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FAST SOLUTION OF A CLASS OF
PERIODIC PSEUDODIFFERENTIAL EQUATIONS

L. REICHEL AND Y. YAN

ABSTRACT. This paper presents a quadrature method
for discretizing periodic pseudodifferential equations. The
principal part is discretized by a product rule and the smooth
remaining part is discretized by the rectangular rule. This
discretization yields as rapid convergence of the truncation
error as discretization by global spectral methods, and gives
rise to a linear system of algebraic equations with a structure
that enables rapid solution by iterative methods. We present
error bounds for the discretization and discuss the convergence
of an iterative method.

1. Introduction. The solution of boundary value problems for
homogeneous elliptic partial differential equations with constant coef-
ficients on a simply connected region Ω in the plane with a smooth
boundary curve Γ can often be conveniently computed by solving a
boundary integral equation. This approach is particularly attractive
if Ω contains the point at infinity. Properties of integral equations so
obtained, as well as of more general ones, can be studied by using the
theory for periodic pseudodifferential operators. This theory can also
be applied to study properties of numerical schemes for the solution
of the integral equations. Pseudodifferential operators are defined as
follows. Let the function u ∈ L2(−π, π) have the Fourier coefficients

û(m) =
1
2π

∫ π

−π

u(σ)e−imσ dσ, m ∈ Z,
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and introduce the projections

(P +u)(s) =
∑
m≥1

û(m)eims,

(P −u)(s) =
∑

m≤−1

û(m)eims,

(P 0u)(s) = û(0).

They satisfy

P + + P − + P 0 = I, P + − P − = H ,

where H is the periodic Hilbert transform

(H u)(s) =
1

2πi
PV

∫ π

−π

cot
σ − s

2
u(σ) dσ.

Define the Bessel potential operator D β of order β ∈ R by

D βeims = |m+ δ0m|βeims, m ∈ Z,

with δ0m denoting the Kronecker symbol. We are now in a position to
introduce the 2π-periodic pseudodifferential operator of order β,

(1.1) A = (a+P + + a−P − + a0P 0)D β .

Here a+, a− and a0 are complex numbers. Properties of pseudodiffer-
ential operators are discussed in [25, 27, 40, 47]. The present paper
considers the solution of pseudodifferential equations of the form

(1.2) (A + B )w = f,

where the right hand side function f and the solution w belong to
appropriate function spaces, and B is an integral operator defined by

(B u)(s) =
∫ π

−π

b(s, σ)u(σ) dσ.

The kernel b(s, σ) is assumed to be continuous and 2π-periodic in both
variables.
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Example 1.1. Let β = 0 and a+ = a0 = a− = 1. Then A = I and
the equation (1.2) is a Fredholm integral equation of the second kind.

Example 1.2. Let β = 0, a+ = a0 = 1 and a− = −1. Then A is a
Cauchy integral operator of the first kind. If, instead, a+ = 2, a0 = 1
and a− = 0, then A is a Cauchy integral operator of the second kind.

Example 1.3. Define the integral operator associated with a single-
layer potential on the unit circle {ρeit : −π ≤ t < π} of radius ρ > 0,

(Au)(t) =
1
π

∫ π

−π

ln
1

|ρeit − ρeis|u(s) ds, −π ≤ t < π.

Let uk(t) = eikt. Then

(A uk)(t) =
{

(1/|k|)uk(t) if k �= 0,
−2 ln(ρ)u0(t) if k = 0.

Thus, A can be written in the form (1.1) with β = −1, a+ = a− = 1
and a0 = −2 ln ρ.

Example 1.4. Introduce the hypersingular integral operator

(A u)(t) = − 1
2π

∫ π

−π

1
1 − cos(s− t)

u(s) ds, −π ≤ t < π.

Let uk(t) = eikt. Then (Auk)(t) = |k|uk(t). Thus, A can be written
in the form (1.1) with β = 1, a+ = a− = 1 and a0 = 0. For other
examples of hypersingular integral operators, see [16, 32].

We will henceforth assume that a+a−a0 �= 0 in order to secure that
A is invertible. Properties of integral equations of the form (1.2) are
discussed in [18, 27, 40, 47]. These equations have many applications,
such as to scattering, flows, elasticity and conformal mapping; see [7,
12, 15, 17, 19, 20, 28, 31, 33, 45, 46, 47] and references therein.

If we allow the righthand side f and the solution w of (1.2) to be
vector-valued, then a larger class of problems can be solved. This
extension is fairly straightforward but will not be discussed in the
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present paper. A still larger class of problems can be solved if we allow
the solution w to satisfy certain constraints. Vector-valued solutions
that satisfy constraints arise when solving partial differential equations
on multiply connected regions with smooth periodic mutually exterior
boundary curves, as well as in conformal mapping of multiply connected
regions, see [14, 33].

