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CORRINGTON’S WALSH FUNCTION METHOD
APPLIED TO A NONLINEAR INTEGRAL EQUATION

B.G. SLOSS AND W.F. BLYTH

ABSTRACT. Corrington used Walsh functions to solve a
particular nonlinear integral equation. This paper is con-
cerned with the explicit formulation, development and ex-
tension of Corrington’s Walsh function method to a class of
nonlinear integral equations. In particular, given certain reg-
ularity conditions, error estimates are derived for the method
in L2 norm and sufficient conditions are given for the conver-
gence of the method.

1. Introduction. Corrington [2] introduced a method for solving
integral and differential equations using Walsh functions. This method
is different from most classical iterative methods because higher order
derivatives of the solution were obtained instead of the actual solution.
Corrington applied this method to the solution of a nonlinear differ-
ential equation which has as its exact solution the Weierstrass elliptic
function. However, little detail was given of how this method was to
be implemented more generally.

In this paper we repeatedly use the Banach fixed point theorem in
our study of a generalization of the integral equation which was solved
by Corrington. We provide error estimates and sufficient conditions for
convergence of this new method.

The nonlinear integral equation in [2] is

u(x) = 2
(

1 +
∫ x

0

(x − t)u(t) dt

)2

which arises from the initial value problem d2y/dx2 = 2y2 with y(0) = 1
and y′(0) = 0 where u is defined as d2y/dx2. The exact solution
can be written in terms of the Weierstrass elliptic function as y =
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P(x/
√

3 + ω2/41/6; 0, 4) (see [1] for notation, definitions and the value
of the “half-period” ω2).

We consider the natural generalization of this integral equation:

(1) u(x) =
N∑

i=1

bi

(
ai(x) +

∫ x

0

ki(x, t)u(t) dt

)i

where bi ∈ R, ai ∈ L∞[0, 1] and ki ∈ L∞[I2], I2 = [0, 1] × [0, 1].
Consequently, ki and ai are essentially bounded on their respective
intervals. We let

(2) Ki = ess sup
(x,t)∈I2

|ki(x, t)|.

For some cases where the kernel functions are of convolution type,
the solutions of equation (1) include the higher order derivatives of
the elliptic functions and natural generalizations of these functions.
The elliptic functions have found wide applications in many fields of
science and engineering. Walsh function methods are attractive because
their implementation usually involves the fast Walsh Fourier transform
which is fast when compared with other finite transforms such as the
trigonometric fast Fourier transform.

2. Notation. The ith Walsh function, ordered according to Paley
[5, 6] is denoted by Wi. Pn is the projection operator for projection
onto the closure of the space spanned by the first n Walsh functions:
Pn : L2[0, 1) → span {Wi : 0 ≤ i ≤ n − 1}. Dn(x) is the Dirichlet
kernel,

Dn(x) =
n−1∑
i=0

Wi(x),

and Ln is the Lebesgue constant for the Walsh system

Ln =
∫ 1

0

|Dn(t)| dt.

I : L2[0, 1) → L2[0, 1) is the identity operator.
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Let
ω(δ) = ω(δ, f)

= sup |f(x1) − f(x2)| for x1, x2 ∈ I, |x2 − x1| ≤ δ,

where I = [0, 1] is the unit interval. The function ω(δ) is called the
modulus of continuity of f . If ω(δ) ≤ C ′δα for α ≥ 0, with C ′

independent of δ, then f ∈ Lipα. A function f belongs to Lip 1 if
and only if it is the integral of a bounded function.

Sn(x, f) is the nth partial sum of the Walsh Fourier series of f .

3. The Walsh functions. The Walsh functions were first intro-
duced by Walsh [10]. However, we use the ordering due to Paley [5,
6]. Comprehensive accounts of the properties of Walsh functions and
Walsh series can be found in either the book by B. Golubov et al. [3]
or the book by F. Schipp et al. [8].

Every f ∈ Lk[0, 1), k ≥ 1, has associated with it a Walsh Fourier
series

f(x) ∼ c0 + c1W1(x) + c2W2(x) + · · ·
where the coefficients are given by

ci =
∫ 1

0

f(x)Wi(x) dx.

