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A DECREASING REARRANGEMENT APPROACH
FOR A CLASS OF ILL-POSED

NONLINEAR INTEGRAL EQUATIONS

HEINZ W. ENGL, BERND HOFMANN AND HELMUT ZEISEL

ABSTRACT. A special class of nonlinear Fredholm inte-
gral equations of the first kind is considered where the ker-
nel depends on t only via the unknown function x(t). Due
to this structure, one can achieve at best uniqueness up to
rearrangement. To overcome this ambiguity, the decreasing
rearrangement is used as a canonical solution exploiting the
fact that continuous, Lp- and W 1,p-solutions have decreas-
ing rearrangements which are in the same space, respectively.
Conditions for existence and uniqueness of monotone solutions
are presented. The equation can be reformulated as a linear
integral equation of the first kind for the distribution function
(which is, essentially, the inverse of the decreasing rearrange-
ment). As an alternative, the general theory of Tikhonov
regularization for nonlinear ill-posed problems can be applied
and provides convergence and rates under certain conditions.
For a specific example arising in optics, all conditions needed
for these results are fulfilled.

1. Introduction. This paper is devoted to a study of the class

(1.1)
∫ 1

0

k(s, x(t)) dt = y(s), 0 ≤ s ≤ 1,

of nonlinear Fredholm integral equations of the first kind. Inverse
problems, e.g., in material sciences, require the solution of such an
equation when the local distribution profile x(t), 0 ≤ t ≤ 1, of a
physical quantity in a layer has to be recovered from an observable
function y(s), 0 ≤ s ≤ 1, and the transmissibility properties of the
layer forming the kernel k depend on the location t only via the profile
value x(t). An example arising in optics, where k(s, x) =

√
x2 − s, is

discussed in [13] (see also Example 3.7). Solutions of equation (1.1) are
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characterized by a strong ambiguity, because, e.g., the reflected profile
x(1 − t), 0 ≤ t ≤ 1, is always a solution to (1.1) when x(t), 0 ≤ t ≤ 1,
is.

We are going to formulate an approach to overcome these difficul-
ties by using decreasing rearrangements of solution profiles. Under
weak assumptions it will be shown that decreasing rearrangements of
solutions of (1.1) also solve (1.1). These decreasing rearrangements
are by definition monotone; a sufficient condition for the uniqueness
of monotone solutions is given, so that we can enforce “uniqueness
up to rearrangements.” We then apply descriptive regularization and
Tikhonov regularization in order to solve (1.1) in a stable manner and
prove convergence (rates) results.

Throughout this paper, (1.1) is considered as a nonlinear operator
equation

(1.2) F (x) = y,

where the operator F : D(F ) ⊆ B1 → B2 acts between Banach spaces
B1 and B2 of real-valued functions x = x(t) on the interval [0, 1], and
D(F ) consists of functions bounded below by a positive number c.

In Section 2 we review the definition and main properties of decreas-
ing rearrangements of Lebesgue measurable real functions. It will turn
out to be important for our approach that the decreasing rearrange-
ments x∗ of functions x in C[0, 1], Lp[0, 1], and W 1,p[0, 1], respectively,
are again in the same spaces.

Based on the concept of equimeasurable functions, assertions on the
existence and uniqueness of decreasing solutions to equation (1.1) are
made in Section 3. Restricted to decreasing solutions, the injectivity of
the nonlinear integral operator F of (1.2) corresponds to the injectivity
of an associated linear integral operator.

Section 4 gives some main ideas of descriptive regularization using
monotonicity. This approach can be used to the determination of
monotone representatives of equation (1.1) when in addition an upper
bound C for the profile function values is known.

In Section 5 the general theory of Tikhonov regularization for ill-
posed nonlinear operator equations is applied to equation (1.2) on the
Hilbert spaces L2[0, 1] and W 1,2[0, 1], respectively. A basic assumption
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needed for proving convergence of Tikhonov regularization is the weak
closedness of operator F ([8, 4]). If F maps from W 1,2[0, 1] into
L2[0, 1], then this property is ensured by the compactness of associated
embedding operators. However, in the case that F : D(F ) ⊆ L2[0, 1] →
L2[0, 1], weak closedness requires additional restrictions on D(F ) and
on the kernel k of the integral operator, as will finally be described in
Section 5.

2. Decreasing rearrangements. In this section we review some
results on the decreasing rearrangement. General references about this
topic are, e.g., [2, 3, 6 and 14]. We denote by λ the Lebesgue measure
and by Λ+ the set of nonnegative Lebesgue measurable real-valued
functions defined almost everywhere on the interval [0, 1]. Moreover,
let, for a given 0 < c <∞, Dc

λ ⊂ Λ+ be the set of Lebesgue measurable
functions x : [0, 1] → [c,∞[. For any function x of Λ+ the distribution
function

(2.1) dx(s) := λ({t ∈ [0, 1] : x(t) > s}), 0 ≤ s <∞

is well-defined. Then, the decreasing rearrangement (also called
Schwarz symmetrization) x∗ : [0, 1] → [0,∞[ of x is defined by

(2.2) x∗(t) :=

⎧⎨
⎩

ess sup 0≤τ≤1x(τ ) if t = 0
inf {s > 0 : dx(s) ≤ t} if 0 < t < 1
ess inf 0≤τ≤1x(τ ) if t = 1.