The periodicity of the operators A and B makes it natural to use
trigonometric polynomials to discretize equation (1.2), and many dis-
cretization methods based on trigonometric polynomials are available,
such as Galerkin, Petrov-Galerkin, discrete Galerkin and collocation
methods; see [2, 4, 22, 24, 25, 30, 33, 39] and references therein.
We remark, however, that other discretization methods for (1.2) are
also available, among them methods based on discretization by splines;
see, e.g., [16, 18, 44]. A recent survey of discretization methods is
presented in [43]. The linear system of algebraic equations obtained
after discretization of (1.2) has a structure that makes iterative solution
attractive. Available iterative schemes include two-grid and multigrid
methods [3, 6, 16, 34, 36, 41].

This paper describes a solution method based on trigonometric poly-
nomials. Our scheme is a quadrature method in which we discretize
the operator A by a product integration rule and the operator B by
the rectangular rule. The discretization method is described in Section
2. Error estimates for the computed solution of the discretized system
of equations are given in Section 3. The linear system of algebraic
equations has a special structure which can be exploited to introduce a
preconditioned stationary Richardson iterative method. This structure
and the preconditioned iterative method are discussed in Section 4. In
Section 5 we determine the rate of convergence of the iterative scheme.
Section 5 generalizes results for an iterative method for integral equa-
tions presented and discussed in [34, 36, 48, 49]. Properties of our
iterative scheme are summarized in Section 6. The iterative scheme of
this paper would appear to be particularly attractive for the solution
of time dependent or nonlinear problems involving the operator A +B .
For discussions on nonlinear problems, see [5, 38]. A time dependent
problem is treated in [14, Example 2].

2. A quadrature method. This section introduces a quadrature
method for the discretization of the pseudodifferential equation (1.2).
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We regard A as a singular integral operator and discretize Aw by a
product integration rule as follows. Assume for notational convenience
that N is an even positive integer, and introduce the set Λh =
{−N/2+1,−N/2+2, . . . , N/2}. Let h = 2π/N and tk = kh for k ∈ Λh.
Define the interpolation operator Q : C[−π, π] → span {eims,m ∈ Λh}
by

(2.1) (Q v)(tk) = v(tk), k ∈ Λh.

Let vh(m) denote the discrete Fourier coefficients associated with
v ∈ C[−π, π], i.e.,

(2.2) vh(m) =
1
N

∑
k∈Λh

v(tk)e−imtk , m ∈ Λh.

Then Q can be written as

(Q v)(s) =
∑

m∈Λh

vh(m)eims.

Our product integration rule approximates (A v)(s) by (AQ v)(s) and
evaluates the latter operator exactly. Thus, using the relation (2.2), we
obtain

(2.3) (A v)(s) ≈ (AQ v)(s) =
1
N

∑
k∈Λh

v(tk)ρ(s− tk),

where

(2.4) ρ(s) =
−1∑

m=−N/2+1

a−(−m)βeims + a0 +
N/2∑
m=1

a+m
βeims.

We discretize Bw by the rectangular rule

(2.5)
∫ π

−π

v(σ) dσ ≈ h
∑

k∈Λh

v(tk).

Since the kernel b(s, σ) is smooth and 2π-periodic in each variable,
this quadrature rule yields high accuracy. Thus, in equation (1.2) we
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apply the product integration rule (2.3) to integrate Aw and we use
the rectangular rule (2.5) to integrate Bw. Collocating (1.2) at the
nodes tk for k ∈ Λh yields the linear system of algebraic equations

(2.6)
∑

k∈Λh

(
1
N
ρ(tj−k) + hb(tj , tk)

)
wk = fj , j ∈ Λh,

for the approximations wk of w(tk), where fj = f(tj). We consider
this approach of approximating equation (1.2) a quadrature method.
This quadrature method has several advantages over other numerical
discretization schemes:

i) The computation of the matrix elements does not require the
evaluation of integrals by numerical quadrature as in Galerkin and col-
location methods. The only necessary computation is for the evalua-
tion of the weights ρ(tk) for k ∈ Λh, and this can be carried out in only
O(N logN) arithmetic operations by the fast Fourier transform (FFT)
algorithm.

ii) The discretization error converges as quickly (polynomially or
exponentially) as for global spectral methods. For properties of the
latter, see [4, 24, 25, 22, 43]. In contrast, spline Galerkin, collocation
and qualocation methods have usually low order of convergence; see
[18, 42, 43, 44].

iii) The linear system (2.6) has a structure which can be exploited in
the development of iterative methods for the numerical solution of the
system. In particular, the matrix obtained by discretizing the operator
A is a circulant matrix.

The quadrature method has been presented for N even, and results of
the present paper are stated for the case when N is even only. However,
the quadrature method can be modified to be applicable for N odd, and
our results remain valid for this modification.