The collection of Walsh functions form an orthonormal complete col-
lection of functions for the space L2[0, 1) of square Lebesgue integrable
functions; thus, every f ∈ L2[0, 1) can be expanded as a series of Walsh
functions with real coefficients. Then f is the limit in L2 of this series
and the coefficients of the series coincide with cn above. Following Paley
[5, 6] we may define the Walsh functions in terms of the Rademacher
functions {ri}∞i=0. The Rademacher functions, published in 1922 [7],
form an incomplete, with respect to L2[0, 1), set of orthonormal func-
tions. They are defined as follows.

rn : R → R, ∀n ∈ N ∪ {0}

r0(x) =

{
1 for x ∈ [0, 1/2),

−1 for x ∈ [1/2, 1),

rn(x) = r0(2nx), ∀n ≥ 1,

rn(x + 1) = rn(x).
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The Walsh functions {Wi}∞i=0 are defined as follows

W0(x) = 1

Wn(x) =
r∏

i=1

rni
(x),

where

n =
r∑

i=1

2ni , ni+1 > ni

is the unique decomposition of n into the sum of strictly increasing
powers of 2.

4. On the second order equation. The following theorem is a
new result which indicates that, when N = 2 and b1 is zero, the integral
equation (1) has a unique solution. This provides an analogous result
to that obtained by Okrasinski [4] who considered the integral equation

uα(x) =
∫ x

0

K(x − t)u(t) dt, α > 1

and some generalizations of this where the uα is replaced by W (u(x))
with W a convex function. However, the α = 1/2 was not treated
and our second order equation can be regarded as a generalization of
Okrasinski’s α = 1/2 case.

Theorem 1. The integral equation

(3) z(x) = b

(
a(x) +

∫ x

0

k(x, t)z(t) dt

)2

,

with a ∈ L∞[0, 1], b ∈ R, k ∈ L∞[I2], has a unique solution u ∈ L2,
where u belongs to the closed ball Bc = {w ∈ L2 : ||w||2 ≤ c} with

0 < c <
1
K

(
1

2K|b| − ||a||∞
)

if

||a||∞ <
1

4K|b| .
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Proof. The existence of a solution is guaranteed by the Corollary of
Theorem 2 (established in the next section). Here we prove uniqueness.
Suppose that u and u + v are solutions of (3) so

v(x) = b

{
2a(x)

∫ x

0

k(x, t)v(t) dt(4)

+ 2
∫ x

0

k(x, t)u(t) dt

∫ x

0

k(x, t)v(t) dt

+
( ∫ x

0

k(x, t)v(t) dt

)2}
.

Let {χn} be a sequence of characteristic functions of the intervals
[0, An] ⊂ [0, 1], and define Tn : L2 → L2 such that

Tnz(x) = χn(x)b
{

2a(x)
∫ x

0

k(x, t)z(t) dt

+ 2
∫ x

0

k(x, t)u(t) dt

∫ x

0

k(x, t)z(t) dt +
( ∫ x

0

k(x, t)z(t) dt

)2}
.

For suitable v1, v2 ∈ L2, we have

Tnv1(x)−Tnv2(x) = χn(x)b
{

2a(x)+2
∫ x

0

k(x, t)u(t) dt

+
∫ x

0

k(x, t)(v1(t)+v2(t)) dt

}

·
∫ x

0

k(x, t)(v1(t)−v2(t)) dt

def= bz(u, v1, v2)(x)
∫ x

0

k(x, t)(v1(t)−v2(t)) dt.
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By using Hölder’s inequality and the monotone property,
∫ 1

0

(Tnv1 − Tnv2)2(x) dx

=
∫ 1

0

b2z2(u, v1, v2)(x)
(∫ x

0

k(x, t)(v1(t)−v2(t)) dt

)2

dx

≤ b2ess sup z2(u, v1, v2)(x)
∫ 1

0

( ∫ x

0

|k(x, t)||v1(t)−v2(t)| dt

)2

dx

≤ b2ess sup z2(u, v1, v2)(x)
∫ 1

0

( ∫ 1

0

|k(x, t)||v1(t)−v2(t)| dt

)2

dx

≤ b2ess sup z2(u, v1, v2)(x)
∫ 1

0

∫ 1

0

|k(x, t)|2|v1(t)−v2(t)|2 dt dx

≤ b2ess sup z2(u, v1, v2)(x)K2

∫ 1

0

|v1(t)−v2(t)|2 dt.

