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ASYMPTOTIC PROPERTIES VIA
AN INTEGRODIFFERENTIAL INEQUALITY

JAMES H. LIU

ABSTRACT. Recent results about asymptotic properties
for integrodifferential equations in �n are studied in Hara, et
al. [6] by analyzing a Liapunov function v(·) satisfying

v′(t) ≤ −αv(t) +

∫ t

0

ω(t, s)v(s) ds,

t ≥ t0 ≥ 0.

We will extend the techniques in [6] to the study of inte-
grodifferential equations

x′(t) = A(t)

[
x(t) +

∫ t

#

F (t, s)x(s) ds

]
,

t ≥ t0 ≥ 0, (# = 0 or −∞),

in real Hilbert spaces with unbounded linear operators A(·),
when a Liapunov function v(·) satisfies

v′(t) ≤ −αv(t) +
√

v(t)

∫ t

#

ω(t, s)
√

v(s) ds,

t ≥ t0 ≥ 0 (# = 0 or −∞).

The results include uniform stability and asymptotic stability,
as well as uniform boundedness and ultimate boundedness,
which are not studied in [6]. The above integrodifferential
equations occur in viscoelasticity and in heat conduction for
materials with memory.

1. Introduction. In qualitative studies of differential or integrod-
ifferential equations, Liapunov or Liapunov-Razumikhin methods are
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very effective in analyzing the asymptotic properties, which include
stabilities and boundedness.

It is commonly required that the derivative of a Liapunov function
(or functional) along a solution be negative all the time, or Razumikhin
conditions are imposed to only require that the derivative be negative
when the Liapunov function reaches its maximum at t on [0, t] or on
(−∞, t]. See, e.g., [3, 4].

Recently, Hara, Yoneyama and Miyazaki [6] presented some new
general results about the asymptotic properties of integrodifferential
equations in �n, in which the condition on a Liapunov function v(·) is
such that

(1.1) v′(t) ≤ −αv(t) +
∫ t

0

ω(t, s)v(s) ds, t ≥ t0 ≥ 0,

with

lim sup
t→∞

∫ t

0

ω(t, s) ds < α

and

(1.2) lim
u→∞

∫ t

0

ω(u, s) ds = 0 for t > 0.

It can be seen that, for large t, v′(t) < 0 if v(t) reaches its maximum
on [0, t]. So it is in the right spirit of a Razumikhin condition. However,
due to the special forms of inequalities (1.1) (1.2), the proofs of the
results are very simple and elementary.

We are interested in the asymptotic properties of integrodifferential
equations in real Hilbert spaces, especially equations of the form

(1.3)
x′(t) = A(t)

[
x(t) +

∫ t

0

F (t, s)x(s) ds

]
, t ≥ t0 ≥ 0,

x(s) = φ(s), 0 ≤ s ≤ t0,

and

(1.4)
x′(t) = A(t)

[
x(t) +

∫ t

−∞
F (t, s)x(s) ds

]
, t ≥ t0 ≥ 0,

x(s) = φ(s), s ≤ t0,
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with unbounded linear operators A(·), which can be used to model heat
conduction or viscoelasticity for materials with memory. For example,
as stated in Grimmer and Liu [3], equations from heat conduction

q(t, x) = −Eux(t, x)

−
∫ t

#

b(t − s)ux(s, x) ds, (# = 0 or −∞)

ut(t, x) = −∂q(t, x)/∂x + f(t, x),

can be rewritten as (assuming E = 1)

ut(t, x) =
∂2

∂x2

[
u(t, x) +

∫ t

#

b(t − s)u(s, x) ds

]
+ f(t, x).

Similar to [3], we can construct a Liapunov function v(·) for equations
(1.3) and (1.4) in a natural way. Then, deriving an inequality in the
spirit of (1.1), we end up with

(1.5)
v′(t) ≤ −αv(t) +

√
v(t)

∫ t

#

ω(t, s)
√

v(s) ds,

t ≥ t0 ≥ 0, (# = 0 or −∞)

where ω is determined by F .

It will be seen from Lemmas 3.7 and 3.8 that transformations can be
made so that we may assume v(t) > 0 in (1.5). And then, if we divide
2
√

v(t) in (1.5) and set y(t) =
√

v(t), the inequality for y(·) will have
the same form as (1.1). This indicates that techniques used in [6] can
be extended to the study of (1.3) and (1.4).

