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PSEUDOSPECTRA OF WIENER-HOPF INTEGRAL
OPERATORS AND CONSTANT-COEFFICIENT

DIFFERENTIAL OPERATORS

SATISH C. REDDY

ABSTRACT. A number z ∈ C is in the ε-pseudospectrum
of a linear operator A if ||(zI − A)−1|| ≥ ε−1. In this
paper, we investigate the ε-pseudospectra of Volterra Wiener-
Hopf integral operators and constant-coefficient differential
operators with boundary conditions at one endpoint for the
interval [0, b]. We show that although the spectra of these
operators are not continuous in the limit b → ∞, the ε-
pseudospectra are continuous as b → ∞ for all ε > 0. These
results are an extension of previous work on the pseudospectra
of Toeplitz matrices.

1. Introduction. Let H be a Hilbert space with inner product (·, ·)
and norm || · ||. Let T : H → H be a closed linear operator with domain
D(T ), spectrum Λ(T ), and resolvent set ρ(T ) [9]. For each ε ≥ 0, the
ε-pseudospectrum of T , which we denote by Λε(T ), can be defined in
the following manner [21, 22]:

Definition. For each ε ≥ 0, a number z ∈ C is in the ε-
pseudospectrum of T if

(1.1) z ∈ {λ ∈ ρ(T ) : ||(λI − T )−1|| ≥ ε−1} ∪ Λ(T ).

This definition is essentially equivalent to that for the set of ε-
approximate eigenvalues introduced by Landau [11]. Similar sets have
also been considered by other researchers; see [21, 22] for a discussion.

As the definition shows, the sets Λε(T ) are nested and Λ0(T ) is the
spectrum. Pseudospectra were introduced by Trefethen [20] to analyze
the behavior of non-normal matrices. A normal matrix satisfies A+A =
AA+, where A+ is the adjoint, and has orthogonal eigenfunctions. The
ε-pseudospectrum of a normal matrix is simply the union of the closed
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disks of radius ε centered at the eigenvalues. In most applications,
the behavior of a normal matrix is governed by the eigenvalues. This
need not be the case for a non-normal matrix. The ε-pseudospectra
of a non-normal matrix may be much larger than the spectrum, even
if ε � 1. In applications involving non-normal matrices, it may be
more appropriate to examine pseudospectra instead of spectra alone;
see [21] for a discussion of various applications in numerical analysis.
These ideas extend to operators.

It is straightforward to determine the pseudospectra of a matrix
numerically: compute ||(zI − T )−1|| on a grid and then send the data
to a contour plotter. Computations of this kind for operators arising in
hydrodynamic stability are presented in [17, 23]. The pseudospectra of
various non-normal matrices arising in numerical analysis are presented
in [21].

It is more difficult to determine the pseudospectra of an operator
or matrix analytically. In [18], asymptotic formulas for the resolvent
norm of a convection-diffusion operator are derived. In [17], upper
and lower bounds for the pseudospectra of a model operator arising in
hydrodynamic stability are computed. There are many results in the
literature giving analytical bounds on the resolvent norm in various
applications [9]. For the most part, these analyses give either upper or
lower bounds for the resolvent norm, so the sharpness of the results is
not clear.

In recent work, Reichel and Trefethen have obtained analytical results
on the pseudospectra of Toeplitz matrices [19]. We illustrate these
results with an example. Consider the family of matrices {TN} defined
by

(1.2) TN =

⎡
⎢⎢⎢⎣

0 1 1
0 1 1

0 1 1
0 1

0

⎤
⎥⎥⎥⎦

N×N

,

where N is the dimension. (The entries are non-zero on the first two
super-diagonals only.)

A plot of the pseudospectra of TN , which are computed numerically,
is presented in Figure 1. (Here the l2 norm is used.) For finite N , the
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FIGURE 1. Pseudospectra of TN for N = 32. The shaded region is Λ(T∞).
The ε-pseudospectrum of T∞ is the shaded region plus a strip of thickness ε.
The dot is Λ(TN ). The contours (from inner to outer) are the boundaries of
the pseudospectra of TN for ε = 10−8, 10−7, . . . , 10−1.

spectrum of TN is the origin, and the curves are the boundaries of the
sets Λε(TN ) for ε = 10−8, 10−7, . . . , 10−1. The shaded region is the
spectrum of T∞, the semi-infinite version of TN . For any ε > 0, the
ε-pseudospectrum of T∞ is the spectrum plus a border of thickness ε.