Letting Tn : Bc → L2 where Bc = {w ∈ L2 : ||w||2 ≤ c},

|z(u, v1, v2)(x)| ≤ 2||a||∞+2
∫ 1

0

|k(x, t)||u(t)| dt

+
∫ 1

0

|k(x, t)||v1(t)+v2(t)| dt almost everywhere,

≤ 2||a||∞+2||k(x, ·)||2||u||2+K||v1+v2||2
by Hölder’s inequality,

≤ 2||a||∞+2K(||u||2 + c).

Combining these results, we have

||Tnv1 − Tnv2||2 ≤ 2K|b|(||a||∞ + K(||u||2 + c))||v1 − v2||2.

Thus Tn is contractive if the coefficient on the right hand side is less
than one. This can be rewritten to give the condition

(5) c <
1
K

(
1

2K|b| − ||a||∞
)
− ||u||2.

Since Tn maps the zero function to the zero function, the contractive
condition (5) also gives Tn : Bc → Bc.
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The derivation of this condition (5) assumed that v1 ∈ Bc. We now
remove this restriction. Suppose that v �= 0 is a solution of (4) which
may lie outside the ball Bc. Then

(χnv)(x) = χn(x)b
{

2a(x)
∫ x

0

k(x, t)v(t) dt

+ 2
∫ x

0

k(x, t)u(t) dt

∫ x

0

k(x, t)v(t) dt

+
(∫ x

0

k(x, t)v(t) dt

)2}

= b

{
2a(x)χn(x)

∫ x

0

k(x, t)v(t) dt

+ 2
∫ x

0

k(x, t)u(t) dt χn(x)
∫ x

0

k(x, t)v(t) dt

+
(

χn(x)
∫ x

0

k(x, t)v(t) dt

)2}

= b

{
2a(x)χn(x)

∫ x

0

k(x, t)χn(t)v(t) dt

+ 2
∫ x

0

k(x, t)u(t) dtχn(x)
∫ x

0

k(x, t)χn(t)v(t) dt

+
(

χn(x)
∫ x

0

k(x, t)χn(t)v(t) dt

)2}
= Tn(χnv)(x),

showing that, for each n, χnv is a fixed point of Tn. Now since χny → 0
in L2, as An → 0, for all y ∈ L2 and v �= 0 we may choose χnv ∈ Bc

where χnv �= 0. But this is impossible because 0 is the unique solution
in Bc. Thus the solution u is unique if there exists some c > 0 which
satisfies condition (5). However, from Corollary 2 (of Theorem 2 in the
next section), there exists a solution, u, such that

||u||2 <
1
K

(
1

2K|b| − ||a||∞
)

if
||a||∞ <

1
4K|b| .
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Thus a suitable c exists and the theorem is proven.

5. The general equation. The following theorem gives a sufficient
condition for the general integral equation (1) to have a solution. Once
again we use the classical theorem of Banach. The theorem supplies
sufficient conditions for the existence of a solution to which the method
of Corrington converges. Although the condition Ks < 1 of Theorem
2 appears to be somewhat restrictive, by considering Au + B where u
is a solution and A, B are real constants, Theorem 2 may be used to
prove the existence of a solution for a wide class of integral equations.

Theorem 2. There exists a solution to (1) in the closed ball Bc

provided that

K2
s

def= Nb

N∑
i=1

b2
i i

2(||ai||∞ + Kic)2i−2K2
i < 1

and
N∑

i=1

|bi|(||ai||∞ + Kic)i < c

where Ki = ess sup(x,t)∈I2 |ki(x, t)| and Nb is the number of nonzero bi.

Proof. Let

T 1v(x) =
N∑

i=1

bi

(
ai(x) +

∫ x

0

ki(x, t)v(t) dt

)i

.