Evidently, x ∈ Dc
λ implies that x∗ ∈ Dc

λ. Note that both dx and x∗ are
for all x ∈ Dc

λ nonincreasing and right-continuous functions.

Definition 2.1. Let x1 ∈ Λ+ and x2 ∈ Λ+. Then we say x1 and x2

are equimeasurable whenever dx1 = dx2 , i.e., the distribution functions
coincide pointwise.

The following lemmata characterize the main properties of equimea-
surability and decreasing rearrangements.

Lemma 2.2 ([15, p. 48], [3, p. 43]). Let x ∈ Λ+. Then x and x∗ are
equimeasurable. Moreover, for x ∈ Lp[0, 1], 1 ≤ p < ∞, we have that
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x∗ ∈ Lp[0, 1] and

(2.3) ||x||Lp[0,1] = ||x∗||Lp[0,1] =
( ∫ ∞

0

psp−1dx(s) ds
)1/p

.

Lemma 2.3 ([6, p. 24 26]). Let x ∈ Dc
λ be a nonincreasing right-

continuous function. Then x = x∗, i.e., the function and its decreasing
rearrangement coincide.

Lemma 2.4 ([11, p. 218]). Let x1 ∈ Λ+ and x2 ∈ Λ+ be equimea-
surable, Φ : R → R+

0 a nonnegative Borel measurable function. Then
Φ(x1) and Φ(x2) are equimeasurable functions in Λ+, and

(2.4)
∫ 1

0

Φ(x1(t)) dt =
∫ 1

0

Φ(x2(t)) dt.

Lemma 2.5. Let f : R+
0 → R+

0 be a differentiable function
and x(t) ∈ Λ+ a simple function, i.e., x(t) =

∑N
n=1 αnχAn

(t) with
measurable An ⊆ [0, 1], αn ≥ 0. Then

(a)
∫ t

0
f(x∗(τ )) dτ = f(x∗(t)) · t +

∫ ∞
x∗(t)

f ′(s) dx(s) ds for every
0 ≤ t ≤ 1,

(b)
∫ 1

0
f(x(τ )) dτ = f(c) +

∫ ∞
c
f ′(s) dx(s) ds for every 0 ≤ c ≤

ess inf 0≤τ≤1x(τ ).

Proof. Formally, Lemma 2.5(a) can be obtained by substituting
τ = dx(s) and integrating by parts. However, since dx(s) is not
necessarily invertible and differentiable, the proof requires some care
in detail. For simple functions, both sides of (a) can be computed
directly; (b) follows from

∫ 1

0
f(x(τ )) dτ =

∫ 1

0
f(x∗(τ )) dτ and part (a).

If x is an arbitrary Borel measurable function in Λ+, it is a pointwise
limit of an increasing sequence of nonnegative simple functions, and
the formulas given in Lemma 2.5 are still valid as soon as the limit can
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be interchanged with all integrals appearing in Lemma 2.5. This fact
is used in Section 3 to transform the nonlinear integral equation (1.1)
into a linear integral equation for the distribution function dx(s).

As Lemma 2.2 indicates, the membership in Lp of a function x ∈ Λ+

carries over to its decreasing rearrangement x∗. This also holds for
C[0, 1] and W 1,p:

Lemma 2.6 ([2, p. 48]). Let x ∈ Dc
λ ∩ C[0, 1]. Moreover, let

0 < c ≤ m := min0≤t≤1 x(t) and M := ||x||C[0,1] = max0≤t≤1 x(t).
Then x∗(0) = M , x∗(1) = m, and x∗ ∈ Dc

λ ∩ C[0, 1].

Lemma 2.7 ([11, p. 218, 5]). Let x be an element of the Sobolev
space W 1,p[0, 1], p ∈ [1,+∞]. Then the decreasing rearrangement x∗ is
again in W 1,p[0, 1].

In [7] it is shown that, for a continuously differentiable function x,
the derivative of x∗ satisfies

(2.5)
1

(x∗)′(u)
= −

∑
{tj :x(tj)=x∗(u)}

1
|x′(tj)|

at all points u where x′(tj) �= 0 for every point tj in the set {tj :
x(tj) = x∗(u)}. Using this formula, one finds that the rearrangement
x∗(u) of x(t) = −54t3 + 81t2 − 36t + 94 has a jump discontinuity
in its first derivative at u0 = 1/6; x∗(u0) = 5 equals the value of
the local maximum of x(t). Thus, Lemma 2.7 cannot be generalized
to Sobolev spaces of higher order: this is an example of an analytic
function with a decreasing rearrangement that is not continuously
differentiable and hence not in W 2,p for any p ≥ 1. However, the
decreasing rearrangement of a continuously differentiable function is,
by Lemma 2.7, still in W 1,∞ (and hence in W 1,2). This motivates our
use of W 1,2 (instead of C1) in Section 5.