We remark that the quadrature method of the present paper is
mathematically equivalent to the discrete trigonometric collocation and
Galerkin methods discussed in [1, 4, 26]. The methods differ in the
formulation of the linear system of algebraic equations, in that for the
quadrature method the function values at the nodes are the unknowns
to be determined, while for the collocation and Galerkin methods
the unknowns to be determined are the Fourier coefficients of the
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computed solution. Consequently, implementations of the collocation
and Galerkin methods require numerical integration for every element
of the matrix, while implementation of the quadrature method does
not. This makes it easier to implement the quadrature method than
to implement the Galerkin and collocation methods discussed in [1, 4,
26].

The circulant matrix mentioned in iii) can be diagonalized explicitly
without any computational work, assuming that the weights ρ(tk) are
known. For future reference, we formulate this result as a lemma.
Introduce the unitary matrix

(2.7) F = N−1/2[ωjk]N/2
j,k=−N/2+1, ω = eih.

Thus, FF∗ = F∗F = I, where ∗ denotes transposition and complex
conjugation. Throughout this paper, matrices and vectors are written
in boldface. Define the matrix

(2.8) A =
[

1
N
ρ(tj−k)

]N/2

j,k=−N/2+1

, tk = kh.

Lemma 1. Let D− = diag [(N/2 − 1)β , (N/2 − 2)β, . . . , 2β, 1] and
D+ = diag [1, 2β , . . . , (N/2)β]. Define

D =

⎡
⎣ a−D−

a0

a+D+

⎤
⎦ .

Then
D = F∗AF.

Proof. The lemma follows from the observation that the matrix A is
a circulant matrix. It therefore has the discrete Fourier coefficients of
ρ(s) as eigenvalues and the columns of F as eigenvectors.

3. Convergence of the quadrature method. Typically, quadra-
ture methods for integral equations are analyzed using the L∞-norm.
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This approach yields pointwise convergence at the nodes tk. Another
approach is to reformulate the quadrature method as an equivalent dis-
crete trigonometric collocation method and then apply results in [26]
for appropriate Hölder-Zygmund function spaces. However, due to the
periodicity of the operators A and B , we find it more convenient to
study the quadrature method, and an iteration scheme introduced in
Section 4, by using Fourier analysis and periodic Sobolev space norms.
Our analysis shows that the stability of the linear system of algebraic
equations (2.6) is equivalent to the stability of an approximate integral
operator. In Section 5 we apply the analysis of the present section
to determine the rate of convergence of the iterative method for the
solution of (2.6).

Our analysis uses the function space L2(−π, π) and its norm

||v|| =
(

1
2π

∫ π

−π

|v(σ)|2 dσ
)1/2

,

as well as the Sobolev space of 2π-periodic functions Hr(2π) and its
norm

||v||r =
( ∑

m∈Z

|m+ δ0m|2r|v̂(m)|2
)1/2

,

where r is an arbitrary real number. In particular, ||v||0 = ||v||. We
also need the space of continuous 2π-biperiodic functions

C(2π × 2π) = {v ∈ C(R2) : v(s+ 2π, σ)
= v(s, σ + 2π) = v(s, σ), (s, σ) ∈ R2}.

We will use the notation

v(m)(s) =
dmv

ds
, v(m1,m2)(s, σ) =

∂m1+m2v

∂sm1∂σm2
.

Define the projection operator P : L2(−π, π) → span {eims,m ∈ Λh}
by

(P v)(s) =
∑

m∈Λh

v̂(m)eims.

Note that P is closely related to interpolation operator Q defined
by (2.1). Throughout this section C, C ′, C ′′ and C ′′′ denote generic
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positive constants which are independent of N . The following lemma
reviews well-known convergence properties of the interpolation operator
Q and the projection operator P .

Lemma 2. Let r be a real number. Then

||v − P v|| ≤ Chr||v||r, v ∈ Hr(2π), r ≥ 0,
||v −Q v|| ≤ Chr||v||r, v ∈ Hr(2π), r > 1/2,

||(P −Q )v|| ≤ Chr||v||r, v ∈ Hr(2π), r > 1/2.

Proof. See, for example, [11, Chapter 9] for proofs. Related results
can be found in [1, 9, 25, 29].

We apply Lemma 2 to obtain error bounds for the quadrature rules
(2.3) and (2.5). These bounds are given by Lemmas 3 and 4.

Lemma 3. Let v ∈ Hr(2π) for some real number r > 1/2, and
define

(3.1) Eh(v) =
∫ π

−π

v(σ) dσ − h
∑

k∈Λh

v(tk).

Then

(3.2) |Eh(v)| ≤ Chr||v||r.

Proof. The rectangular rule (2.5) is exact for all v ∈ span {eins, n ∈
Λh}, and therefore Eh(v) =

∫ π

−π
(v−Q v) dσ. In view of Lemma 2, this

yields inequality (3.2).

