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A NEW PROOF OF EXISTENCE OF SOLUTIONS
FOR A CLASS OF NONLINEAR VOLTERRA EQUATIONS

JESÚS M.F. CASTILLO AND WOJCIECH OKRASINSKI

ABSTRACT. In this paper we shall give a new method of
proof for Gripenberg’s fundamental theorem concerning the
solvability of a certain type of nonlinear Volterra equation.

1. Introduction. This paper is concerned with the solvability of
the equation

(1) u(x) =
∫ x

0

k(x− s)g(u(s)) ds, x ≥ 0,

where k is a nonnegative locally integrable function, and g is a contin-
uous nondecreasing function such that g(0) = 0.

Obviously, u ≡ 0 is the trivial solution to (1). The uniqueness of
the trivial solution is the key to the study of uniqueness of solutions
to other kinds of integral and differential equations (see [14]). From
a physical point of view, however, it is especially interesting to know
when (1) has a nontrivial solution [10].

During the last few years, a number of papers have been written
concerning the uniqueness of the trivial solution and the existence
of nontrivial solutions (see the list of references). All of them have
Gripenberg’s paper [5] as a background; in [5] the celebrated Osgood
condition (see [14]) is generalized to Volterra integral equations of
type (1). Such results can be extended to wider classes of kernels
k and nonlinearities g (see [1 4, 7 11, 13]). In the opinion of
the authors, Gripenberg [6] has recently presented one of the most
important results concerning the uniqueness of the trivial solution to
Volterra equations. Namely, he has shown that the uniqueness of the
trivial solution to (1) strongly depends on k and g, except for the
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following two cases: when k = 0 almost everywhere on some interval
[0, δ] (in which case u ≡ 0 is the unique solution independently of g),
or when g satisfies lim infx→0+ g(x)/x < +∞, which can be seen as a
Lipschitz-type continuity condition, i.e., there exists a constant L > 0
and a sequence xn → 0+ such that g(xn) ≤ Lxn (in which case u ≡ 0 is
the unique solution independent of kernel k). We shall use the notation
R+ = [0,+∞]. To formulate Gripenberg’s theorem, let us recall the
two classes of functions introduced in [6]:

K =
{
k ∈ L1(R+,R+) :

∫ x

0

k(s) ds > 0, x ≥ 0
}

G =
{
g ∈ C(R+,R+) : g(0) = 0, g is nondecreasing,

and lim
s→0+

g(s)
s

= ∞
}

Theorem 1.1 [6].

(Y) For every g ∈ G there exists k ∈ K such that equation (1) has a
nontrivial solution.

(N) For every g ∈ G there exists k ∈ K such that equation (1) has
only the trivial solution.

(Y′) For every k ∈ K there exists g ∈ G such that equation (1) has
a nontrivial solution.

(N′) For every k ∈ K there exists g ∈ G such that equation (1) has
only the trivial solution.

Under stronger assumptions concerning g, proofs of cases (Y) and
(N) of Gripenberg’s theorem have been presented in [12] (paper [6] was
unfortunately not mentioned there, although it was added in proof),
and (N) is proved in [13] assuming g is smooth for x > 0.

In this paper we shall give a different method of proof for this
theorem. The method, we feel, gives a new point of view for considering
the solvability of equation (1) and sheds light on new criteria for the
uniqueness of the trivial solution.
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2. Some auxiliary results. On the basis of standard comparison
theorems (cf. [7]) we formulate the following

Lemma 2.1. Let gi ∈ G and ki ∈ K, i = 1, 2. Let k1 ≤ k2 and
g1 ≤ g2. If the equation

u(x) =
∫ x

0

k2(x− s)g2(u(s)) ds, x ≥ 0,

has only the trivial solution, then the same is true for the equation

u(x) =
∫ x

0

k1(x− s)g1(u(s)) ds, x ≥ 0.