Now for vi ∈ Bc, for suitable c,

T 1v2(x) − T 1v1(x) =
N∑

i=1

bi

{(
ai(x) +

∫ x

0

ki(x, t)v2(t) dt

)i

−
(

ai(x) +
∫ x

0

ki(x, t)v1(t) dt

)i}
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=
N∑

i=1

bi

{(
ai(x) +

∫ x

0

ki(x, t)v2(t) dt − ai(x)

−
∫ x

0

ki(x, t)v1(t) dt

)

·
i−1∑
j=0

(
ai(x) +

∫ x

0

ki(x, t)v2(t) dt

)j

·
(

ai(x) +
∫ x

0

ki(x, t)v1(t) dt

)i−1−j}

def=
N∑

i=1

bi

∫ x

0

ki(x, t)(v2(t)−v1(t)) dt Fi(x, v1, v2).

So

||T 1v1 − T 1v2||22 ≤ Nb

N∑
i=1

b2
i

∫ 1

0

( ∫ x

0

|ki(x, t)(v2(t) − v1(t))| dt

)2

· F 2
i (x, v1, v2) dx

≤ Nb

N∑
i=1

b2
i ess supF 2

i (x, v1, v2)

·
∫ 1

0

( ∫ x

0

|ki(x, t)||v2(t) − v1(t)| dt

)2

dx

≤ Nb

N∑
i=1

b2
i ess supF 2

i (x, v1, v2)

·
∫ 1

0

( ∫ 1

0

|ki(x, t)||v2(t) − v1(t)| dt

)2

dx

≤ Nb

N∑
i=1

b2
i ess supF 2

i (x, v1, v2)K2
i
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·
( ∫ 1

0

|v2(t)−v1(t)| dt

)2

≤ Nb

N∑
i=1

ess supF 2
i (x, v1, v2)K2

i

∫ 1

0

|v2(t)−v1(t)|2 dt,

by Hölder’s inequality. But

|Fi(x, v1, v2)| ≤
i−1∑
j=0

(
|ai(x)| +

∫ x

0

|ki(x, t)v2(t)| dt

)j

·
(
|ai(x)| +

∫ x

0

|ki(x, t)v1(t) dt

)i−1−j

≤
i−1∑
j=0

(
||ai||∞ + Ki

∫ x

0

|v2(t)| dt

)j

·
(
||ai||∞ + Ki

∫ x

0

|v1(t)| dt

)i−1−j

≤
i−1∑
j=0

(
||ai||∞ + Ki

∫ 1

0

|v2(t)| dt

)j

·
(
||ai||∞ + Ki

∫ 1

0

|v1(t)| dt

)i−1−j

≤
i−1∑
j=0

(||ai||∞ + Ki||v2||2)j(||ai||∞ + Ki||v1||2)i−1−j ,

by Hölder’s inequality,

≤
i−1∑
j=0

(||ai||∞ + Kic)j(||ai||∞ + Kic)i−1−j

≤ i(||ai||∞ + Kic)i−1,

giving
ess sup|Fi(x, v1, v2)| ≤ i(||ai||∞ + Kic)i−1.

Consequently T 1 is a contraction mapping if

K2
s

def= Nb

N∑
i=1

b2
i i

2(||ai||∞ + Kic)2i−2K2
i < 1.
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To establish that T 1 : Bc → Bc, consider

||(ai(x) +
∫ x

0

ki(x, t)v(t) dt)i||22

=
∫ 1

0

(
ai(x) +

∫ x

0

ki(x, t)v(t) dt

)2i

dx

≤
∫ 1

0

(
|ai(x)| +

∫ x

0

|ki(x, t)| |v(t)| dt

)2i

dx

≤
∫ 1

0

(
|ai(x)| +

∫ 1

0

|ki(x, t)| |v(t)| dt

)2i

dx

≤
∫ 1

0

(
||ai||∞ + Ki

∫ 1

0

|v(t)| dt

)2i

dx

=
(
||ai||∞ + Ki

∫ 1

0

|v(t)| dt

)2i

≤ (||ai||∞ + Kic)2i.

Thus

||T 1v||2 ≤
N∑

i=1

|bi|(||ai||∞ + Kic)i

giving T 1 : Bc → Bc if

N∑
i=1

|bi|(||ai||∞ + Kic)i < c.