Lemma 4. Let the operator A be of order β ∈ R, and let ρ(s) be
defined by (2.4). Assume that v ∈ Hr(2π) for some r ∈ R, such that
r > max{1/2, 1/2 + β}. Introduce

(Eh(v))(s) = (A v)(s) − 1
N

∑
k∈Λh

v(tk)ρ(s− tk).
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Then
||QEh(v)|| ≤ Chmin{r,r−β}||v||r.

Proof. The equality in (2.3) yields

Eh(v) = A (I −Q )v,

and applying the relations AP = PA, QP = P and Q 2 = Q shows
that

QEh(v) = QA v −QAP v + QA(P −Q )v
= (Q − P )A v + A (P −Q )v.

Hence, Lemmas 1 and 2 yield

(3.3)

||A (P −Q )v|| ≤ C||(P −Q )v||β
≤ C ′Nmax{β,0}||(P −Q )v||
≤ C ′′hmin{r,r−β}||v||r.

The operator A : Hr(2π) → Hr−β(2π) is bounded, i.e., there is a
constant C ′ such that for all v ∈ Hr(2π) the inequality

||A v||r−β ≤ C ′||v||r
is valid. Thus, we apply Lemma 2 in order to obtain the bound

(3.4) ||(P −Q )A v|| ≤ Chr−β||A v||r−β ≤ C ′′hr−β||v||r.

Combining (3.3) and (3.4) completes the proof.

Define the matrix

(3.5) B = [hb(tj , tk)]N/2
j,k=−N/2+1,

and write equation (2.6) as

(3.6) (A + B)w = f ,

where A is given by (2.8), w = [w−N/2+1, . . . , wN/2]T and f =
[f(t−N/2+1), . . . , f(tN/2)]T . Using the error bounds for the quadrature
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formulas, we can determine how well the matrix A + B approximates
the integral operator A + B . This requires additional notation. For
v = [v−N/2+1, . . . , vN/2]T and u = [u−N/2+1, . . . , uN/2]T in CN ,
introduce the inner product and the associated vector norm

(3.7) 〈u,v〉 =
1
N

∑
k∈Λh

vkūk, ||v|| = (〈v,v〉)1/2,

where the bar denotes complex conjugation. We also use || · || to
denote the matrix norm induced by the vector norm (3.7). Define
the restriction operator rh : C[−π, π] → CN by

rhv = [v(t−N/2+1), . . . , v(tN/2)]T ,

and for future reference we also introduce the prolongation operator
ph : CN → C[−π, π],

(3.8)

(phv)(s) =
∑

m∈Λh

vh(m)eims,

vh(j) =
1
N

∑
m∈Λh

vme
−ijtm .

When the integral operator A + B is approximated by the matrix
A + B, we obtain the truncation error

(3.9) εv = rh(A + B )v − (A + B)rhv.

In particular, letting v in (3.9) be the solution w of (1.2) yields in view
of (3.6) that

(3.10) εw = (A + B)(w − rhw).

Our convergence analysis yields a bound for the truncation error as
well as stability properties of the matrix A + B.

Lemma 5. Let the operator A be of order β ∈ R, and let v ∈ Hr(2π)
for some r ∈ R, such that r > max{1/2, 1/2 + β}. Let b ∈ C(2π × 2π)
be such that b(0,r) ∈ C(2π × 2π). Then

||εv|| ≤ Chmin{r,r−β}||v||r.
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Proof. Split the truncation error given by (3.9) into two parts

εv = ε′v + ε′′v ,

where
ε′v = rhA v − Arhv = rhA v − rhAQ v,

ε′′v = rhB v − Brhv.

For u ∈ C[−π, π], we have

||rhu|| = ||Qu||,

and this together with an application of Lemma 4 yields that

||ε′v|| = ||rhA (v −Q v)|| = ||QA (v −Q v)||
= ||QEh(v)|| ≤ Chmin{r,r−β}||v||r.

The entries of ε′′v are given by

ε′′v(j) =
∫ π

−π

v(σ)b(tj , σ) dσ

− h
∑

k∈Λh

v(tk)b(tj , tk), j ∈ Λh.

Since for all v, w ∈ span {eins, n ∈ Λh},∫ π

−π

v(σ)w(σ) dσ = h
∑

k∈Λh

v(tk)w(tk),

ε′′v can be written as

ε′′v (j) =
∫ π

−π

v(σ)b(tj , σ) dσ −
∫ π

−π

Q v(σ)Q b(tj, σ) dσ

=
∫ π

−π

v(σ)(I −Q )b(tj, σ) dσ +
∫ π

−π

(I −Q )v(σ)Q b(tj, σ) dσ.