Given a kernel k, we denote by K−1 the inverse function of K(x) =∫ x

0
k(s) ds. It is easy to verify the equality

∫ x

0
k(x−s)s ds =

∫ x

0
K(s) ds,

which proves the following

Lemma 2.2. Let k ∈ K and g ∈ G. Assume that g−1 is strictly
increasing and continuous. The function g−1 is a nontrivial solution
to (1) if and only if g−1(x) =

∫ x

0
K(s) ds.

Let us recall here the criterion for the uniqueness of the trivial solution
to (1) developed in [11]:

Theorem 2.3. Let k ∈ K be a positive (almost everywhere), locally
integrable kernel on some interval [0, δ], δ > 0. Let g ∈ G be a strictly
increasing, absolutely continuous function. Let ψ be a continuous
function such that ψ(x) > 0 for all x > 0 and lim supx→0+ g(x)/ψ(x) <
1. If there exists a δ0 > 0 such that

∞∑
n=0

K−1

(
(g−1)n(x)

ψ((g−1)n(x))

)
= +∞

for all x ∈ (0, δ0); then equation (1) has only the trivial solution.
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3. A new proof of Theorem 1.1.

Proof of (Y). This follows straightforwardly from Lemmata 2.1 and
2.2.

Proof of (N). On the basis of Lemma 2.1 and 2.2 it can be assumed
that g is a strictly increasing, (absolutely) continuous function such
that g(u)/u is strictly decreasing. Since, for some x0, g−1(x) < x when
x ≤ x0, the sequence {(g−1)n(x0)} is strictly decreasing and convergent
to 0. We define a sequence {bn} as

bn =
(g−1)n(x0)

2(g−1)n−1(x0)
,

which is, by virtue of the assumptions made about g, a strictly decreas-
ing sequence converging to 0.

Let {cn} be a strictly decreasing sequence of positive numbers, con-
vergent to 0 and such that

∑+∞
n=0 cn = +∞. We define the function

(2) k(x) =
bn − bn+1

cn − cn+1
, if x ∈ (cn+1, cn]

and k(0) = 0. It is easy to see that K is strictly increasing and satisfies
K(cn) = bn. Therefore

∑+∞
n=1K

−1(bn) =
∑+∞

n=1 cn = +∞. Moreover, if
x ∈ (0, x0), it is possible to find an integer N such that (g−1)N (x0) ≤ x.
Since g−1(x)/x and K−1 are increasing then, by comparison of series,
one infers that

∞∑
n=0

K−1

(
(g−1)n+1(x)
2(g−1)n(x)

)
= +∞,

which is precisely the condition of Theorem 2.4 putting ψ ≡ 2g. In this
form one sees that equation (1) with kernel k defined in (2) has only
the trivial solution.

Proof of (Y′). A simple consequence of Lemma 2.2.

Proof of (N′). Because of Lemma 2.1, the new (positive) kernel
q(x) = k(x) + x can be considered instead of k. We shall write
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Q(x) =
∫ x

0
q(s) ds. Let {cn} be a sequence of positive numbers,

convergent to 0, such thatQ(cn) < 1/2 and
∑+∞

n=1 cn = +∞. Let b0 > 0
be given. A sequence {bn} is defined by means of bn+1 = 2Q(cn)bn and
then a function G by

G(x) =
1
bn

(
b2n+1 − bnbn+2

bnbn+1 − b2n+1

(x− bn) + bn+1

)
,

x ∈ (bn+1, bn], n = 1, 2, . . . .

The function G is strictly increasing and limx→0+ G(x) = 0. Since
xG(x) is a strictly increasing absolutely continuous function, one easily
sees that there exists a function g ∈ G such that g−1(x) = xG(x).
Moreover, g−1(bn) = bn+1, and thus (g−1)n(b0) = bn. We can now
show that, for x = b0 and ψ ≡ 2g, the series of Theorem 2.3 is divergent:

+∞∑
n=1

Q−1

(
1
2
G((g−1)n(b0))

)
=

+∞∑
n=1

Q−1

(
1
2
G(bn)

)

=
+∞∑
n=1

cn = +∞.

If x ∈ (0, b0), then there exists an integer N such that (g−1)N (b0) <
b0. Since Q−1 and G are increasing, by comparison of series and
Theorem 2.3, equation (1) has only the trivial solution.
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