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A TIME DEPENDENT PARABOLIC INITIAL
BOUNDARY VALUE DELAY PROBLEM

PAOLA VERNOLE

1. Introduction. In this paper we use the theory of analytic semi-
groups in a Banach space to solve the following second order parabolic
initial-boundary value problem with a discrete and a continuous delay
term:

ut = A(t, x)u(t, x) + A(t, u)u(t − r, x)

+
∫ 0

−r

a(σ)A(t, x)u(t + σ, x) dσ

+ f(t, x) for (t, x) ∈ QT

(1.1)
u(t, x) = k(t, x) for (t, x) ∈ [−r, 0] × Ω

B(t, x)u(t, x) = g(t, x) for (t, x) ∈ [−r, T ] × Γ

where Ω is an open bounded set of Rn with a smooth boundary Γ;
r and T are positive numbers, QT = [0, T ] × Ω and f, k, g and a are
functions belonging to suitable Banach spaces. The operator

(1.2) A(t, x) =
n∑

i,j=1

aij(t, x)Dij +
n∑

i=1

bi(t, x)Di + cI,

for every t ∈ [0, T ] is elliptic, and the boundary operator

(1.3) B(t, x) =
h∑

i=1

βi(t, x)Di + γ(t, x)I

is nontangential.

First we study the autonomous case, i.e., the case where aij , bi, c, βi

and γ do not depend on the variable t. We obtain a maximal regularity
result in a suitable interval [0, t1] contained in [0, r], then we repeat the
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same procedure on interval [t1, t2] and, using a step-by-step method,
we get a solution in the whole interval [0, T ].

To solve the nonautonomous case, we use a standard perturbation
method. In [12] we studied the autonomous case where the boundary
operator is I and (1.1) is a Cauchy-Dirichlet nonhomogeneous problem.

This is the structure of the paper. In Section 2 we give notations, and
we recall some known regularity theorems which we use later. Section
3 is devoted to the existence and regularity of the solution of (1.1) in
the autonomous case. In Section 4, finally, we treat a nonautonomous
problem and we get results analogous to those of [5] for linear parabolic
problems without delay.

2. Notation. Let E be a Banach space with norm || · ||, and
let A : DA ⊂ E → E be a linear operator verifying the following
assumption:

(H)
there exist φ ∈ ]π/2, π[ and M > 0 such that, if

Sφ = {z ∈ C; z �= 0| arg z| ≤ φ} then ρ(A) ⊃ Sφ and
for all λ ∈ Sφ, ||λR(λ, A)|| ≤ M.

Here, as usual, ρ(A) is the resolvent set of A and R(λ, A) = (λ−A)−1.
A is not necessarily densely defined in E; nevertheless, A generates a
bounded analytic semigroup {etA} in E in the sense of [10], and DA is
a Banach space with the graph norm.

For θ ∈ ]0, 1[, we define the real interpolation space

DA(θ,∞) = {x ∈ E, [x]θ = sup
t>0

||t1−θAetAx|| < ∞}

which is a Banach space under the norm ||x|| + [x]θ.

Now we introduce some spaces of vector valued functions.

If I is a closed interval in [0,∞[ and E is a Banach space, for θ ∈ ]0, 1[
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and k ∈ N, we set

B(I; E) = {u : I → E; sup
t∈I

||u(t)||E < ∞}

C(I; E) = {u : I → E, u is continuous} with the supremum norm
Cθ(I; E) = {u : I → E; [u]θ = sup

t,s∈I
t�=s

||u(t) − u(s)||/|t − s|θ < ∞}

with norm ||u||θ = ||u||C + [u]θ
Ck(I; E) = {u : I → E, u is k-times continuous differentiable}

Ck+θ(I; E) = {u : I → E; u ∈ Ck and u(k) ∈ Cθ(I; E)}.

If Ω is a bounded set in Rn with boundary Γ of class C2+α, we recall
the following definition (see [5, 9]).

Definition 2.1. Cl/2,l(QT ) is the Banach space of the functions
u : QT → C such that u is continuous with all the derivatives of the
form Dr

t D
s
x for 2r + |s| < l where s is a multiindex s = s1, s2, . . . , sn

and |s| = s1 + s2 + · · · sn with norm

||u||l/2,l =
∑

2r+|s|<l

||Dr
t Ds

xu||C(QT )

+
∑

2r+|s|=[l]

sup
t

[Dr
t Ds

xu(t, ·)]Cl−[l](Ω)

+
∑

l−2<2r+|s|<l

sup
x∈Ω

[DtDxu(·, x)]C(l−|s|−2r)/2([0, T ]).