3. Existence and uniqueness of monotone solutions. In
this section we will show that under weak assumptions on the kernel,
the integral equation (1.1) has nonincreasing solutions whenever it is
solvable. Moreover, all x̂ ∈ Dc

λ equimeasurable to a solution x ∈ Dc
λ

are also solutions to (1.1).
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The next result immediately follows from Lemma 2.4:

Proposition 3.1. Let, for all 0 ≤ s ≤ 1, the functions Φs(x) :=
k(s, x), 0 < c ≤ x < ∞, be Borel measurable and nonnegative.
Moreover, let x ∈ Dc

λ be such that y(s) :=
∫ 1

0
k(s, x(t)) dt < ∞ for all

s ∈ [0, 1]. Then, for every x̂ ∈ Dc
λ with dx = dx̂,

∫ 1

0
k(s, x̂(t)) dt = y(s)

for all s ∈ [0, 1].

As a consequence of Proposition 3.1, and Lemmata 2.2, 2.6 and 2.7,
we obtain

Corollary 3.2. If x ∈ Dc
λ solves (1.1) for given y(s), 0 ≤ s ≤ 1,

then, under the assumptions of Proposition 3.1 about k, the decreasing
rearrangement x∗ is also a solution to the integral equation (1.1).
In particular, x∗ is in Lp[0, 1], C[0, 1] and W 1,p[0, 1], respectively,
whenever at least one solution x ∈ Dc

λ of (1.1) belongs to that space.

Since monotone, continuous and simple functions are Borel measur-
able, we moreover have:

Corollary 3.3. If x ∈ Dc
λ solves (1.1) (with y such that y(s) < ∞

for all s ∈ [0, 1]) and the nonnegative kernel k(s, ·) is, for all 0 ≤ s ≤ 1,
a monotone, a continuous, or a simple function of x on [c,∞[, then x∗

is a nonincreasing right-continuous solution of (1.1).

Although (1.1) is in general not uniquely solvable, the injectivity of
the linearized integral operator will in fact imply the uniqueness of
nonincreasing solutions of (1.1), as we will see in Theorem 3.6.

Assumption 3.4. Let

(i) B1 = B2 = L2[0, 1], D(F ) := {x ∈ L2[0, 1] : x(t) ≥ c > 0 a.e.},
(ii) k(s, x), (s, x) ∈ [0, 1] × [c,∞[ be nonnegative and continuous,

(iii) |k′x(s, x)| ≤ H < ∞, k′x(s, x), (s, x) ∈ [0, 1] × [c,∞[, be
continuous.
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Lemma 3.5. Under Assumption 3.4, the nonlinear integral operator
F : D(F ) ⊆ B1 → B2 defined by

(3.1) [F (x)](s) :=
∫ 1

0

k(s, x(t)) dt, 0 ≤ s ≤ 1

is continuous and compact. At any x̄ ∈ D(F ), the (formal) derivative
F ′(x̄) : B1 → B2, given by

(3.2) |F ′(x̄)h](s) =
∫ 1

0

k′x(s, x̄(t))h(t) dt, h∈B1, 0≤s≤1,

is continuous and compact. If, in addition, there is a K > 0 such that

(3.3) |k′x(s, x1)−k′x(s, x2)| ≤ K|x1−x2|, s∈ [0, 1], x1, x2∈ [c,∞[ ,

then the (formal) derivative F ′(x̄) satisfies

(3.4) F (x) = F (x̄) + F ′(x̄)(x− x̄) + r(x)

with ||r(x)|| ≤ (K/2)||x− x̄||2 for every x ∈ D(F ).

Proof. From |k′x(s, x)| ≤ H we have

|k(s, x)| ≤ |k(s, c)| + |(x− c)H|
≤ (k(s, c) + cH) +Hx ≤ αx+ β,

where α := H ≥ 0 and β := max0≤s≤1 k(s, c) + cH ≥ 0. If, however,
the kernel k(s, x) is bounded in such a way, the general theory of
Urysohn integral equations (see, e.g., [16, Chapter 7]) asserts that F
is a continuous and compact operator in L2[0, 1]. It is well-known that
F ′(x̄) is continuous and compact. (3.3) implies

(3.5) |k(s, x) − k(s, x̄) − kx(s, x̄)(x− x̄)| ≤ K

2
|x− x̄|2.

This inequality and the definition of F immediately yield (3.4).

Observe that the derivative F ′ looks formally like a Fréchet derivative.
The Fréchet derivative, however, is usually defined only at interior
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points, while the interior of our set D(F ) is empty in L2. Lemma
3.5 will be used in Section 5 to prove convergence rates for Tikhonov
regularization.

The decreasing rearrangement approach gives a chance for overcom-
ing the intrinsic ambiguity of solutions. We introduce the domain

(3.6) D∗(F ) := {x ∈ D(F ) : x nonincreasing}.