In Section 2 we will summarize and generalize those results in [6]
concerning inequality (1.1). They are then applied in Section 3 to
establish results concerning uniform stability and asymptotic stability,
as well as uniform boundedness and ultimate boundedness, which are
not studied in [6]. Transformations from inequality (1.5) to (1.1) are
also given in Section 3. Finally, in Section 4 the results in Section 3
are applied to equations (1.3) and (1.4) to obtain the uniform stability,
asymptotic stability, uniform boundedness and ultimate boundedness.
An example in [6] indicates that, in general, uniform asymptotic
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stability is not expected under conditions (1.1) and (1.2). See [5, 7]
for studies of uniform asymptotic stability with other conditions.

We remark that similar results about stability and asymptotic stabil-
ity for (1.3) and (1.4), when A(t) = A, t ≥ 0 and F (t, s) = F (t− s) are
given in Grimmer and Liu [3] by Razumikhin techniques. We will see
that the treatment here is much simpler; only an elementary integrod-
ifferential inequality is used. And results about uniform boundedness
and ultimate boundedness can also be obtained in a unified way.

Finally, note that for the equation

(1.6)
x′(t) = Ax(t) +

∫ t

#

F (t, s)x(s) ds,

t ≥ t0 ≥ 0, (# = 0 or −∞)

in �n with inner product 〈, 〉, we can define v = 〈x, x〉 = ||x||2; then

(1.7)

v′(t) = 2〈x(t), x′(t)〉

= 2
〈

x(t), Ax(t) +
∫ t

#

F (t, s)x(s) ds

〉

≤ 2〈x(t), Ax(t)〉+ 2
√

v(t)
∫ t

#

||F (t, s)||
√

v(s) ds.

If A is a negative definite or a stable matrix, then inequality (1.5)
can also occur naturally in this situation. Therefore the study of the
asymptotic properties of (1.6) an also be carried out using inequality
(1.5).

2. A lemma. In this section we prove a lemma which will be
used in the next section to study asymptotic properties. The lemma
summarizes and generalizes those results in [6] concerning inequality
(1.1). The proofs are similar to those in [6]; we give them here for
completeness.

Lemma 2.1. Let α > 0 be a constant. Assume that ω(t, s) ≥ 0 is
continuous for 0 ≤ s ≤ t, with

(2.1) lim sup
t→∞

∫ t

#

ω(t, s) ds < α
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and

lim
u→∞

∫ t

#

ω(u, s) ds = 0 for t > 0 (# = 0 or −∞).

Consider all functions v(·) = v(·, t0) : [0,∞) → [0,∞), or (−∞,∞) →
[0,∞), such that

(2.2)
v′(t) ≤ −αv(t) +

∫ t

#

ω(t, s)v(s) ds,

t ≥ t0 ≥ 0 (# = 0 or −∞).

(a) For any constant M > 0 fixed, if v(s) = v(s, t0) ≤ M for
0 ≤ s ≤ t0 when # = 0, or for s ≤ t0 when # = −∞, then v(t) ≤ M ,
t ≥ t0.

(b) For any constants B > 0, B0 > 0 and t0 ≥ 0, there is a constant
T = T (B, B0, t0) > 0 such that if v(·) = v(·, t0) ≥ 0 is a function
satisfying (2.2) with v(s) ≤ B0, (here 0 ≤ s ≤ t0 when # = 0 or s ≤ t0
when # = −∞), then v(t) < B, t ≥ T + t0.

Proof. We consider only # = 0 since the proof for # = −∞ is the
same. From (2.1), there exist γ > 0 and T0 > 0, such that

(2.3) 0 < γ < α and
∫ t

0

ω(t, s) ds < γ, t ≥ T0.

(a) Assume that v(s) ≤ M , 0 ≤ s ≤ t0. If {v(t) ≤ M, t ≥ t0} is not
true, then there exist M1 > M and t1 > t0 such that v(t1) = M1 and
v(t) ≤ M1, t ∈ [0, t1]. Here we only consider the case T0 ≤ t0. The
proof for T0 > t0 is the same as in [6] and is omitted for simplicity.
Now, from (2.2), we have for T0 ≤ t0 ≤ t ≤ t1,

(2.4) v(t) ≤ v(t0)e−α(t−t0) +
∫ t

t0

e−α(t−r)

( ∫ r

0

ω(r, s)v(s) ds

)
dr.