In an analogous way, the space Cl/2,l([0, T ] × Γ) is defined.

In [9] a characterization of these spaces is given.

Proposition 2.2. u ∈ Cl/2,l(QT ) if and only if setting u(t, ·) =
u(t) for t ∈ [0, T ] we have u ∈ Cl/2([0, T ], C(Ω)) and u(k) ∈
B([0, T ]; Cl−2k(Ω)) for k = 0, . . . [l/2] and the norm ||u||Cl/2,l(Q) is
equivalent to

||u||Cl/2([0,T ];C(Ω)) +
[l/2]∑
k=0

||u(k)||B[0,T ];C[l]−2k(Ω).
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Moreover, u ∈ C(l−h)/2([0, T ]; Ch(Ω)) for h = 0, 1, . . . [l].

Later on we will use the space Cα/2,α(QT ), C(1+α)2,/1+α(QT ),
C1+α/2,2+α(QT ) where α ∈ ]0, 1[; from the previous definition and
proposition Cα/2,α is the Banach space of functions u : QT → C such
that u is continuous in QT and sup[u(t, ·)]C(Ω) and supx∈Ω[u(·, x)]C([0,T ])

are finite; C(1+α)/2,1+α(QT ) is the Banach space of the functions
u : QT → C such that u is continuous, there exist uxi

for i =
1, 2, . . . , n and uxi

belong to Cα/2,α(QT ); the space C1+α/2,2+α(QT )
is the space of the functions u : QT → C such that there exist
ut, uxi

, uxixj
for i, j = 1, 2, . . . , n and ut and uxixj

∈ Cα/2,α(QT ) and
uxi

∈ C(1+α)/2,1+α(QT ).

Moreover, from Proposition 2.2, it follows that

u ∈ C(2+α)/2([0, T ]; C(Ω)) ∩ C(1+α)/2([0, T ];

C1(Ω)) ∩ Cα/2([0, T ]; C2(Ω)).

We now recall some regularity theorems for abstract evolution equa-
tions which we will use in the following sections.

Theorem 2.3. Let A : DA ⊂ E → E be a linear operator verifying
assumption (H). Consider problem

(2.1) u′(t) = Au(t) + f(t) for t ∈ [0, T ], u(0) = x

if f ∈ C([0, T ]; E) ∩ B([0, T ]; DA(θ,∞)) for some θ ∈ ]0, 1[ and
x ∈ DA, Ax ∈ DA(θ,∞). Then problem (2.1) has a unique solution
u ∈ C([0, T ]; DA) ∩ C1([0, T ]; E) given by the variation of constants
formula

(2.2) u(t) = etAx +
∫ t

0

e(t−s)Af(s) ds

Moreover,

u′ ∈ B([0, T ]; DA(θ,∞)), Au ∈ Cθ([0, T ]; E) ∩ B([0, T ]; DA(θ,∞))
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and
(2.3)

||Au||B([0,T ];DA(θ,∞)) ≤ c1(||f ||B([0,T ];DA(θ,∞)) + M ||Ax||DA(θ,∞))

· ||u′||B([0,T ];DA(θ,∞))

≤ (1 + C)(||f ||B(0,T ;DA(θ,∞))

+ M ||Ax||DA(θ,∞)).

For the proof, see [10, Theorem 5.5].

Theorem 2.4. Let A verify (H), and let β and θ ∈ ]0, 1[ be such
that θ + β > 1. Then, if f ∈ Cθ([0, T ], DA(β,∞)) and f(0) = 0, the
function

(2.4) z(t) = A

∫ t

0

e(t−s)Af(s) ds t ∈ [0, T ]

is continuously differentiable, z(t) + f(t) ∈ DA for every t ∈ [0, T ] and
z′(t) = A(z(t) + f(t)) for t ∈ [0, T ].

Moreover, z′ belongs to B([0, T ]; DA(θ + β − 1,∞)), and there exists
c2 > 0 such that

(2.5) ||z′||B([0,T ];DA(θ+β−1,∞)) ≤ c2||f ||Cθ([0,T ];DA(β,∞)).

For the proof, see [8, Proposition 1.3].

Finally we give a characterization of the interpolation spaces in a
special case, and a Hölder regularity property for elliptic equations.

If E = C(Ω), where Ω is a bounded set in Rn with C2+α bound-
ary, aij , bi, c ∈ Cα and DA = {w ∈ W 2,p(Ω) with p > n, Aw ∈
C(Ω),Bw/Γ = 0}Aw = Aw, then for each α ∈ ]0, 1[, DA(α/2,∞) =
Cα(Ω) and C1(Ω) ↪→ DA(1/2,∞), see [1].

