accurate (and not third-
order accurate, as would be the case if all integrations were performed
exactly; see Theorem 3.3). Unfortunately, the expansions do not appear
to be uniform in n, so it is difficult to make precise statements about
what would happen if n were allowed to depend on h. The results do
show, however, that the correction terms in the fully-discrete methods
of Section 4 do not work just by making the integration sufficiently
accurate over the intervals containing the xjp.

In practice, the lower asymptotic rate of convergence of the modified
method of Lemma 5.2 will not be apparent unless the mesh is quite
fine, due to the small size of the coefficient ẽn:

n ẽn

0 −3.685 × 10−3

1 −2.386 × 10−4

2 −5.603 × 10−5

3 −2.096 × 10−5

4 −9.977 × 10−6

For instance, |ẽ1| ≈ h2 if we use N = 64 subintervals.

6. Numerical experiments. Each of the six methods from Table
1 was tested on the following simple example. The curve Γ was the
ellipse

X2
1/4

2 +X2
2 = 1,

and the righthand side of the integral equation (1.1) was the harmonic
function

F (X) = Re sin[(X1 − 0.33) + i(X2 − 0.22)]
= sin(X1 − 0.33) cosh(X2 − 0.22).
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We used the obvious parametric representation γ(x) = (4 cos 2πx,
sin 2πx), and took ω = 3. (Since the logarithmic capacity of an ellipse
is equal to the arithmetic mean of its major and minor semi-axes,
cap (Γ) = 2 ·5 and so the condition (1.2) for unique solvability was
satisfied.)

Denote the single layer potential of the exact solution U by

V (X) =
∫

Γ

U(Y ) log
ω

|X − Y | dsY =
∫ 1

0

u(y) log
ω

|X − γ(y)| dy,
and define a discrete approximation

Vh(X) =
N−1∑
k=0

h

Q∑
q=1

wquh(ykq) log
ω

|X − Ykq| ,

where the quadrature rule (1.11) is the same as in the collocation
method used to compute uh. Let Ω denote the open set enclosed by Γ,
then V is the unique solution to the Dirichlet problem

∇2V = F on Ω,
V = F on Γ,

and since F itself is harmonic on Ω, we have V = F on Ω. Thus, it
follows from Theorem 3.4 that

(6.1) Vh(X) = F (X) +O(hρ) for X ∈ Ω.

TABLE 2. Errors in the discrete single layer potential for Method 1

(piecewise constants, r=1) and Method 2 (piecewise linears, r=2).

Method 1 Method 2
N error h−3 × error error h−3 × error
8 −4.28e-02 −21.9 1.81e-01 92.8

16 9.77e-03 40.0 1.94e-02 79.3
32 2.07e-03 67.7 9.34e-04 30.6
64 2.51e-04 65.8 1.10e-04 28.9

128 3.10e-05 65.0 1.32e-05 27.7
256 3.86e-06 64.8 1.64e-06 27.5
512 4.83e-07 64.8 2.04e-07 27.4

1024 6.03e-08 64.7 2.55e-08 27.4
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TABLE 3. Errors in the discrete single layer potential for

Methods 3 and 4 (piecewise quadratics, r = 3).

Method 3 Method 4
N error h−5 × error error h−5 × error
8 1.54e-01 5,032 1.52e-01 4,990

16 1.04e-02 1,092 1.09e-02 11,447
32 1.20e-04 4,033 1.40e-04 4,681
64 3.93e-06 4,215 4.54e-06 4,940

128 1.19e-07 4,090 1.38e-07 4,758
256 3.70e-09 4,065 4.31e-09 4,735
512 1.16e-10 4,059 1.34e-10 4,729

1024 3.60e-12 4,058 4.20e-12 4,728

TABLE 4. Errors in the discrete single layer potential

for Methods 5 and 6 (piecewise cubics, r = 4).

Method 5 Method 6
N error h−5 × error error h−5 × error
8 1.17e-01 3,847 1.18e-01 3,861

16 3.03e-04 318 2.17e-04 228
32 6.17e-05 2,071 5.95e-05 1,995
64 1.33e-06 1,432 1.26e-06 1,357

128 4.02e-08 1,382 3.80e-08 1,307
256 1.24e-09 1,364 1.17e-09 1,289
512 3.86e-11 1,360 3.65e-11 1,284

1024 1.21e-12 1,359 1.14e-12 1,284

Tables 2 4 show the error Vh(X)−F (X) at the point X = (3.1,−0.2)
for each of the six methods defined in Table 1, using N = 2l subintervals
for 3 ≤ l ≤ 10. The behavior of the ratio h−ρ[Vh(X)− F (X)] confirms
that (6.1) holds for the predicted values of ρ.
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TABLE 5. Errors and experimental convergence rates for the

modified method of Lemma 5.2.

N n = 0 n = 1 n = 2
8 −3.15e-02 −3.10e-02 −3.08e-02

16 8.66e-03 1.86 8.11e-03 1.94 8.10e-03 1.93
32 2.21e-03 1.97 2.03e-03 2.00 2.01e-03 2.01
64 3.10e-04 2.83 2.44e-04 3.06 2.39e-04 3.07

128 6.19e-05 2.32 3.18e-05 2.94 3.00e-05 2.99
256 1.94e-05 1.67 4.72e-06 2.75 3.92e-06 2.93
512 8.27e-06 1.23 9.69e-07 2.29 5.80e-07 2.76

1024 3.96e-06 1.06 3.10e-07 1.64 1.17e-07 2.31

TABLE 6. Errors and experimental convergence rates for midpoint collocation

(ε = 1/2) with piecewise constants (r = 1); comparison between

Method 1 (fully-discrete) and the use of exact integration.

N Method 1 Exact Integration
8 −4.28e-02 −3.62e-02

16 9.77e-03 2.13 8.12e-03 2.01
32 2.07e-03 2.24 2.01e-03 2.01
64 2.51e-04 3.04 2.37e-04 3.08

128 3.10e-05 3.02 2.93e-05 3.02
256 3.86e-06 3.00 3.65e-06 3.00
512 4.83e-07 3.00 4.56e-07 3.00

1024 6.03e-08 3.00 5.70e-08 3.00

The modified method from Lemma 5.2 was also tested using the
choices of Γ and F above. The exact entries of the collocation matrix,

ajk =
∫ tk+1

tk

log
ω

|Xj − γ(y)| dy for k ∈ Sj ,

were evaluated by splitting the kernel as follows,

log
ω

|Xj−γ(y)| = logRjk(y) log
1

|xj−yk+mjk| for tk<y<tk+1,
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where

Rjk(y) =

⎧⎪⎪⎨⎪⎪⎩
ω|xj − y +mjk|

|Xj − γ(y)| , if Xj �= γ(y),

ω

|γ′(xj)| , if Xj = γ(y),

and

mjk =

⎧⎨⎩
0, if |xj − tk| ≤ 1/2,
1, if −1 ≤ xj − tk ≤ −1/2,
−1, if 1/2 < xj − tk ≤ 1.

The smooth term logRjk was integrated using a six-point Gauss-
Legendre rule, whereas the singular term was integrated analytically.
We also used the six-point Gauss rule to evaluate the single layer
potential, and once again computed the error at X = (3.1,−0.2). The
results shown in Table 5 are consistent with our remarks at the end of
Section 5.

Finally, Table 6 gives a comparison between our fully-discrete Method
1 and the collocation method using exact integration. (The latter is
just the modified method with n > N/2.) Both methods use piecewise
constants and achieve O(h3) accuracy, but the error is always slightly
larger in the fully-discrete case.
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