Theorem 2 follows by Banach’s theorem.

Remark. The conditions for Theorem 2 can be simplified by introduc-
ing stronger regularity conditions. For example, there exists a solution
to (1) in the unit ball if

|bi| ≤ 1
Nbi

and ||ai||∞ + Ki < 1

for each i.



250 B.G. SLOSS AND W.F. BLYTH

Corollary. There exists a solution u to the second order equation

u(x) = b

(
a(x) +

∫ x

0

k(x, t)u(t) dt

)2

where u belongs to the closed ball Bc = {w ∈ L2 : ||w||2 ≤ c} with

0 < c <
1
K

(
1

2K|b| − ||a||∞
)

if

||a||∞ <
1

4K|b| .

Proof. Theorem 2 gives the following sufficient conditions for the
existence of a solution

|b|(||a||∞ + Kc)2 < c

and
2|b|(||a||∞ + Kc)K < c.

The first of these inequalities is equivalent to c < c̄ where

c̄ =
1
K

(
1

2K|b| − ||a||∞
)

.

The second inequality can be rewritten as

|b|K2c2 + (2K|b| ||a||∞ − 1)c + |b| ||a||2∞ < 0

which is satisfied by c ∈ (c−, c+), where

c± =
1 − 2K|b| ||a||∞ ± √

1 − 4K|b| ||a||∞
2|b|K2

.

The regularity condition

4K|b| ||a||∞ < 1
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is required to ensure that c− and c+ are real (and positive). Note that
c̄ = (c− + c+)/2 so that, if the regularity condition is satisfied, any
c ∈ (c−, c̄) satisfies both of the inequalities from Theorem 2 and the
Corollary is established.

The existence of a solution of (1) is guaranteed by Theorem 2. In the
previous section, Theorem 1 also provided uniqueness for the second
order case. However, more generally, we would expect that solutions
of (1) would exhibit bifurcation behavior. The following theorem
describes this for the case where our class of nonlinear equations is
restricted to have all ai zero.

Theorem 3. For

(6) u(x) = b
N∑

i=1

( ∫ x

0

ki(x, t)u(t) dt

)i

with b ∈ R, u ∈ C[0, 1] and the linearized problem

(7) u(x) = b0

∫ x

0

k1(x, t)u(t) dt

with corresponding adjoint equation

(8) u∗(x) = b0

∫ x

0

k1(t, x)u∗(t) dt

if b0 is a simple characteristic number of (7), then (b, u) = (b0, 0) is a
bifurcation point of (6) when the following are satisfied.

1. Every ki is continuous on [0, 1] × [0, 1].

2. If u1 is an eigensolution of (7) and u∗
1 is an eigensolution of (8),

then (u1|u∗
1) �= 0 where (x|y) =

∫ 1

0
x(t)y(t) dt. In particular, this is

satisfied if k1(x, t) ≥ 0.

Proof. Setting

Nu = b

N∑
i=2

( ∫ x

0

ki(x, t)u(t) dt

)i
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gives the Gateau derivative

Nuh = b
N∑

i=2

i

( ∫ x

0

ki(x, t)u(t) dt

)i−1 ∫ x

0

ki(x, t)h(t) dt

with Nu(0) = 0. The proof follows that of example 8.30 of Zeidler [11].

6. Error estimates for Corrington’s method. We interpret the
method of Corrington as consisting of creating solutions un by using
iterates un

m where

un
m+1(x) = Pn

( N∑
i=1

bi

(
ai(x) +

∫ 1

0

k(x, t)un
m(t) dt

)i)

= Tn(un
m).

We show that there exist un ∈ L2[0, 1) such that

un
m

L2→ un L2→ u.

In the following we give error estimates for Corrington’s method.
In a previous paper [9], it was shown that the Corrington method
for the linear case converges with order 2. That is, the error in the
Walsh coefficients decreases by a factor of four as the number of Walsh
terms is doubled. Similarly for the nonlinear case here, we show that,
subject to sufficient regularity of the ki and ai, the method converges
quadratically.