If we set D = {f ∈ W 2,p(Ω); Af ∈ Cα(Ω); Bf ∈ C1+α(Γ), then
DA ⊂ C2+α(Ω) and there exists c3 > 0 such that

(2.6) ||f ||C2+α(Ω) ≤ c3(||Af ||Cα(Ω) + ||f ||C(Ω) + ||Bf ||C1+α(Γ)),
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see [2].

3. The autonomous case. We consider the initial boundary
problem (1.1) when the coefficients are time independent.

(3.1)

ut(t, x) = Au(t, x) + Au(t − r, x)

+
∫ 0

−r

a(σ)Au(t + σ, x) dσ

+ f(t, x), (t, x) ∈ QT

u(t, x) = k(t, x), (t, x) ∈ [−r, 0] × Ω
Bu(t, x) = g(t, x), (t, x) ∈ [−r, T ] × Ω.

We make the following assumptions

(3.2)
Ω is a bounded set in Rn with C2+α boundary Γ,

QT = [0, T ] × Ω,

(3.3) A =
h∑

i,j=1

aij(x)Dxixj
+

h∑
i=1

bi(x)Dxi
+ c(x)I,

is an elliptic operator in Ω with coefficients aij , bi, c ∈ Cα(Ω),

(3.4) B(x) =
h∑

j=1

βj(x)Dxj
+ γ(x)I,

is a boundary differential operator with coefficients βj , γ ∈ C1+α(Ω)
satisfying the nontangentiality condition

(3.5)
h∑

j=1

βj(x)nj(x) �= 0

where n(x) is the unit exterior normal vector to Ω at the point x.
(3.6){

a ∈ L1([−r, T )]; f ∈ C0,α([0, T ] × Ω); g ∈ C(1+α)/2,1+α([−r, T ]×Γ)
k ∈ C1,2([−r, 0] × Ω) with kt and Ak ∈ C0,α([−r, 0] × Ω)
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(3.7) Bk(t, x) = g(t, x), ∀ (t, x) ∈ [−r, 0] × Γ.

We solve the problem (1.1) by a step-by-step method; we first consider
the problem in the interval [0, r] so that we can replace u(t − r) by
k(t − r) and look for a solution in this interval. Then, using u(t) as a
new initial datum we solve the same problem in the interval [r, 2r], and
so on, until we get a solution in the whole interval [0, T ] after a finite
number of steps.

We want to solve the prolbem (1.1) by reducing it to an abstract
evolution equation in the Banach space X = C(Ω) of the continuous
functions in Ω. If g = 0 problem (1.1) is equivalent to the abstract
evolution equation:

(3.8)

⎧⎪⎨
⎪⎩

u′(t) = Au(t) + Ak(t − r) +
∫ 0

−r
a(θ)Au(t + θ) dθ

+f(t), t ∈ [0, r]
u(t) = k(t) t ∈ [−r, 0]

where we have set u(t) = u(t, ·), k(t) = k(t, ·), f(t) = f(t, ·) and
A : DA ⊂ X → X
(3.9)
DA = {w∈W 2,p(Ω); Aw ∈ X;Bw = 0}, Aw = Aw ∀w∈DA.

It was proved by Stewart [11] that the linear operator A defined in
(3.6) generates an analytic semigroup {etA}t≥0. But, because of the
nonhomogeneous boundary datum g we cannot make direct use of
the theory of abstract parabolic equations. In order to overcome this
problem, we consider a suitable linear mapping N already used in [8]
and in [9].

Theorem 3.1. Under the assumptions (3.2), (3.3), (3.4) and (3.5)
there exists a continuous linear mapping N : C(Γ) → C1(Ω) such that

N ∈ L(Cθ(Γ), Cθ+1(Ω)) ∩ L(C1+θ(Γ), C2+θ(Ω))
∀ θ ∈ ]0, α] , BNg = g ∀ g ∈ C(Γ).

For the construction of N , see [9]. Under assumption (3.6) on g we
deduce by the characterization of C(1+α)/2,1+α([−r, T ] × Γ) that

g ∈ C(1+α)/2([−r, T ]; C(Γ)) ∩ B([−r, T ];

C1+α(Γ)) ∩ Cα/2([−r, Γ]; C1(Γ))
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and

Ng ∈ C(1+α)/2([−r, T ]; C1(Ω)) ∩ B([−r, T ];

C2+α(Ω)) ∩ Cα/2([−r, T ]; C2(Ω)).