This definition is a bit sloppy since the set D(F ) ⊆ L2[0, 1] consists
of equivalence classes of functions that are equal a.e. More precisely,
we require that the a.e. equivalence class of x contains a nonincreasing
function. In the following we assume that x ∈ D∗(F ) is always chosen
as such a (not necessarily unique) nonincreasing representative.

Theorem 3.6. Let x ∈ D(F ) solve (1.1). Then, under Assumption
3.4, the decreasing rearrangement x∗ ∈ D∗(F ) also solves (1.1). More-
over, this solution is unique in D∗(F ) for all y ∈ B2 (i.e., F is injective
on D∗(F )) whenever the linear operator G : L1 [c,∞[ → L∞[0, 1] de-
fined by

(3.7) [G(f)](s) :=
∫ ∞

c

k′x(s, τ)f(τ ) dτ

is injective.

Proof. Obviously, x ∈ D(F ) implies that x∗ ∈ D∗(F ). Moreover,
Proposition 3.1 applies, because k is continuous and nonnegative, i.e.,
x∗ solves (1.1) when x is a solution.

Let xn be an increasing sequence of simple functions convergent
to x ∈ D(F ). Since |k(s, xn)| ≤ αxn + β ≤ αx + β =: g1(x),∫ 1

0
g1(x) dx ≤ α||x||L1 + β, |k′x(s, xn(τ )) dx(τ )| ≤ Hdx(τ ) =: g2(τ ),

and
∫ ∞

c
g2(τ ) dτ ≤ H

∫ ∞
0

dx(τ ) dτ = H||x||L1 (cf. Lemma 2.2), the
dominated convergence theorem applies, and the formula given in
Lemma 2.5(b) can be used for x, as remarked after Lemma 2.5:

(3.8) y(s) =
∫ 1

0

k(s, x(t)) dt = k(s, c) +
∫ ∞

c

k′x(s, τ) dx(τ ) dτ.
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Thus, the nonlinear integral equation (1.1) may be reformulated as a
linear Fredholm integral equation of the first kind for the distribution
function dx:

(3.9)
∫ ∞

c

k′x(s, τ) dx(τ ) dτ = y(s) − k(s, c), 0 ≤ s ≤ 1.

Since ||dx||L1[c,∞[ =
∫ ∞

c
|dx(τ )| dτ ≤ ∫ ∞

0
dx(τ ) dτ = ||x||L1[0,1] by

Lemma 2.2, distribution functions of functions in D(F ) are in L1 [c,∞[.
If the integral operator G is injective, then the distribution function is
uniquely determined by (3.9), and thus F is injective on D∗(F ).

It remains to be shown that G maps L1 [c,∞[ into L∞[0, 1], which
follows from

(3.10)
|G(f)(s)| ≤

∫ ∞

c

|k′x(s, τ)f(τ )| dτ

≤ H

∫ ∞

c

|f(τ )| dτ = H · ||f ||L1[c,∞[.

Note that, because of Proposition A.3 in [8] and Lemma 3.5, (1.1)
(considered on D∗(F )) is ill-posed in the sense that the unique non-
increasing solution does not depend continuously on the data y in the
L2-sense. As shown in the proof, the nonlinear integral equation (1.1)
can be reformulated as the linear integral equation (3.9) for the dis-
tribution function (which is quite straightforward). Note that, as an
integral equation of the first kind, (3.9) is again ill-posed. In [10],
this linear equation has been studied. It has turned out that plain
Tikhonov regularization does not yield very good results, especially if
no good upper and lower bounds for the solution are known, and that
one can improve the results by imposing monotonicity. However, by
doing this, one loses the linearity of the problem anyway, which, in
our opinion, justifies to consider direct regularization of the nonlinear
equation (1.1) (without transforming it to (3.9) first). Also, (3.9) is
an equation for the distribution function dx. If one wants to recover
the decreasing rearrangement solution x∗ from dx, one has to note that
while the L1-error in dx remains the same for x∗, a small error in the
L2-norm or in the uniform norm may correspond to a larger error in x∗.
Thus, if one wants to find x∗, a direct regularization of (1.1) is at least
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an alternative worth being discussed, which will be done in Sections 4
and 5.

We now present a class of kernels, for which the injectivity of the
operator G can be shown:

Let k be such that

(3.11) k′x(s, x) = ϕ

(
s

g(x)

)
=

∞∑
i=0

ϕ(i)(0)
i!

· si

(g(x))i

with a smooth function ϕ (ϕ(i)(0) �= 0 for i ≥ i0) and a differentiable
strictly increasing function g with 0 < g(c) < ∞, g′(x) > 0 (x ∈
[c,∞[) and limx→∞ g(x) = ∞, where we assume that the power series
expansion (3.11) converges for all 0 ≤ s ≤ 1 and c ≤ x <∞.

We check the injectivity of the integral operator G defined in (3.7):

If Gψ = 0, then
∫ ∞

c

1
(g(x))i

ψ(x) dx = 0 for all i ≥ i0

and, with

h =
1

g(x)
, f(h) =

ψ(g−1(1/h))
g′(g−1(1/h))

,

∫ 1/g(c)

0

hi−2f(h) dh = 0 for all i ≥ i0.