Theorem 4. If ai ∈ Lip α and ki(·, t) ∈ Lip α for all t, then we have
the error estimates for Corrington’s method:

||un
m − u||2 ≤ Km

s

1 − Ks
||un

1 − un
2 ||2 +

N∑
i=1

|bi|Dn,i

where K2
s = Nb

∑N
i=1 b2

i i
2(||ai||∞ + Kic)2i−2K2

i , c is the radius of the
ball Bc, and

Dn,i =
{

O(n−α log n) for arbitrary n

O(n−α) for n = 2N .
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Proof. Now

||un
m − u||2 = ||un

m − un + un − u||2
≤ ||un

m − un||2 + ||un − u||2

≤ Km
s

1 − Ks
||un

1 − un
2 ||2 + ||un − u||2.

Let

||un − u||2 =
∥∥∥∥

N∑
i=1

biPn

(
ai(x) +

∫ x

0

ki(x, t)u(t) dt

)i

−
N∑

i=1

bi

(
ai(x) +

∫ x

0

ki(x, t)u(t) dt

)i∥∥∥∥
2

≤
N∑

i=1

|bi|
∥∥∥∥(Pn − I)

(
ai(x) +

∫ x

0

ki(x, t)u(t) dt

)i∥∥∥∥
2

def=
N∑

i=1

|bi| ||(Pn − I)Hi(x)||2.

We now establish that Hi belongs to Lipα:

Hi(x + h) − Hi(x) =
(

ai(x + h) +
∫ x+h

0

ki(x + h, t)u(t) dt

)i

−
(

ai(x) +
∫ x

0

ki(x, t)u(t) dt

)i

which, on factorization, gives

Hi(x+h) − Hi(x) =
{

ai(x+h) − ai(x) +
∫ x+h

0

ki(x+h, t)u(t) dt

−
∫ x

0

ki(x, t)u(t) dt

}
Gi(x, h)
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where clearly Gi(x, h) → Gi(x), generally nonzero, as h → 0. So, for
ai and k(·, t) belonging to Lipα for all t,

Hi(x+h)−Hi(x) =
{

ai(x+h)−ai(x) +
∫ x

0

(ki(x + h, t)−k(x, t))u(t) dt

+
∫ x+h

x

ki(x + h, t)u(t) dt

}
Gi(x, h)

= O(hα) + O(hα) + O(h)
= O(hα) as h → 0.

So
sup
h≤1

|H(x + h) − H(x)| = O(hα)

which implies that H ∈ Lip α.

Therefore, from [3], with n = 2J + j for j ≤ 2J ,

|(I − Pn)Hi(x)| = |Sn(x, Hi) − Hi(x)|
≤ ω

(
1
2J

, Hi

)(
2 +

1
2
Ln

)

=

{
O(n−α log n) for arbitrary n

O(n−α) for n = 2N .

= Dn,i(Hi).

Thus, we have our result:

||un
m − u||2 ≤ Km

s

1 − Ks
||un

1 − un
2 ||2 +

N∑
i=1

|bi|Dn,i(Hi).

It is natural to use the n = 2J series expansion when using Walsh
function methods, in which case

||un
m − u||2 ≤ D/nα + fm

where n = 2J , fm → 0 as m → ∞ and D is independent of n. Usually
we have the regularity condition α = 1 and so

||u2J+1

m − u||2 ∼ 1
2
||u2J

m − u||2.
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Thus the error in global L2 norm on [0, 1) is of first order. But the
Walsh series of order 2J is constant on intervals of measure 2−J . Over
these intervals the local error is of order 2. This implies that the error
in the coefficients of the Walsh series is of order 2. It is interesting to
note that this is the same result as was obtained in [9] for the linear
case of the Corrington method.

7. Conclusion. The method due to Corrington has been extended
to a class of nonlinear integral equations which include the important
elliptic equations. Sufficient conditions for convergence and error
estimates have been derived. The error estimates developed here
indicate that, subject to regularity conditions, the method is second
order accurate when series with 2J terms are used.

We have also obtained several new results concerning (i) the existence
of solutions of our general nonlinear integral equation, (ii) location of
multiple solutions where our class of equations is restricted to have all
ai zero and (iii) uniqueness of the solution of the second order nonlinear
equation.
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