If u is a solution of (3.1) and N is sufficiently regular, then the function
v(t) = u(t) − Ng(t) satisfies

(3.10)

v′(t) = Av(t) −ANg(t) + Ak(t − r)

+
∫ 0

−r

a(σ)A[v(s + σ) + Ng(s + σ)] dσ

+ f(t) − (Ng)s, for t ∈ [0, r]
v(0) = k(0) − Ng(0)

so that v has the following representation formula:

(3.11)

v(t) = etA[k(0) − Ng(0)]

+
∫ t

0

e(t−s)A[f(s) + Ak(s − r) + ANg(s)] ds

+
∫ t

0

e(t−s)A

∫ 0

−r

a(σ)A[v(s + σ) + Ng(s + σ)] dσ ds

−
∫ t

0

e(t−s)A(Ng)s(s) ds.

Integrating the last integral by parts, we get

(3.12)

v(t) = etA[k(0) − Ng(0)]

+
∫ t

0

e(t−s)A[f(s) + Ak(s − r) + ANg(s)] ds

+
∫ t

0

e(t−s)A

∫ 0

−r

a(σ)A[v(s + σ) + Ng(s + σ)] dσ ds

− Ng(t) + etANg(0) − A

∫ t

0

e(t−s)ANg(s) ds

which makes sense even if Ng is not differentiable with respect to t but
it is only Hölder continuous. So, if (3.1) has a solution u, we get the
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following representation formula:

(3.13)

u(t) = etA[k(0) − Ng(0)]

+
∫ t

0

e(t−s)A[f(s) + Ak(s − r) + ANg(s)] ds

+
∫ t

0

e(t−s)A

∫ 0

−r

a(σ)Au(s + σ) dσ ds

+ Ng(0) − A

∫ t

0

e(t−s)A[Ng(s) − Ng(0)] ds.

Now we use the contraction principle in a suitable Banach space to
prove that (3.13) indeed has a solution u, which satisfies (3.1).

Before giving such a result we prove a proposition on the continuous
delay term.

Proposition 3.2. Let 0 < T ◦ < r, a ∈ L1(−r, 0); and set for

u ∈ B([−r, T ◦]; DA(α + 1,∞)) ∩ C([−r, T ◦]; DA)

l(u) =
∫ 0

−r

a(σ)Au(t + σ) dσ,

then l(u) ∈ B([0, T 0]; DA(α,∞)) ∩ C([0, T ◦]; E) and

(3.14)
||u||B([0,T◦];DA(α)) ≤ ||a||L1(−r,0)||u||B([−r,0];DA(α+1,∞))

+ ||a||L1(−T◦,0)||u||B([0,T◦];DA(α+1),∞)).

Proof.

||lu||B([0,T◦];DA(α,∞)) = sup
t∈[0,T◦]

∥∥∥∥
∫ 0

−r

a(σ)Au(t + σ) dσ

∥∥∥∥
DA(α,∞)

= sup
t∈[0,T 0]

[∥∥∥∥
∫ −T◦

−r

a(σ)Au(t + σ) dσ

∥∥∥∥
DA(α,∞)

+
∥∥∥∥

∫ 0

−T◦
a(σ)Au(t + σ) dσ

∥∥∥∥
DA(α,∞)

]

≤ ||a||L1(−r,−T◦)||u||B([−r,0];DA(α+1,∞))

+ ||a||L1(−T◦,0)||u||B(0,T 0;DA(α+1,∞)).
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Now we can prove our basic result.

Theorem 3.3. If assumptions (3.2), (3.3), (3.4), (3.5) and (3.6) hold,
then problem (3.13) has a unique solution u ∈ C1,2([0, T ] × Ω) with ut

and Au ∈ C0,α([0, T ] × Ω), and there exists c4 > 0 such that

(3.15) ||u||B([0,T ];C2+α(Ω)) + ||u′||B([0,T ];Cα(Ω))

≤ c4(||f ||B([0,T ];C(Ω)) + ||k||B([−r,0];C2+α(Ω))

+ ||g||C(1+α)/2([0,T ];C(Γ)) + ||g||B([0,T ];C1+α(Γ))).

Proof. For each u ∈ C([0, T ]; C2(Ω)) ∩ B([0, T ]; C2+α(Ω)), we set

(3.16) û(t) =
{

u(t) if t ∈ [0, T ]
k(t) if t ∈ [−r, 0]

and

Fû(t) = f(t) + Ak(t − r) + ANg(t) +
∫ 0

−r

a(σ)Aû(t + σ) dσ.