The uniqueness of the solution of the Hausdorff moment problem
implies that f(h) = 0 a.e. for h ∈ [0, 1/g(c)]. Since g is differentiable
and, thus, the function x(h) = g−1(1/h) is absolutely continuous, this
implies that ψ(x) = 0 a.e. on [c,∞[. Thus, G is injective, so that the
conclusion of Theorem 3.6 holds for such kernels, of which we now give
a specific example:

Example 3.7. Consider the kernel

(3.12) k(s, x) =
√
x2 − s, 1<c≤x<∞, 0≤s≤1;

this kernel arises in optics (cf. [13]).
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We have

(3.13) k′x(s, x) =
x√

x2 − s
= 1 +

∞∑
i=1

vi

i!
· s

i

x2i
,

where v1 = 1/2, vi+1 = ((2i + 1)/2)vi, i ∈ N, and 1 < k′x(s, x) ≤
c/
√
c2−1, 0<k(s, x)≤x, so that Assumption 3.4 is fulfilled. Note that

the convergence radius of the power series expansion
∑∞

i=1(vi/i!)siyi

with respect to y is ρ = (lim supi→∞(vi+1s)/(vi(i + 1)))−1 = 1/s.
Consequently, (3.13) converges uniformly for all 1 < c ≤ x < ∞ and
0 ≤ s ≤ 1.

Since kx has the form (3.11) with ϕ(τ ) = 1/
√

1 − τ , ϕ(i)(0) = vi,
g(x) = x2, G is injective, so that, by Theorem 3.6, the equation

(3.14)
∫ 1

0

√
x(t)2 − s dt = y(s)

has at most one nonincreasing solution.

4. A descriptive regularization approach. As motivated in the
remarks following Theorem 3.6, we also consider a direct regularization
of (1.1) as an alternative to regularizing the linear equation (3.9). We
present two approaches: In this section, we regularize the problem by
assuming that an upper bound C < ∞ for the solution is known. In
Section 5, we will apply Tikhonov regularization.

Assumption 4.1. Let Assumption 3.4 hold where, however, condi-
tion (i) is replaced by

(i∗) B1 = B2 = L2[0, 1], D(F ) := D∗
C(F ) := {x ∈ L∞[0, 1]: x

nonincreasing and 0 < c ≤ x(t) ≤ C < ∞, t ∈ [0, 1]}, and the
conditions

(iv) (1.2) has a solution x∗ ∈ D∗
C(F ),

(v) F is injective on D∗
C(F ),

are added.

Note that, while (iv) is an existence assumption to be made, (v) can
be deduced from Theorem 3.6.



454 H.W. ENGL, B. HOFMANN AND H. ZEISEL

Lemma 4.2. D∗
C(F ) is a compact subset of Lp[0, 1] for 1 ≤ p <∞.

Proof. The monotone functions x ∈ D∗
C(F ) are uniformly bounded

in the form |x(t)| ≤ C and ∨1
t=0x(t) ≤ C. Then, it follows from Helly’s

theorem (see, e.g., [17, p. 250]) that every infinite subset of D∗
C(F )

contains a sequence {xn}∞n=1 with limn→∞ xn(t) = x̄(t), 0 ≤ t ≤ 1, and
x̄ ∈ D∗

C(F ). Since |xn(t) − x̄(t)|p ≤ |2C|p is bounded by an integrable
function and converges a.e. to 0, Lebesgue’s dominated convergence
theorem provides strong convergence:
(4.1)

lim
n→∞ ||xn − x̄||Lp[0,1] =

( ∫ 1

0

lim
n→∞ |xn(t) − x̄(t)|p dt

)1/p

= 0.

Lemma 4.3 ([19, p. 63]). A sequence of (not necessarily continuous)
monotone functions converging pointwise on a compact interval [a, b] to
a continuous function converges uniformly to that function.

Now we are going to exploit the compactness of D∗
C(F ) in Lp[0, 1] to

show the convergence of least-squares solutions of (1.2) when the data
errors tend to zero. This approach is sometimes called the “method
of quasi-solutions.” If the compactness is forced by additional assump-
tions describing the expected shape of solutions, as monotonicity in our
considerations, the approach is also called “descriptive regularization.”
For details, see [12, 21].

Let {yn}∞n=1 denote a sequence of right-hand sides of (1.2) with

(4.2) ||yn − y||L2[0,1] ≤ δn

and {xn}∞n=1 be an associated sequence in D∗
C(F ) such that

(4.3) ||F (xn) − yn||L2[0,1] ≤ inf
x∈D∗

C
(F )

||F (x) − yn||L2[0,1] + ηn.

For such a sequence {xn}∞n=1, we have the following convergence result:

Theorem 4.4. Let δn → 0 and ηn → 0 as n → ∞; then, under
Assumption 4.1,

(4.4) lim
n→∞ ||xn − x∗||Lp[0,1] = 0, 1 ≤ p <∞,
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where x∗ is the uniquely determined solution of (1.2) in D∗
C(F ). If,

moreover, x∗ ∈ C[0, 1], then the sequence {xn}∞n=1 converges uniformly
to x∗ on every interval [α, β] ⊂ ]0, 1[.