An application of Lemma 3 therefore yields that

|ε′′v (j)| ≤ Chr||v||r, j ∈ Λh.
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This shows that
||ε′′v || ≤ Chr||v||r.

The lemma now follows from ||εv|| ≤ ||ε′v|| + ||ε′′v ||.

From the assumption a−a+a0 �= 0 and Lemma 1, it follows that the
matrix A is invertible. Since A+B = A(I+A−1B), the essential part
of our stability analysis is to bound the norm of the matrix I + A−1B.
We apply the following lemma for this purpose. Related results can be
found in several of the references, see, e.g., [3].

Lemma 6 ([8, Lemma 2.5]). Let G be an integral operator on
L2(−π, π) defined by

(3.11) (G v)(s) =
∫ π

−π

v(σ)g(s, σ) dσ,

where the kernel g satisfies the Lipschitz conditions

|g(s, σ) − g(s′, σ)| ≤ C|s− s′|,
|g(s, σ) − g(s, σ′)| ≤ C|σ − σ′|,

for s, s′, σ, σ′ ∈ [−π, π]. Assume that

(3.12) ||(I + G )v|| ≥ C ′||v||, v ∈ L2(−π, π),

for some constant C ′ > 0 independent of v, and define the matrix

(3.13) G = [hg(tj , tk)]N/2
j,k=−N/2+1.

Then, for sufficiently small h > 0, there is a constant C ′′ > 0
independent of h and v, such that

||(I + G)v|| ≥ C ′′||v||, v ∈ CN .

Define G = A−1B . Then G can be written as an integral operator
of the form (3.11) with

g(s, σ) = gσ(s) = (A−1bσ)(s), bσ(s) = b(s, σ).
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The operator A−1 : Hr−β → Hr is bounded, i.e., there is a constant
C such that ||A−1u||r ≤ C||u||r−β for all u ∈ Hr−β(2π). Therefore,

(3.14) ||gσ(t)||r ≤ C||bσ(t)||r−β.

Lemma 7. Assume that the operator A + B : H0(2π) → H−β(2π)
is invertible and that b ∈ C(2π × 2π) satisfies

(3.15)

||bσ(s)||r−β ≤ C,

||b(0,1)
σ (s)||1−β ≤ C,

σ ∈ [−π, π],

for some r ∈ R, such that r > max{|β| + 1/2, 3/2}. Then, for
sufficiently large N ,

||(A + B)−1|| ≤ Chmin{0,β}.

Proof. Partition the matrices G and B, defined by (3.13) and (3.5),
respectively, into columns

G = h[g−N/2+1, . . . ,gN/2], B = h[b−N/2+1, . . . ,bN/2],

where gm = rhgtm
, and bm = rhbtm

. For each m ∈ Λh, it follows from
the bound for ε′v in Lemma 5 and from (3.14) that

||Agm − bm|| = ||Arhgtm
− rhA gtm

||
= ||ε′gtm

||
≤ Chmin{r,r−β}||gtm

||r
≤ C ′hmin{r,r−β}||btm

||r−β

≤ C ′′hmin{r,r−β}.

Thus,

(3.16)
||(AG − B)v|| ≤ hN max

m∈Λh

{||Agm − bm||}||v||

≤ C ′′′hmin{r,r−β}||v||.
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From the invertibility of the operators A and A + B , it follows that
the operator I + G is invertible on L2(−π, π). Let C ′ = ||(I + G )−1||.
It follows from

||v|| = ||(I + G )−1(I + G )v|| ≤ C ′||(I + G )v||
that condition (3.12) of Lemma 6 holds. The requirements (3.15) on b
and r > 3/2 yield, in view of (3.14), that

|g(1,0)(s, σ)| ≤ C||gσ(s)||r ≤ C ′||bσ(s)||r−β ≤ C ′′,

|g(0,1)(s, σ)| ≤ C||g(0,1)
σ (s)||1 ≤ C ′||b(0,1)

σ (s)||1−β ≤ C ′′,

for all s, σ ∈ [−π, π]. Hence, the conditions of Lemma 6 are satisfied.
We have

(3.17) ||(A + B)v|| ≥ ||A(I + G)v|| − ||(AG − B)v||,
and application of Lemmas 1 and 6 yields

(3.18)
||A(I + G)v|| ≥ min{|a−|, |a0|, |a+|}(N/2)min{0,β}||(I + G)v||

≥ Ch−min{0,β}||v||
for some constant C > 0. We obtain from (3.16) (3.18) and the
conditions on r that

||(A + B)v|| ≥ Ch−min{0,β}||v|| − C ′′′hmin{r,r−β}||v||
≥ C ′′h−min{0,β}||v||

for all h sufficiently small, where C ′′ is a positive constant. This last
inequality shows that, for sufficiently small values of h,

||(A + B)−1v|| ≤ Chmin{0,β}||v||,
which completes the proof.