The analysis of upper-triangular Toeplitz matrices is based on the
symbol , which for the example is the function f(z) = z2+z, the discrete
Fourier transform of the doubly-infinite sequence {. . . , 0, 1, 1, 0, . . . }.
Let Δε be the closed disk of radius ε centered at the origin and let Δ
be the closed unit disk. We assume that the sum of sets is defined by
U1 + U2 = {z : z = z1 + z2, z1 ∈ U1, z2 ∈ U2}. The main results on the
pseudospectra of the family {TN} are:

(I) Λε(T∞) = f(Δ) + Δε for all ε ≥ 0;

(II) if λ ∈ int(Λ(T∞)), then ||(λI − TN )−1|| → ∞ exponentially as
N → ∞;

(III) if N ≤ N ′ ≤ ∞, then Λε(TN )⊆Λε(TN ′) for all ε ≥ 0;

(IV) limN→∞ Λε(TN ) → Λε(T∞) for each ε ≥ 0.

Setting ε = 0 in (I), we have Λ(T∞) = f(Δ), and this result
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follows from the fact that the vector [1, z, z2, . . . ]T , with |z| < 1, is an
eigenvector of T∞ with eigenvalue z2+z. Properties (III) and (IV) show
that the pseudospectra are growing functions of N , and that as N → ∞,
the ε-pseudospectra of TN converge to those of T∞. Here, for each ε > 0
we define limN→∞ Λε(TN ) = {z : zN → z for some zN ∈ Λε(TN )}.
As our example shows, the sets Λ(TN ) do not converge to Λ(T∞).
The results (I) (IV) are valid for general triangular Toeplitz matrices.
(Formula (I) must be modified for lower-triangular matrices.) The
convergence result (IV) applies to non-triangular Toeplitz matrices as
well [24].

The purpose of this paper is to extend the above results on the
pseudospectra of Toeplitz matrices to Wiener-Hopf (W-H) integral
operators and constant-coefficient (C-C) differential operators. Our
focus is on “triangular” operators, a term that we define below.

Wiener-Hopf integral operators are defined in terms of a kernel
function κ(x) and are the continuous analogs of Toeplitz matrices.
Let us assume that κ ∈ L1(−∞,∞) ∩ L2(−∞,∞) and suppose that
u ∈ L2[0, b]. We define the W-H operator Wb by

(1.3) [Wbu](x) =
∫ b

0

κ(x − y)u(y) dy

and consider Wb as an operator from the space L2[0, b] to itself. The
parameter b plays the same role as the dimension N for Toeplitz
matrices. We say that Wb is triangular if κ(x)≡0 for x < 0 or x > 0.

We also study constant-coefficient differential operators. Suppose
that u ∈ L2[0, b] is sufficiently differentiable. We define the C-C
operator Ab by

(1.4) Abu = an
dnu

dxn
+ an−1

dn−1u

dxn−1
+ · · · + a1

du

dx
+ a0u,

where the numbers {ai} are complex constants and it is assumed that
an �= 0. We combine (1.4) with n = s0 + sb homogeneous boundary
conditions of the form
(1.5)
u(i)(0) = 0, i=0, 1, . . . , s0 − 1, u(i)(b) = 0, i=0, 1, . . . , sb − 1.

We say that Ab is triangular if either s0 = 0 or sb = 0.
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As in the case of Toeplitz matrices, the analysis of W-H and C-C
operators is based on a symbol, defined by a Fourier transform. The
symbol of Wb is

(1.6) κ̂(ω) =
∫ ∞

−∞
κ(x)eiωx dx,

and the symbol of Ab is

(1.7) â(ω) = an(−iω)n + an−1(−iω)n−1 + . . . + a1(−iω) + a0.