Proof. From Assumption 4.1 ((iv), (v)) it follows that there is a
unique solution x∗ ∈ D∗

C(F ) of (1.2). We will show that, for any
subsequence of {xn}∞n=1 (which we again denote by {xn}∞n=1), there is
a further subsequence {xnk

}∞k=1 that converges to x∗ in the Lp-norm.
This then implies (4.4).

Since D∗
C(F ) is compact by Lemma 4.2, we have, for any 1 ≤ p <∞,

a subsequence xnk

Lp→ x̄ ∈ D∗
C(F ) with

(4.5) ||F (xnk
)−ynk

||L2[0,1] ≤ ||F (x∗)−ynk
||L2[0,1]+ηnk

≤ δnk
+ηnk

.

Now, F : D∗
C(F ) ⊂ L2[0, 1] → L2[0, 1] is a continuous operator by

Lemma 3.5, and xnk

L2→ x̄. Consequently, (4.5) implies that F (x̄) = y
and, hence, by the injectivity of F on D∗

C(F ), x̄(t) = x∗(t) a.e. on [0, 1].
Thus, (4.4) holds.

In order to prove uniform convergence on compact subintervals of
]0, 1[, we use Lemma 4.3 and show that, for sequences of monotone
functions xn, Lp-converges implies pointwise convergence on every
interior point where the limit function x∗ is continuous:

Choose a point t ∈ ]0, 1[ where x∗ is continuous, and assume that
there is an ε > 0 such that |xn(t) − x∗(t)| > ε for infinitely many n.
Without loss of generality, assume xn(t) > x∗(t) + ε infinitely often.
Since xn is monotonically nonincreasing, xn(τ ) ≥ xn(t) > x∗(t) + ε
for every τ < t. Furthermore, since x∗ is continuous at t, there is a
δ(ε, t) > 0 such that x∗(τ ) < x∗(t) + ε/2 for every τ ∈ ]t− δ, t[. For
those values of τ , xn(τ ) − x∗(τ ) > ε/2. Now

||xn − x∗||pLp ≥
∫ t

t−δ

|xn(τ ) − x∗(τ )|p dτ ≥ δ(ε, t)(ε/2)p

infinitely often, which contradicts xn
Lp→ x∗.

Note that there is sort of a boundary layer effect; the convergence
need not be uniform on all of [0, 1].
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For the special kernel of Example 3.7, Lp-convergence and this
boundary layer effect have been illustrated in [13].

In principle, this “regularization by compactness” cannot provide
convergence rates. In the next section, we will also be able to provide
convergence rates for a different regularization method, namely, for
Tikhonov regularization.

5. A Tikhonov regularization approach. We apply the general
framework for Tikhonov regularization developed in [8] (cf. also ([4]) to
our problem. We first outline that approach for an abstract equation
of the form (1.2) and then give conditions for (1.1) to fulfill the
assumptions needed in that framework.

Assumption 5.1. (a) B1 and B2 are Hilbert spaces, D(F ) is a
convex subset of B1.

(b) F : D(F ) ⊂ B1 → B2 is continuous and weakly (sequentially)
closed.

(c) (1.2) is solvable in D(F ).

Let yδ ∈ B2 symbolize perturbed data with

(5.1) ||yδ − y||B2 ≤ δ

and denote by xδ,η
α ∈ D(F ) any element satisfying

(5.2) ||F (xδ,η
α ) − yδ||2B2

+ α||xδ,η
α − x̄||2B1

≤ inf
x∈D(F )

{||F (x) − yδ||2B2
+ α||x− x̄||2B1

} + η

for given α > 0 and δ, η ≥ 0, x̄ ∈ B1. This is Tikhonov regularization
with a possible tolerance in the minimization represented by η; for the
role of x̄, see [8].

Theorem 5.2. Let Assumption 5.1 be fulfilled, and let α = α(δ, η)
be chosen such that α → 0, δ2/α → 0 and η/α → 0 as δ → 0 and
η → 0. Then, for δn → 0, ηn → 0, and αn = αn(δn, ηn), any se-
quence {xδn,ηn

αn
}∞n=1 (as defined by (5.2)) has a convergent subsequence.
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The limit x0 of every convergent subsequence is an x̄-minimum norm
solution of (1.2), i.e., F (x0) = y, and

(5.3) ||x0 − x̄||B1 = min{||x− x̄||B1 : F (x) = y, x ∈ D(F )}.

Proof. [8].

Assumption 5.3. (a) F is Fréchet-differentiable;

(b) Let x0 be an x̄-minimum-norm solution of (1.2) such that
||F ′(x0)−F ′(z)|| ≤ L||x0−z||B1 holds for all z ∈ D(F ) with an L > 0;

(c) there exists ω ∈ B2 satisfying x0 − x̄ = (F ′(x0))∗ω;

(d) L||ω||B2 < 1.

Theorem 5.4. Let Assumptions 5.1 and 5.3 be satisfied. Then, for
the choices α ∼ δ and η = O(δ2), we obtain the convergence rate

(5.4) ||xδ,η
α − x0||B1 = O(

√
δ).