Theorem 1. Assume that the operator A +B : H0(2π) → H−β(2π)
is invertible. If w ∈ Hr(2π) and b ∈ C(2π × 2π) satisfies (3.15) and
b(0,r) ∈ C(2π×2π) for some r ∈ R, such that r > max{|β|+1/2, 3/2}.
Then for h > 0 sufficiently small,

(3.19) ||w − rhw|| ≤ Chr−|β|||w||r.
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Proof. The bound follows from (3.10) and Lemmas 5 and 7.

The polynomial rate of convergence in Theorem 1 as h converges to
zero may be replaced by an exponential rate of convergence when b is
an analytic function in a neighborhood of [−π, π]2 and w is analytic
in a neighborhood of [−π, π]. We remark that for β < 0, the bound
(3.19) is not sharp; the results in [26] for Hölder-Zygmund function
spaces imply that the bound (3.19) can be improved by a factor h−β.
For β > 0, Theorem 1 provides a result whose analog is not considered
in [26].

4. A preconditioned iterative method. We describe an iterative
method tailored for the solution of the linear system of algebraic
equations (3.6). The matrix A + B of this system is dense and non-
Hermitian. Our iterative scheme is based on the observation that
the discrete Fourier transform of this matrix has a structure that
makes it possible to determine a good preconditioner. Our choice
of preconditioner generalizes an approach in [34, 36, 48, 49] and
is applicable to a larger class of periodic pseudodifferential operators.
Related iterative schemes are also discussed in [33, 35, 37].

Let F denote the one-dimensional or two-dimensional discrete Fourier
transform depending on the context, i.e.,

F v = N−1/2F∗v, v ∈ CN ,

F V = F∗VF, V ∈ CN×N ,

where the unitary matrix F is given by (2.7). Let Bh = F B, ψ = F w
and fh = F f . Then equation (3.6) is equivalent to

(4.1) Dψ + Bhψ = fh,

where D = diag [δ−N/2+1, . . . , δN/2] is defined in Lemma 1.

The elements of the matrix Bh = [bh(j, k)]N/2
j,k=−N/2+1 are discrete

Fourier coefficients of the kernel b(s, σ) up to a factor 1/(2π). Therefore,
when the function b(s, σ) is smooth and 2π-periodic in each variable,
the elements bh(j, k) are of small magnitude when j or k are of large
magnitude. This suggests that we may be able to approximate Bh by
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a low-rank matrix of the form

(4.2) B̃h =

⎡
⎣0 0 0

0 Bhd
0

0 0 0

⎤
⎦ ∈ CN×N ,

where Bhd
is a 2d× 2d matrix with 2d
 N .

We determine the matrix B̃h as follows. Let hd = π/d, where
d is chosen so that N/(2d) is an integer. Define σn = nhd for
−d+ 1 ≤ n ≤ d, and introduce the 2d× 2d matrix

Bd = [hdb(σn, σm)]dn,m=−d+1.

Let ωd = eihd , and define the 2d× 2d unitary matrix

Fd = (2d)−1/2[ωnm
d ]dn,m=−d+1.

Let
Bhd

= [bhd
(n,m)]dn,m=−d+1 = F∗

dBdFd.

We define B̃h = [b̃h(j, k)]N/2
j,k=−N/2+1 by

b̃h(j, k) =
{
bhd

(j, k), if −d+ 1 ≤ j, k ≤ d,
0, otherwise.

In our iterative scheme we use D+ B̃h as a preconditioner and define
the iterates as follows. Determine an initial approximate solution ψ(0)

by solving

(4.3) (D + B̃h)ψ(0) = fh,

and compute subsequent iterates ψ(m) by

(4.4)
r(m) = fh − (D + Bh)ψ(m),

ψ(m+1) = ψ(m) + (D + B̃h)−1r(m),
m = 0, 1, 2, . . . .

In each iteration a block diagonal linear system of the form

(4.5) (D + B̃h)v = ρ
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has to be solved. All diagonal blocks are of order one, except for one
block of order 2d. The LU factorization of the 2d × 2d diagonal block
requires roughly (2d)3/3 multiplications. Given this LU factorizations,
the solution of (4.5) requires about (2d)2 multiplications.

The computation of the matrix Bh by the FFT method would require
O(N2 logN) multiplications. Therefore, Algorithm 1 carries out the
iterations (4.4) without explicitly forming Bh.

Algorithm 1 (Preconditioned stationary Richardson iteration).

(I) Matrix generation. Compute Bhd
:= F∗

dBdFd using 2-d FFT
and D using 1-d FFT. Determine the LU factorization of the 2d× 2d
diagonal block of D + B̃h.

(II) Preliminary calculation. Compute fh := N−1/2F∗f using 1-d
FFT, and determine ψ(0) := (D + B̃h)−1fh.