From the assumptions (3.6) and the properties of the mapping N , we
can conclude that Fû ∈ C0,α([0, T ] × Ω). If we set

(3.17) u1(t) = etA[k(0) − Ng(0)] +
∫ t

0

e(t−s)AFû(s) ds

then u1 is the solution of the problem

(3.18)
{

u′
1(t) = Au1(t) + Fû(t), t ∈ [0, T ]

u1(0) = k(0) − Ng(0).

Taking into account that k(0) − Ng(0) ∈ C2(Ω); A[k(0) − Ng(0)] ∈
Cα(Ω) and B[k(0, x) − Ng(0, x)] = 0 for all x ∈ Γ (because of
the assumption (3.7)), we have that k(0) − Ng(0) ∈ DA, A[k(0) −
Ng(0)] ∈ DA(α/2,∞); hence, applying Theorem 2.3 we conclude that
u1 ∈ C([0, T ]; DA) ∩ C1([0, T ], E) and u′

1 ∈ B([0, T ]; DA(α/2,∞)),
Au1 ∈ Cα/2([0, T ]; DA) ∩B([0, T ]; DA(α/2,∞)) and, therefore, u′

1 and
Au1 ∈ C0,α([0, T ] × Ω).
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Now we consider the last term in formula (3.9).

We set

(3.19) z(t) = A

∫ t

0

e(t−s)A[Ng(s) − Ng(0)] ds.

Since g ∈ C(1+α)/2([0, T ]; C(Ω)), it follows that Ng ∈ C(1+α)/2([0, T ];
C1(Ω)) ∩C(1+α)/2([0, T ]; DA(1/2,∞)), and, from Theorem 2.4, we get
z ∈ C1([0, T ]; E), z(t) + Ng(t) − Ng(0) ∈ DA for each t ∈ [0, T ],

z′ ∈ B([0, T ]; DA(1/2 + α/2 + 1/2 − 1,∞)) = B([0, T ]; Cα(Ω)),
z′(t) = A[z(t) + Ng(t) − Ng(0)]

and

(3.20)
||z′||B(0,T ;DA(α/2,∞)) ≤ c||Ng||C(1+α)/2([0,T ];DA(1/2,∞))

≤ c1||g||C(1+α)/2([0,T ];C(Γ)).

Since the map s → Ng(s) belongs to C([0, T ]; C(Ω)) ∩ B([0, T ];
DA(α/2,∞)), it follows that z∈B([0, T ]; DA(α/2,∞))∩C([0, T ]; C(Ω)).
From (3.15) we have that B(z(t)−Ng(t) + Ng(0)) = 0, hence Bz(t) =
−B(Ng(t)−Ng(0)) = −g(t) + g(0), i.e., z ∈ B([0, T ]; C1+α(Ω)). From
the Hölder regularity results for elliptic equation we can conclude that
z ∈ B([0, T ]; C2+α(Ω)).

Fix t1 ∈ [0, r] (to be precise later) and denote by Y the follownig
subset of B([0, t1]; C2+α(Ω)):

Y = {v ∈ C([0, t1]; C2(Ω)) ∩ B([0, t1]; C2+α(Ω));
v(0) = k(0);Bv(t, x) = g(t, x) ∀x ∈ Γ}.

For each u ∈ Y , we define Su by

Su(t) = etA[k(0) − Ng(0)] + (eA ∗ Fû)(t) + Ng(0)
− A[eA ∗ (Ng − Ng(0))(t)]

where (eA ∗ f)(t) =
∫ t

0
e(t−s)Af(s) ds.

We will prove that S maps Y into itself and that it is a contraction in
Y for the norm ||u||Y = ||u||B([0,t1];C2+α(Ω)). Since Su = u1−z+Ng(0)
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we deduce from the previous properties that, for every u ∈ Y , Su ∈
C1,2([0, T ] × Ω) and that Su, (Su)′ ∈ B([0, T ], Cα(Ω)); moreover,
Su(0) = k(0) − Ng(0) + Ng(0) = k(0) and BSu(t, x) = Bu1(t, x) −
Bz(t, x) + BNg(0) = BNg(t, x) − BNg(0, x) + BNg(0, x) = g(t, x) for
all x ∈ Γ.

Therefore, Su ∈ Y .