Proof. [8].

For generalizations of these results to the case where (1.2) is not
solvable but has only least-squares solutions, see [4].

This general theory of regularization for nonlinear operator equations
immediately applies to the determination of decreasing rearrangement
solutions x∗ ∈ D∗(F ) to Urysohn integral equations (1.1) when we
set B1 = W 1,2[0, 1], B2 = L2[0, 1] and D(F ) := {x ∈ W 1,2[0, 1] :
x nonincreasing, x(t) ≥ c > 0}. In this case, F as defined in (1.1) is
continuous, if the kernel k satisfies conditions (ii) and (iii) of Assump-
tion 3.4. Since the norm of W 1,2 is stronger than the norm of L2,
this is a consequence of Lemma 3.5. Moreover, the Rellich-Kondrachov
theorem (see, e.g., [1, p. 144]) asserts that the embedding of W 1,2[0, 1]
in C[0, 1] is compact. Consequently, weak convergence in W 1,2[0, 1]
implies strong convergence in C[0, 1]. This yields the weak continuity
of the operator F : D(F ) ⊂ W 1,2[0, 1] → L2[0, 1] and also the weak
closedness of this operator.
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If we set B1 = B2 = L2[0, 1] and D(F ) := D∗
C(F ) (see Assumption

4.1), then Assumption 5.1 is also satisfied. In particular, the weak
closedness of F : D∗

C(F ) ⊆ L2[0, 1] → L2[0, 1] is a direct consequence
of the compactness of D∗

C(F ) (see Lemma 4.2) and of the fact that a
continuous operator on a compact set is weakly closed.

In this L2-setting with domain D∗
C(F ), Theorem 5.4 does not im-

mediately apply. As remarked after Lemma 3.5, no Fréchet derivative
exists since D∗

C(F ) has an empty interior. However, [20] points out
that the results of [8] are still valid when Assumptions 5.3 (a) and (b)
are replaced by the following assumption:

There exists a linear operator F ′(x0)(·) : B1 → B2 such that, for
every x ∈ D(F ),

F (x) = F (x0) + F ′(x0)(x− x0) + r(x)

with
||r(x)|| ≤ K

2
||x− x0||2

for some positive K and x sufficiently close to the “a priori guess” x̄.
Hence, by Lemma 3.5, Theorem 5.4 applies with x0 = x∗ if there is a
K > 0 such that

(5.5) |k′x(s, x1)−k′x(s, x2)|≤K|x1−x2|, s∈ [0, 1], x1, x2∈ [c,∞[ .

Assumptions 5.3 (c) and (d) are fulfilled if an element ω ∈ L2[0, 1] with
||ω||L2[0,1] < 1/K and

(5.6) x∗(t) − x̄(t) =
∫ 1

0

k′x(s, x∗(t))ω(s) ds a.e. on [0, 1]

exists. The latter condition can only hold if

(5.7) ||x∗ − x̄||L2[0,1] < H/K

holds, where H is as in Assumption 3.4 (iii), i.e., if the “a priori guess”
x̄ is sufficiently close to x∗; (5.6) is a smoothness assumption for the
initial error x∗ − x̄.

This theory does not seem to carry over to the case of not necessarily
bounded decreasing rearrangements x∗, i.e., D(F ) := D∗(F ) (see
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(3.6)). In that case, the required weak closedness of F may be
missing. The following Proposition shows that weak closedness of
F : D∗(F ) ⊂ L2[0, 1] → L2[0, 1] can be achieved for a specific class
of Urysohn kernels in equation (1.1):

Proposition 5.5. Under Assumption 3.4, the operator F : D∗(F ) ⊂
L2[0, 1] → L2[0, 1] defined by the Urysohn integral equation (1.1) sat-
isfies Assumption 5.1 when the kernel k(s, x) has a Laurent series ex-
pansion

(5.8) k(s, x) = f−1(s)x+ f0(s) +
∞∑

i=1

fi(s)
1
xi

converging uniformly on x ∈ [c,∞[ for all 0 ≤ s ≤ 1.

Proof. From Lemma 3.5, we obtain the continuity of F . Now, let

{xn}∞n=1 be a sequence in D∗(F ) with xn
L2

⇀ x̄. Then ||xn||L2[0,1] ≤
K < ∞ and

∫ 1

0
xn(t) dt → ∫ 1

0
x̄(t) dt as n → ∞. We now show that∫ 1

0
1/(xn(t))i dt→ ∫ 1

0
1/(x̄(t))i dt for i = 1, 2, . . . as n→ ∞ by proving

that every subsequence of xn (which we denote again by xn) contains
a subsequence which has this property:

If xn ∈ D∗(F ), then by Assumption 3.4, 0 < c ≤ xn(t) < ∞ for all
t > 0. We consider the reciprocal function

1
xn

(t) :=

{
1

xn(t) if xn(t) <∞
0 if xn(t) = ∞;