(III) Iteration.

for m := 0, 1, 2, . . . until convergence do

r(m) := fh − Dψ(m) − F∗(B(Fψ(m)));

δ(m) := (D + Bh)−1r(m);

ψ(m+1) := ψ(m) + δ(m);
end m;

(IV) Postprocessing. Compute w(m) := N1/2Fψ(m) using 1-d FFT.

This iteration method may also be thought of as preconditioned Picard
iteration. Step I of the algorithm requires (2d)3/3 + O(d2 log d) mul-
tiplications, and Step II can be carried out using O(N logN) + O(d2)
multiplications. Each iteration in Step III can be carried out with
N2 + O(N logN) + O(d2) multiplications. Only O(N logN) multipli-
cations are necessary for Step IV. Thus, m iterations by Algorithm 1,
including Steps I, II and IV can be carried out in roughly

(2d)3/3 +m(N2 + (2d)2)

multiplications. The number of additions required is about the same.
We choose d so that (2d)3 ≈ N2. Then the total number of multiplica-
tions required is roughly (m + 1)N2. Our analysis of Section 5 shows
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that if the kernel b(s, σ) is 2π-periodic and sufficiently smooth, then
the number of iterations required with this choice of d is independent
of N . This yields a multiplication count of only O(N2) for Algorithm
1. Computed examples using Algorithm 1 are presented in [49, 50].
Also some computed examples with an iterative scheme closely related
to Algorithm 1 are presented in [36]. We therefore omit numerical
examples in the present paper.

We remark that the preconditioner of the present paper can also
be used together with other iterative methods than the stationary
Richardson iteration method, such as the Chebyshev iteration method
[10, 23] or the QMR method [13]. However, the rapid convergence
obtained by Algorithm 1, as well as the simplicity of the iterative
scheme, suggests that Algorithm 1 often is appropriate for the solution
of (3.6).

5. Convergence of the iterative method. We present a
convergence analysis for Algorithm 1. Central for our analysis is an
error estimate that shows how well the matrix B̃h approximates Bh.
The convergence properties of Algorithm 1 are stated in Theorem 2 and
show that, under suitable conditions, the number of iterations necessary
is independent of N .

Let ψ solve (4.1). Then (4.4) yields

(5.1)
(D + B̃h)(ψ(m) −ψ) = (B̃h − Bh)(ψ(m−1) −ψ),

m = 1, 2, 3, . . . .

Define
M = (D + B̃h)−1(B̃h − Bh).

Then (5.1) yields that

(5.2) ψ(m) −ψ = M(ψ(m−1) − ψ) = Mm(ψ(0) −ψ).

It follows from equations (4.1) and (4.3) that

(5.3) ψ(0) −ψ = −Mψ,

and substituting (5.3) into (5.2) yields

(5.4) ||ψ(m) −ψ|| ≤ ||M||m+1||ψ||.
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We now bound the norm of the matrix M. Introduce the error matrix

E = B̃h − Bh.

Then M can be written as

M = (D + Bh + E)−1E

= F∗(A + B + FEF∗)−1FE,

which in view of Lemma 7 leads to

(5.5)

||M|| ≤ ||(A + B)−1|| ||E||
1 − ||(A + B)−1|| ||E||

≤ C
hmin{0,β}||E||

1 − Chmin{0,β}||E||
≤ C ′hmin{0,β}||E||,

provided that hmin{0,β}||E|| is sufficiently small. Our convergence
analysis will show that hmin{0,β}||E|| is sufficiently small for N large
enough.

Introduce the function space L2((−π, π)2) with norm

|||v||| =
(

1
(2π)2

∫ π

−π

∫ π

−π

|v(s, σ)|2 ds dσ
)1/2

,

and for r a nonnegative integer, define the Sobolev space

Hr(2π × 2π) = {v ∈ L2((−π, π)2) : for 0 ≤ m1 +m2 ≤ r,

v(m1,m2) ∈ L2((−π, π)2) in the sense of periodic distributions}

with norm

|||v|||r =
( r∑

m1+m2=0

|||v(m1,m2)|||2
)1/2

.

Let Q : C([−π, π]2) → span {einse−imσ, n,m ∈ Λh} be the two-
dimensional interpolation operator

(Q v)(tj, tk) = v(tj , tk), j, k ∈ Λh,
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and let vh(n,m) denote the discrete Fourier coefficients associated with
v ∈ C([−π, π]2), i.e.,

vh(n,m) =
1
N2

∑
j∈Λh

∑
k∈Λh

v(tj , tk)e−intjeimtk , n,m ∈ Λh.

Then Q can be written as

(5.6) (Q v)(s, σ) =
∑

n∈Λh

∑
m∈Λh

vh(n,m)einse−imσ.