Take ui ∈ Y , i = 1, 2, and define ûi according to (3.16). Then, setting
w = u1 − u2, we have for t ∈ [0, t1]

Su1(t) − Su2(t) = (eA ∗ lw)(t)

where lw is defined as in Proposition 3.2. From this proposition we
deduce that lw ∈ B([0, t1]; DA(α/2,∞)) ∩ C([0, t1]; E)), and since
lw(0) = 0, from (2.3) we get:

||Su1 − Su2||B([0,t1];C2+α(Ω)) ≤ c1||lw||B([0,t1];DA(α/2,∞)).

Since w = 0 in [−r, 0], we get

||Su1 − Su2|| ≤ c1||a||L1(−t1,0)||w||B([0,t1];DA(α/2,∞)).

Now we choose t1 in such a way that c1||a||L1(−t1,0) < 1. Then S is a
strict contraction in Y , so that there exists a unique u ∈ Y such that
Su = u.

Let us prove that u verifies (3.1), using the splitting u = u1−z+Ng(0)
(see (3.17) and (3.19)). Taking into account (3.18) and (3.20), we get

u′(t) = u′
1(t) − z′(t) = Au1 + Fû(t) − A[z(t) + Ng(t) − Ng(0)]

= Au(t) + Fû(t) −ANg(t)
= Au(t) + f(t) + Ak(t − r) + ANg(t) −ANg(t)

+
∫ 0

−r

a(σ)Au(t + σ) dσ;

u(0, x) = u1(0, x) − z(0, x) + Ng(0, x)
= k(0, x) − Ng(0, x) + Ng(0, x) = k(0, x);

Bu(t, x) = B[u1(t, x) − z(t, x) + Ng(0, x)]
= BNg(t, x) − BNg(0, x) + BNg(0, x)
= g(t, x) ∀x ∈ Γ
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i.e., u is a solution of problem (3.1) in the interval [0, t1].

The estimate (3.15) is a consequence of the estimates (2.3), (2.5) and
(3.14). We have

||u||B([0,t1];C2+α(Ω)) ≤ C{||f ||B([0,t1],Cα(Ω))

+ ||k||B([−r,0];C2+α(Ω)) + ||lu||B([0,t1];Cα(Ω))

+ ||g||B([0,t1];C1+α(Γ))+||g||C(1+α)/2([0,t1];C(Γ))},
and by virtue of (3.11),

(1 − c(t1))||u||B([0,t1];C2+α(Ω))

≤ c{||f ||B([0,t1];Cα(Ω)) + ||k||B([−r,0];C2+α(Ω))

+ ||g||B([0,t1];C1+α(Γ)) + ||g||C(1+α)/2([0,t1];C(Γ))}.
If t1 < r we can extend the solution in the interval [−r, t1 + t2] (where
t2 = min{t1, r − t1}) and prove that (3.12) holds with T replaced by
t1 + t2. We repeat the same procedure n times where n is the minimum
integer such that nt1 ≥ r. Once we have a solution of (1.1) in [0, r] we
repeat the same argument in [r, 2r] and so on until we get a solution in
[0, T ].

In the next theorem we prove that if the data are more regular, the
solution itself is more regular.

For this aim we need a lemma (for the proof, see [9]).

Lemma 3.4. If u ∈ B([0, T ]; C2+α(Ω)) such that u′ ∈ B([0, T ];
Cα(Ω)), then u ∈ C(2+α−h)/2([0, T ]; Ch(Ω)) for h = 0, 1, 2, and there
is a C > 0 such that

(3.21) ||u||Cα/2([0,T ];C2(Ω)) + ||u||C(1+α)/2([0,T ];C1(Ω))

≤ C||u||B([0,T ];C2+α(Ω)) + ||u′||B([0,T ];Cα(Ω)).

For the proof, see [9, Theorem 2.2].

Theorem 3.5. If (3.1), (3.2), (3.3), (3.4) and (3.5) hold and

a ∈ L1(−r, 0); f ∈ Cα/2,α([0, T ] × Ω); g ∈ C(1+α)/2,1+α([−r, T ] × Γ),
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k ∈ C1+α/2,2+α([−r, 0] × Ω) satisfy compatibility condition (3.22)
Bk(t, x) = g(t, x) for (t, x) ∈ [−r, 0] × Γ, then the solution of prob-
lem (3.1) belongs to C1+α/2,2+α([0, T ] × Ω).