1/xn is a nondecreasing function in L∞[0, 1] with 0 ≤ (1/xn)(t) ≤
1/c < ∞. By Helly’s theorem (see, e.g., [17, p. 250]), there is a
subsequence 1/xnk

converging pointwise on [0, 1] to a nondecreasing
function x̂ with 0 ≤ x̂(t) ≤ 1/c. If we can show that x̂ vanishes on
no interval [0, ε], then xnk

converges almost everywhere and hence in
measure to the almost everywhere finite function 1/x̂. Then x̄ and 1/x̂
are the same elements of L2[0, 1] since convergence of xnk

to 1/x̂ in
measure and uniform boundedness of {||xnk

||L2[0,1]} implies that xnk

converges to 1/x̂ weakly in L2[0, 1] ([17, p. 224]). Hence, by Lebesgue’s
dominated convergence theorem, ||1/xnk

||Lp[0,1] → ||1/x̄||Lp[0,1] as
k → ∞ holds for all p = 1, 2, . . . .
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To make this argument valid, it remains to be shown that there is no
interval [0, ε] where x̂ vanishes. Assume that such an interval would
exist. Then λ{t ∈ [0, ε] : 1/xnk

(t) ≥ α} → 0 as k → ∞ for all α > 0,
since (1/xnk

)|[0,ε] converges pointwise and hence in measure to 0. This
implies that λ{t ∈ [0, ε] : xnk

(t) > Z} → ε as k → ∞ for all Z > 0.
Now choose Z >

√
2K2/ε. Then, for k > k0(Z), the distribution

function dxnk
satisfies the inequality dxnk

(z) ≥ ε/2 for 0 ≤ z ≤ Z,
since dxnk

is nonincreasing. Hence, by (2.3),

||xnk
||2L2[0,1] = 2

∫ ∞

0

z dxnk
(z) dz ≥ 2

∫ Z

0

z dxnk
(z) dz

≥ 2
∫ Z

2

z
ε

2
dz

=
Z2ε

2
> K2.

This contradicts the definition of K as an upper bound for ||xnk
||L2[0,1]

≤ K.

We have thus proven that, with μ̄−1 := ||x̄||L1[0,1], μ̄i := ||1/x̄||iLi[0,1]

and μ−1,n := ||xn||L1[0,1], μi,n := ||1/xn||iLi[0,1], we have

(5.9) lim
n→∞μi,n = μ̄i, i = −1, 1, 2, . . . .

From the uniform convergence of (5.8) we derive (for 0 ≤ s ≤ 1) that,
for x ∈ D∗(F ),

(5.10) [F (x)](s) =
∫ 1

0

k(s, x(t)) dt = μ−1f−1(s)+f0(s)+
∞∑

i=1

μifi(s)

holds with

μ−1 = ||x||L1[0,1], μi = ||1/x||iLi[0,1], x ∈ D∗(F )

(see [9, p. 452]). The majorant criterion for uniform convergence
and μi,n ≤ 1/ci for all n guarantee, with the fact that k(s, c) =
f−1(s)c+ f0(s) +

∑∞
i=1 fi(s)(1/ci) <∞, that the integration in (5.10)
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can be interchanged with the limits in (5.9), which yields that, for all
0 ≤ s ≤ 1,

(5.11) lim
n→∞[F (xn)](s) = [F (x̄)](s).

The uniform bounds 0 ≤ [F (xn)](s) ≤ α + βK coming from the

assumption that k(s, x) ≤ α+βx now imply that F (xn) L2→ F (x̄). Thus,
F is weakly continuous (and even compact). Since D∗(F ) is closed and
convex, hence weakly closed, this proves the weak closedness of F .

Finally, note that the assumptions of Proposition 5.5 are satisfied for
the kernel of Example 3.7. Integration of (3.13) yields that

(5.12) k(s, x) = x+
∞∑

i=1

(
χis

i

i!

)
1

x2i−1

with χ1 = −1/2, χi+1 = ((2i − 1)/2)χi, i = 1, 2, . . . , i.e., f−1(s) = 1,
f2i(s) = 0, i = 0, 1, 2, . . . , and f2i−1(s) = χis

i/i!, i = 1, 2, . . . .

Consequently, for this specific kernel, Proposition 5.5 and hence
Theorem 5.2 apply.

To summarize: The general convergence theory for Tikhonov regu-
larization can be applied to (1.1) in one of the following situations:

(i) (1.1) is considered on D(F ) := {x ∈W 1,2[0, 1] : x nonincreasing,
x(t) ≥ c > 0}.

(ii) (1.1) is considered on D∗
C(F ) ⊆ L2[0, 1].

(iii) (1.1) is considered on D∗(F ) for a kernel having the properties
required in Proposition 5.5.

In all these cases, we obtain convergence results for Tikhonov regular-
ization (where the minimization in (5.2) takes place over nonincreasing
functions only!) to the decreasing rearrangement solution of (1.1). The
concrete formulation of these results is now quite obvious and hence
omitted. Finally, note that the theory developed in [18] for obtain-
ing convergence (with rates) for (5.2) combined with projection into
finite-dimensional spaces can also be applied.
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