Lemma 8. Let r ≥ 2 be an integer. Then

|||v −Q v||| ≤ Chr|||v|||r, v ∈ Hr(2π × 2π).

Proof. See [11, Formula (9.7.7), p. 308].

Clearly, Q depends on N . We denote the operator obtained for
N = 2d by Q d. From (5.6) it follows that

(Q b)(s, σ) =
1
2π

∑
n∈Λh

∑
m∈Λh

bh(n,m)einse−imσ,

where the bh(n,m) are elements of the matrix Bh = F∗BF. Similarly,

(Q db)(s, σ) =
1
2π

∑
n∈Λhd

∑
m∈Λhd

bhd
(n,m)einse−imσ,

where bhd
(n,m) are elements of the matrix Bhd

= F∗
dBdFd. Note that∑

n∈Λhd

∑
m∈Λhd

bhd
(n,m)einse−imσ =

∑
n∈Λh

∑
m∈Λh

b̃hd
(n,m)einse−imσ,

where b̃hd
are elements of the matrix B̃h. Thus,

(5.7) ((Q −Q d)b)(s, σ)

=
1
2π

∑
n∈Λh

∑
m∈Λh

(bh(n,m) − b̃hd
(n,m))einse−imσ.
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Let ph be the prolongation operator (3.8). Using (5.7), a simple
calculation yields that

1
(2π)2

∫ π

−π

∣∣∣∣
∫ π

−π

(phv)(σ)((Q −Q d)b)(s, σ)dσ
∣∣∣∣2 ds

=
1
h
||(Bh − B̃h)vh||2,

which shows that

||(Bh − B̃h)vh|| ≤ 2πN−1/2|||(Q −Q d)b||| ||phv||
= 2πN−1/2|||(Q −Q d)b||| ||v||
= 2π|||(Q −Q d)b||| ||vh||,

where we have used that ||phv|| = ||v|| and ||v|| = N1/2||vh||. There-
fore,

||E|| = ||Bh − B̃h|| ≤ 2π|||(Q −Q d)b|||,
and Lemma 8 yields

(5.8) ||E|| ≤ C ′(hr + hr
d)|||b|||r ≤ Chr

d|||b|||r.
We are now in a position to state our convergence result for the
preconditioned iterative method.

Theorem 2. Assume that the operator A + B : H0(2π) →
H−β(2π) is invertible, and let r be an integer such that r > max{|β|+
1/2, 3/2,−3β/2}. Assume that b ∈ Hr(2π×2π) satisfies the conditions
of Lemma 7, and let w solve (3.6). Let w(m) be an approximate solution
determined by Algorithm 1. Assume that d satisfies C ′N2/3 ≤ d and
N/(2d) is an integer. Then for h = 2π/N sufficiently small

(5.9) ||w(m) − w|| ≤ (Ch2r/3+min{0,β})m+1||w||.

Proof. From w = N1/2Fψ and (5.4), it follows that

(5.10)

||w(m) − w|| = N1/2||F(ψ(m) −ψ)||
= N1/2||ψ(m) −ψ||
≤ N1/2||M||m+1||ψ||
= ||M||m+1||w||.
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Substituting (5.8) into (5.5) yields that

(5.11) ||M|| ≤ Chmin{0,β}||E|| ≤ C ′h2r/3+min{0,β}.

In particular, (5.11) shows that the bound (5.5) is valid for r > −3β/2
and h sufficiently small. The theorem now follows by combining (5.10)
and (5.11).

Under the assumptions of Theorem 1, we have

(5.12)
||w|| ≤ ||w − rhw|| + ||rhw||

≤ Chr−|β|||w||r + sup
s∈[−π,π]

|w(s)| ≤ C ′||w||r.

Substitution of (5.12) into (5.9) and using Theorem 1 yields

||w(m) − rhw|| ≤
{
C ′′(hr+β + (Ch2r/3+β)m+1)||w||r, if β ≤ 0,
C ′′(hr−β + (Ch2r/3)m+1)||w||r, if β > 0.

The above inequality shows that the polynomial rate of convergence
for the quadrature method as h → 0 can be retained in the iterative
quadrature method by performing a finite number of iterations. It
should be remarked again that the polynomial rate of convergence may
be replaced by an exponential rate of convergence when b and w are
analytic.

6. Conclusion. We have described a quadrature method for the
discretization of periodic pseudodifferential equations. The matrix of
the system of linear algebraic equations obtained has a structure that
makes it possible to determine a simple and efficient preconditioner.
The convergence of a preconditioned Richardson iteration scheme is
analyzed. Let w(m) denote the iterate obtained after m iterations with
our preconditioned scheme. We show that already, after a finite number
of iterations, m, independent of h, the convergence of w(m) to the
solution w of (3.6) as h → 0 is at least as rapid as the convergence of
w to rhw as h→ 0, where w denotes the solution of (1.2).
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