Proof. The assumptions (3.22) are stronger than (3.6); so we can
use Theorem 3.3 to prove the existence of a solution of problem (3.1)
u ∈ C1,2([0, T ] × Ω) with u′ and Au ∈ C0,α([0, T ] × Ω). Since
k ∈ C1+α/2,2+α([−r, 0] × Ω) from Theorem 2.2, it follows that

k ∈ C1+α/2([−r, 0]; C(Ω)) ∩ C(1+α)/2([−r, 0]; C1(Ω))

∩ Cα/2([−r, 0]; C2(Ω)),

and therefore k∈Cα/2([−r, 0]; C(Ω))∩B([−r, 0]; Cα(Ω))=Cα/2,α([0, T ]
×Ω). Since u′ ∈ B([0, T ]; Cα(Ω)) and u ∈ B([0, T ]; C2+α(Ω)) using
Lemma 3.4 we get that u ∈ Cα/2([0, T ]; C2(Ω)). This implies that
u ∈ Cα/2,α([0, T ] × Ω). Then the right hand side of (3.1) belongs to
Cα/2,α([0, T ] × Ω) and therefore ut ∈ Cα/2,α([0, T ] × Ω) which implies
that u ∈ C1+α/2,2+α([0, T ] × Ω).

Remark. In the same way it is possible to prove the existence of a
solution of a problem similar to (3.1) with initial time t0 �= 0

(3.17)

ut(t, x) = Au(t, x) + Au(t − r, x)

+
∫ 0

−r

a(s)Au(t + s, x) ds

+ f(t, x) for (t, x) ∈ [t0, T ] × Ω
u(t, x) = k(t, x) for (t, x) ∈ [t0 − r, t0] × Ω

Bu(t, x) = g(t, x) for (t, x) ∈ [t0 − r, T ] × Γ

with the same assumptions on the regularity of the data and the
analogous compatibility conditions

Bk(t, x) = g(t, x) for (t, x) ∈ [t0 − r, t0] × Γ.

4. The time-dependent coefficient case. Now we consider the
problem (1.1) in the general case, i.e., when the coefficients of the
differential operators depend on t and x.
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We make the following assumptions:

(4.1) aijbi, c ∈ C0,α([0, T ] × Ω); βj , γ ∈ C1/2+α/2,1+α([0, T ] × Γ).

Also in this case we write the problem (1.1) in an abstract form in the
Banach space C(Ω).

(4.2)

u′(t) = A(t)u(t) + A(t)u(t − r)

+
∫ 0

−r

a(σ)Au(t + σ) dσ + f(t) for t ∈ [0, T ]

u(0) = k(0) B(t)u(t) = g(t) for t ∈ [−r, T ]

where A(t)v =
∑n

i,j=1 aij(t, ·)DiDjv + bi(t, ·)Div + c(t, ·)v, t ∈ [0, T ],
v ∈ C2(Ω) and B(t)v =

∑n
i=1 βi(t, ·)Div + γ(t, ·)v for t ∈ [0, T ],

v ∈ C2(Ω).

We will prove the following existence and uniqueness theorem for
problem 4.2.

Theorem 4.1. Let (4.1) hold, and let f, g, k and a verify (3.4). Then
problem (1.1) has a unique solution u belonging to C1([−r, T ]; C(Ω))∩
B([−r, T ]; C2+α(Ω)) ∩ Cα/2([−r, T ]; C2(Ω)).

Proof. We will prove that there exists a δ > 0 such that if 0 ≤ t0 <
t1 < r and t1 − t0 < δ then, for every k(t0, ·) ∈ C2+α(Ω) such that
B(t0, x)k(t0, x) = g(t0, x) for x ∈ Γ, the problem

(4.3)

v′(t) = A(t)v(t) + A(t)k(t − r)

+
∫ 0

−r

a(σ)A(t)u(t + σ) dσ + f(t), t ∈ [t0, t1]

v(t0) = k(t0), B(t)v(t) = g(t) t ∈ [t0, t1]

has a unique solution v ∈ C([t0, t1]; C2(Ω))∩B([t0, t1]; C2+α(Ω)), such
that v′ and Av ∈ C0,α([t0, t1] × Ω).

Let us set Y = {w ∈ C([t0−r, t1]; C2+α(Ω))∩C1([t0−r, t1]; C(Ω))w′ ∈
B([t0 − r, t1]; Cα(Ω)); w(t) = k(t), w′(t) = k′(t) for t ∈ [t0 − r, t0]}. Y
is a complete metric space with the distance

d(w1, w2) = ||w1 −w2||B([t0−r,t1];C2+α(Ω)) + ||w′
1 −w′

2||B([t0−r,t1];Cα(Ω)).
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For each w ∈ Y , we consider the perturbed problem
(4.5)

v′(t) = A(t0)v(t) + A(t)k(t−r)

+
∫ 0

−r

a(σ)A(t0)v(t+σ) dσ + f(t) + [A(t)−A(t0)]w(t)

+
∫ 0

−r

a(σ)[A(t)−A(t0)]w(t + σ) dσ, t ∈ [t0, t1]

v(t0) = k(t0),
B(t0, x)v(t) = g(t, x)+[B(t0, x)−B(t, x)]w(t, x), (t, x) ∈ [t0, t1] × Γ.