Hence, from (2.3),

M1 = v(t1) ≤ Me−α(t1−t0) + M1α

∫ t1

t0

e−α(t1−r) dr(2.5)

< M1

[
e−α(t1−t0) + α

∫ t1

t0

e−α(t1−r) dr

]
= M1,(2.6)
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which is a contradiction. Therefore, (a) is proven.

(b) If the result is not true, then there exist constants B > 0, B0 > 0
and t0 ≥ 0, and a sequence {vk(·) = vk(·, t0)} satisfying (2.2) and
tk → ∞, as k → ∞, such that vk(s) ≤ B0, 0 ≤ s ≤ t0 and vk(tk) ≥ B.

Accordingly, we can denote P the nonempty set of all such sequences
{vk}, and

(2.7) P ∗ = {lim sup
k→∞

vk(tk) | {vk} ∈ P}.

Now, from result (a), we see that for any {vk} ∈ P , {vk(s) ≤ B0, 0 ≤
s ≤ t0} implies vk(tk) ≤ B0 for tk ∈ [0,∞). Thus, P ∗ ⊆ [B, B0].
Therefore,

∞ > L ≡ max{p | p ∈ P ∗} ≥ B > 0.

By (2.3) there is a θ with γ/α < θ < 1. As (αθ + γ)L/(2θα) < L,
there is a {vk} ∈ P such that

(2.8) lim sup
k→∞

vk(tk) > (αθ + γ)L/(2θα).

From the definition of L, it is easily seen that for this {vk} ∈ P , there
is an H > 0 such that

(2.9) vk(t) ≤ L/θ, k ≥ H, t ≥ tH .

Now from (2.1) we can find t∗ > max{H, tH , t0, T0} such that

(2.10)
∫ tH

0

ω(u, s) ds <
(αθ − γ)L

2θB0
, u ≥ t∗.

Thus, from (2.2), (2.3), (2.9) and (2.10), one has for k ≥ H and t ≥ t∗

(note that from result (a), {vk(s) ≤ B0, 0 ≤ s ≤ t0} implies vk(t) ≤ B0,
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t ≥ 0)

vk(t) ≤ vk(t∗)e−α(t−t∗) +
∫ t

t∗
e−α(t−r)

(∫ tH

0

ω(r, s)vk(s) ds

)
dr

(2.11)

+
∫ t

t∗
e−α(t−r)

(∫ r

tH

ω(r, s)vk(s) ds

)
dr

(2.12)

≤ B0e
−α(t−t∗) + B0

∫ t

t∗
e−α(t−r)

( ∫ tH

0

ω(r, s) ds

)
dr

(2.13)

+
L

θ

∫ t

t∗
e−α(t−r)

( ∫ r

0

ω(r, s) ds

)
dr

(2.14)

≤ B0e
−α(t−t∗) +

(αθ − γ)L
2θα

+
Lγ

θα

(2.15)

≤ B0e
−α(t−t∗) +

(αθ + γ)L
2θα

.

(2.16)

Let k be large so that tk > t∗. Hence, from (2.8) and (2.16),

(αθ + γ)L
2θα

< lim sup
k→∞

vk(tk) ≤ (αθ + γ)L
2θα

,

which is a contradiction. This proves (b).

Remark 2.2. If ω(t, s) = ω(t − s), then condition (2.1) is equivalent
to

∫ ∞
0

ω(s) ds < α.

3. The asymptotic properties. In this section we will study the
asymptotic properties under conditions (2.1) and (2.2), or conditions
(2.1) and (1.5). The results include uniform stability, asymptotic
stability, uniform boundedness and ultimate boundedness. They can be
applied to any differential or integrodifferential equations, if for which
a Liapunov function satisfying (2.1) and (2.2), or (2.1) and (1.5) can
be constructed.
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First, for convenient reference, we give the following standard defini-
tions for the case # = 0. The definitions for # = −∞ can be stated
accordingly. Note that, in the following, we use “system” to denote any
differential or integrodifferential equation in a space with norm || · ||.

Definition 3.1. For any t0 ≥ 0 and any continuous function φ
on [0, t0], a solution u(·, t0, φ) of a “system” is a function on [0,∞)
satisfying the “system” for t ≥ t0, and u(s) = φ(s) for s ∈ [0, t0].

Definition 3.2. Solutions u(·) = u(·, t0, φ) of a “system” are
uniformly bounded if, for each B1 > 0 there is a B2 = B2(B1) > 0,
such that {||φ(s)|| ≤ B1, 0 ≤ s ≤ t0} implies ||u(t)|| < B2, t ≥ t0.

Definition 3.3. Solutions u(·) = u(·, t0, φ) of a “system” are ultimate
bounded if there is a bound B > 0 such that, for each B3 > 0 and t0 ≥ 0,
there is a T = T (B, B3, t0) > 0 such that {||φ(s)|| ≤ B3, 0 ≤ s ≤ t0}
implies ||u(t)|| < B, t ≥ T + t0.

Definition 3.4. Assume that u ≡ 0 is a solution of a “system.”
Then solution u ≡ 0 is stable if, given ε > 0 and t0 ≥ 0, there exists a
δ = δ(ε, t0) > 0 such that ||φ(s)|| < δ on [0, t0] implies ||u(t, t0, φ)|| < ε
for t ≥ t0. It is uniformly stable if it is stable and the δ is independent
of t0.

Definition 3.5. Assume u ≡ 0 is a solution of a “system.” Then
solution u ≡ 0 is asymptotically stable if it is stable and, for any t0 ≥ 0,
there exists a constant r = r(t0) > 0 such that ||φ(s)|| < r on [0, t0]
implies u(t, t0, φ) → 0 as t → ∞.

Applying Lemma 2.1, we now have the following result.

Theorem 3.6. Assume that there exist functions (“wedges”) Wi,
i = 1, 2, with Wi : [0,∞) → [0,∞) and W1 strictly increasing.
Further, assume that there exists a (Liapunov) function V such that,
for solutions u(·) of a “system,”

(c1) W1(||u(t)||) ≤ V (u(t)) ≤ W2(||u(t)||),
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(c2) v(t) ≡ V (u(t)) satisfies (2.1) and (2.2).

Then solutions of the “system” are uniformly bounded and ultimate
bounded. Also, if u ≡ 0 is a solution of the “system”, then the zero
solution is uniformly stable and asymptotically stable.

Proof. Again, we consider only # = 0 since the proof for # = −∞ is
the same. From the definitions of Wi and condition (c1), we only need
to prove the corresponding statements for v(t) ≡ V (u(t)). (Note that
even v(·) may not be a solution of any “system.”)

Uniform boundedness: For B1 > 0, choose B2 = B1. Then, from
Lemma 2.1(a), v(s) ≤ B1, 0 ≤ s ≤ t0 implies v(t) ≤ B1 = B2, t ≥ t0.

Ultimate boundedness: Choose B = 1. Then from Lemma 2.1(b), for
any B3 (treat it as B0 in Lemma 2.1(b)) > 0 and t0 ≥ 0, there is a
T = T (B, B3, t0) > 0 such that v(s) ≤ B3, 0 ≤ s ≤ t0 implies v(t) < B,
t ≥ T + t0.

Uniform stability: Given ε > 0, choose δ(ε) = ε. Then, from Lemma
2.1(a), ||v(s)|| ≤ δ(ε) (= ε), 0 ≤ s ≤ t0 implies that ||v(t)|| ≤ ε, t ≥ t0.

Asymptotic stability: Stability is proven already. Next, for any
t0 ≥ 0, choose r = r(t0) = 1. Then, from Lemma 2.1(b), for any
ε (treat it as B in Lemma 2.1(b)) > 0, B0 ≡ r (= 1), there is a
T = T (ε, 1, t0) = T (ε, t0) > 0 such that v(s) ≤ B0 = r, 0 ≤ s ≤ t0
implies v(t) ≤ ε, t ≥ T + t0. (Thus v(t) → 0, t → ∞.)

Now we demonstrate that if v(·) satisfies (1.5), then transformations
can be made so that inequality (1.1) is satisfied. Hence, the asymptotic
properties stated in Theorem 3.6 can also be obtained using inequality
(1.5). Once again, the results are shown for # = 0.

Lemma 3.7 [8]. Assume that v(t) ≥ 0, t ≥ 0 and satisfies (1.5),
where ω(t, s) ≥ 0. Then for ε̄ > 0, g(t) ≡ v(t)+ ε̄e−αt > 0 and satisfies
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(1.5), and y(t) ≡ √
g(t) satisfies

(3.1) y′(t) ≤ −α

2
y(t) +

∫ t

0

ω(t, s)
2

y(s) ds, t ≥ t0 ≥ 0.