Setting for each t ∈ [t0 − r, t1],
(4.6)

Fw(t) = f(t) + [A(t)−A(t0)]w(t) +
∫ 0

−r

a(σ)[A(t)−A(t0)]w(t+σ) dσ

Gw(t) = g(t) + [B(t) − B(t0)]w(t)

from the assumptions (4.1) it follows that Fw ∈ C0,α([t0−r, t1]×Ω) and
Gw ∈ C(1+α)/2,1+α[t0 − r, t1] × Γ and also the compatibility condition
(3.7) is verified in fact B(t0, x)k(t, x) = Gw(t, x) for (t, x) ∈ [t0−r, t0]×Γ
since w(t) = k(t) for t ∈ [t0 − r, t0]. So we can apply Theorem 3.3 and
find that, for each w ∈ Y , (4.5) has a solution v ∈ C1,2([t0, t1]×Ω] such
that vt and Av ∈ C0,α([t0, t1] × Ω).

Let us define S : Y → Y , Sw = v where v is the solution of (4.5).

We will prove that S is a contraction on Y for t1 − t0 sufficiently
small.

Let wi ∈ Y for i = 1, 2. From estimate (3.15) we get

(4.7)

||Sw1 − Sw2||Y ≤ c||Fw1 − Fw2 ||B(t0−r,t1;Cα(Ω))

+ ||Gw1 − Gw2 ||C(1+α)/2([t0−r,t1];C(Γ))

+ ||Gw1 − Gw2 ||B([t0−r,t1],C1+α)(Γ)).

Let us set || · ||B([t0−r,t1];Cα(Ω)) = || · ||B(Cα),

||Fw1 − Fw2 ||B(Cα) ≤ ||[A(t) −A(t0)][w1 − w2]||B(Cα)

+
∥∥∥∥

∫ 0

−r

a(σ)[A(t) −A(t0)][w1(t + σ)

− w2(t + σ)] dσ

∥∥∥∥
B(Cα)

.
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It is easy to see that

(4.8)

||Fw1 − Fw2 ||B(Cα) ≤ sup
|t−s|<δ

||A(t) −A(s)||L(C2(Ω),C(Ω))

× [1 + ||a||L1(−δ,0)]
||w1 − w2||B([t0,t1];C2+α(Ω))

+ 2[1 + ||a||L1(−δ,0)]
× sup

t∈[0,T ]

||A(t)||L(C2+α(Ω);Cα(Ω))

× ||w1 − w2||Cα/2([t0,t1];C2(Ω))δ
α/2.

In an analogous way, we get
(4.9)
||Gw1 − Gw2 ||C(1+α)/2[t0,t1];C(Γ)) ≤ 2||B(·)||C(1+α)/2([0,T ];L(C2(Ω);C1(Γ))

× (1 + δ(1+α)/2)δα/2

||w1 − w2||C(1+α)/2([t0,t1];C1(Ω))

and
(4.10)

||Gw1 − Gw2 ||B[t0,t1];C1+α(Γ)) ≤ sup
|t−s|<δ

||B(t) − B(s)||L(C2(Ω),C1(Γ))

× ||w1 − w2||B([t0,t1];C2+α(Ω))

+ 2 sup
t∈[0,T ]

||B(t)||L(C2+α(Ω),Cα(Γ))

× ||w1 − w2||Cα/2([t0,t1];C2(Ω))δ
α/2.

Using (4.8), (4.9), (4.10) and the estimate (3.20) of Lemma 3.4, we
deduce that

(4.11) ||Sw1 − Sw2||Y ≤ cφ(δ)||w1 − w2||Y

where φ : R+ → R+ is a continuous function such that φ(0) = 0.

Therefore, for t1−t0 sufficiently small, S is a strict contraction; hence,
it has a unique fixed point v ∈ Y , which is the unique solution of
problem (1.1) in the interval [t0, t1]. This implies that the statement of
Theorem 4.1 holds, since we can choose t0 = 0 and obtain a solution in
[−r, δ]×Ω: if δ < r, taking t0 = δ we extend the solution to [−r, 2δ]×Ω.
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After a finite number of steps we obtain an extension of the solution to
the whole interval [−r, T ].
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