Proof. The results are established by taking a derivative in t. For
example, we have

g′(t) ≤ −αv(t) +
√

v(t)
∫ t

#

ω(t, s)
√

v(s) ds − αε̄e−αt

≤ −α[v(t) + ε̄e−αt] +
√

v(t)
∫ t

#

ω(t, s)
√

v(s) ds

≤ −αg(t) +
√

g(t)
∫ t

#

ω(t, s)
√

g(s) ds,

and

y′(t) =
g′(t)

2
√

g(t)
≤ −α

2

√
g(t) +

∫ t

#

ω(t, s)
2

√
g(s) ds.

Lemma 3.8 [8]. If g(t) ≡ v(t) + ε̄e−αt satisfies the conditions stated
in Definition 3.2 through Definition 3.5, then so does v(·). (Note that
even g(·) may not be a solution of any “system”).

Proof. The results can be verified by checking the conditions. For
example, for Definition 3.4: Given ε > 0 and t0 ≥ 0. Since g(·) satisfies
conditions in Definition 3.4, there exists a δ1 = δ1(ε, t0) > 0 such
that ||g(s)|| < δ1 on [0, t0] implying ||g(t)|| < ε for t ≥ t0. Now let
ε̄ = δ1(ε, t0)/2 and choose δ = δ1(ε, t0)/2. Then ||v(s)|| < δ on [0, t0]
implying ||g(s)|| ≤ ||v(s)|| + ε̄ ≤ δ1. Thus, ||v(t)|| ≤ ||g(t)|| < ε for
t ≥ t0. Similarly, other conditions in other definitions can be checked.
(Note that α > 0 and hence e−αt → 0 as t → ∞.)

The following result verifies that Theorem 3.6 is still valid if inequality
(1.1) is replaced by inequality (1.5).
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Theorem 3.9 [8]. Assume that there exist functions Wi, i = 1, 2,
with Wi : [0,∞) → [0,∞), and W1 strictly increasing. Further, assume
that there exists a function V such that, for solutions u(·) of a “system,”

(c1) W1(||u(t)||) ≤ V (u(t)) ≤ W2(||u(t)||),
(c2) v(t) ≡ V (u(t)) satisfies (2.1) and (1.5).

Then solutions of the “system” are uniformly bounded and ultimate
bounded. Also, if u ≡ 0 is a solution of the “system,” then the zero
solution is uniformly stable and asymptotically stable.

Proof. Consider the functions g and y defined in Lemma 3.7. From
(3.1) and (2.1), we see that the proof of Theorem 3.6 can be carried
over to show that y(·) satisfies conditions in Definition 3.2 through
Definition 3.5. Then it is clear that g(·) = y2(·) also satisfies conditions
in Definition 3.2 through Definition 3.5. Now the results are established
by applying Lemma 3.8.

4. Integrodifferential equations. In this section we will apply
the results in Theorem 3.9 to

(4.1)
x′(t) = A(t)

[
x(t) +

∫ t

0

F (t, s)x(s) ds

]
, t ≥ t0 ≥ 0,

x(s) = φ(s), 0 ≤ s ≤ t0,

and

(4.2)
x′(t) = A(t)

[
x(t) +

∫ t

−∞
F (t, s)x(s) ds

]
, t ≥ t0 ≥ 0,

x(s) = φ(s), s ≤ t0,

with unbounded operators A(·) in real Hilbert space X with inner
product 〈, 〉. Since we only study asymptotic properties here, we will
assume the existence and uniqueness of solutions, which can be found
in, e.g., [1, 2]. We define a Liapunov function V for z = (x, w) ∈ X×X
by

(4.3) V (z) = 〈x, x〉 − 2〈x, w〉 +
3
2
〈w, w〉.
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Also, we define ||z||2 ≡ ||x||2 + ||w||2 and let z(t) = (x(t), w(t)) with
x(·) a solution of equation (4.1) or (4.2), and

w(t) = x(t) +
∫ t

#

F (t, s)x(s) ds,

t ≥ 0 (# = 0 or −∞).

Then it is clear that, in order to prove the asymptotic properties of
solutions x(·) of equation (4.1) or (4.2), we only need to prove the
corresponding statements for z(·). We also note that x ≡ 0 is a solution
of (4.1) and of (4.2).

Theorem 4.1. Suppose that solutions x(·) of (4.1) and (4.2) exist
and are unique on [0,∞), and suppose that for some constants λ > 0
and β > 0,

(4.4) 〈A(t)x, x〉 ≤ −λ〈x, x〉, x ∈ D(A(t)), t ≥ 0,

and
〈F (t, t)x, x〉 ≥ β〈x, x〉, x ∈ X, t ≥ 0,

where D means domain. Then

(a) ||z||2/5 ≤ V (z) ≤ 3||z||2,
(b) v(t) ≡ V (z(t)) satisfies inequality (1.5) with # = 0 for (4.1) and

with # = −∞ for (4.2), where

α ≡ min
t≥0

1
3

{
λ − 3

2
||F (t, t)||, 2β − 3

2
||F (t, t)||

}
,

and

ω(t, s) ≡ (6 + 3
√

6)
∥∥∥∥ ∂

∂t
F (t, s)

∥∥∥∥.

So, if

lim sup
t→∞

∫ t

0

ω(t, s) ds < α

and

lim
u→∞

∫ t

0

ω(u, s) ds = 0 for t ≥ 0,
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then solutions of (4.1) are uniformly bounded and ultimate bounded,
and the zero solution of (4.1) is uniformly stable and asymptotically
stable.

Similarly, if

lim sup
t→∞

∫ t

−∞
ω(t, s) ds < α

and

lim
u→∞

∫ t

−∞
ω(u, s) ds = 0 for t ≥ 0,

then solutions of (4.2) are uniformly bounded and ultimate bounded,
and the zero solution of (4.2) is uniformly stable and asymptotically
stable.

Proof. First, we have

(4.5)

V (z) ≥ ||x||2 − 2||x|| ||w|| + 3
2
||w||2

= (||x|| − ||w||)2 +
1
2
||w||2

=
1
6
(3||w|| − 2||x||)2 +

1
3
||x||2.

Thus, we obtain ||z||2/5 ≤ V (z) ≤ 3||z||2. Next, differentiating
v(t) ≡ V (z(t)) with respect to t yields (note that ∗ denotes convolution)

v′(t) =
d

dt
V (z(t))

(4.6)

= 2〈x′(t), x(t)〉 − 2〈x′(t), w(t)〉 − 2〈w′(t), x(t)〉 + 3〈w′(t), w(t)〉
= 〈A(t)w(t), w(t)〉 − 2〈F (t, t)x(t), x(t)〉 − 2

〈
x(t),

∂

∂t
F ∗ x(t)

〉

+ 3〈F (t, t)x(t), w(t)〉+ 3
〈

∂

∂t
F ∗ x(t), w(t)

〉

≤ −λ||w(t)||2 − 2β||x(t)||2 + 3||F (t, t)|| ||x(t)|| ||w(t)||
+ (2||x(t)|| + 3||w(t)||)

∥∥∥∥ ∂

∂t
F ∗ x(t)

∥∥∥∥
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≤ −λ||w(t)||2 − 2β||x(t)|| + 3
2
||F (t, t)||(||x(t)||2 + ||w(t)||2)

+ (2
√

3 + 3
√

2)
√

v(t)
∥∥∥∥ ∂

∂t
F ∗ x(t)

∥∥∥∥ (from (4.5))

≤
(
− λ +

3
2
||F (t, t)||

)
||w(t)||2 +

(
− 2β +

3
2
||F (t, t)||

)
||x(t)||2

+ (2
√

3 + 3
√

2)
√

v(t)
∥∥∥∥ ∂

∂t
F ∗ x(t)

∥∥∥∥
≤ −3α(||x(t)||2 + ||w(t)||2) + (2

√
3 + 3

√
2)

√
v(t)

∥∥∥∥ ∂

∂t
F ∗ x(t)

∥∥∥∥
≤ −αv(t) + (2

√
3 + 3

√
2)

√
v(t)

(√
3
∥∥∥∥ ∂

∂t
F

∥∥∥∥ ∗ √v(t)
)

(from (a))

≤ −αv(t) +
√

v(t) (6 + 3
√

6)
(∥∥∥∥ ∂

∂t
F

∥∥∥∥ ∗ √v(t)
)

,

where ∥∥∥∥ ∂

∂t
F

∥∥∥∥ ∗ √v(t) =
∫ t

0

∥∥∥∥ ∂

∂t
F (t, s)

∥∥∥∥
√

v(s) ds

and ∫ t

−∞

∥∥∥∥ ∂

∂t
F (t, s)

∥∥∥∥
√

v(s) ds

for (4.1) and (4.2), respectively. Thus, the results are established by
applying Theorem 3.9.

Remark 4.2. It is known that A(t) ≡ ∂2/∂x2, t ≥ 0 with domain
H1

0 (0, 1) ∩ H2(0, 1) satisfying (4.4) on X = L2(0, 1) with λ = 1. Thus
applications can be carried out. We omit them here.
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