Our main results show that conditions (I) (IV) are valid for triangular
W-H integral operators and C-C differential operators if f is replaced
by κ̂ or â, the dimension N is replaced by the length b, and the unit
disk Δ is replaced by the closed lower half-plane.

Our results for general W-H and C-C operators are not as complete,
but we do present results on the spectrum of the family [2, 4] of the
operators {Wb} and {Ab}. Here is the definition

Definition. Let {Tν} be a family of closed operators. A number
z ∈ C is in the spectrum of the family, which we denote by P ({Tν}), if

(1.8) lim sup
ν→∞

||(zI − Tν)−1|| = ∞.

We show that for the families {Wb} and {Ab}, P ({Wb}) = Λ(W∞) and
P ({Ab}) = Λ(A∞). This result can be considered as a weaker version
of (IV). Since (IV) holds for Toeplitz matrices, we believe that it may
hold for W-H and C-C operators, but we have not been able to establish
this result.

Our results for general W-H operators are closely related to recent
work by Anselone and Sloan [1]. Their definition of Wb is slightly
different from ours and they use the || · ||∞ norm. They show that
the spectrum of the family P ({Wb}) is the spectrum of W∞ and that
each open neighborhood of Λ(W∞) contains the spectrum of Wb for all
sufficiently large b.

Throughout this paper we let L1 and L2 denote the spaces L1(−∞,∞)
and L2(−∞,∞), respectively. We let ||·|| denote the L2 norm on the fi-
nite or infinite interval. To avoid ambiguity, we use the notation ||·||[0,b]
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to denote the L2 norm for the interval [0, b] when necessary. In addition
we let || · ||1 denote the L1 norm on the infinite interval.

This paper is organized as follows. Section 2 briefly examines Wiener-
Hopf integral operators and constant-coefficient differential operators
defined on (−∞,∞). Section 3 proves our main results for triangular
W-H operators. Section 4 presents examples illustrating these results.
Section 5 examines general W-H operators. Section 6 presents our
main results for triangular C-C differential operators. Section 7 exam-
ines general constant-coefficient differential operators. This paper is
adapted in part from [16], where the results on the pseudospectra of
constant-coefficient differential operators were originally presented.

2. Pseudospectra for operators defined on the infinite in-
terval. Before turning to the analysis of the pseudospectra of Wiener-
Hopf and constant-coefficient differential operators defined on finite and
semi-infinite intervals, we first examine the pseudospectra for operators
defined on the infinite interval. Throughout this section we assume that
the underlying Hilbert space is H = L2.

The infinite interval version of the W-H operator corresponding to
κ(x) is defined by

(2.1) [W̃u](x) =
∫ ∞

−∞
κ(x − y)u(y) dy.

The operator W̃ is bounded and maps H to itself. The expression
(2.1) is the formula for the convolution κ ∗ u, and this fact greatly
simplifies the analysis. For example, Fourier analysis and an application
of Parseval’s relation imply

(2.2) ||W̃ || = sup
ω∈R

|κ̂(ω)|.

Using this last formula, it can be show that ||W̃ || ≤ ||κ||1.
Here is our main result.

Theorem 2.1. Let W̃ be the Wiener-Hopf integral operator defined
by (2.1). Let κ̂ denote the symbol. The pseudospectra of W̃ are given
by

(2.3) Λε(W̃ ) = κ̂(R) + Δε ∀ ε ≥ 0.
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Proof. Consider the inhomogeneous problem λu − W̃u = f , where
f ∈ H. Fourier transforming both sides, we obtain

(2.4) (λ − κ̂(ω))û(ω) = f̂(ω),

where û and f̂ are the Fourier transforms of u and f , respectively. If
λ ∈ κ̂(R), then it can be shown that λ lies in the continuous spectrum
of Λ(W̃ ) by considering a sequence of band-limited functions f . Hence,
(2.3) holds for ε = 0.

Now, suppose λ �∈ κ̂(R). We have

(2.5) û(ω) =
f̂(ω)

λ − κ̂(ω)
.

Since u = (λI − W̃ )−1f , it follows from (2.5) that (λI − W̃ )−1 is the
W-H integral operator with a kernel defined by the symbol 1/(λ − κ̂).
Hence, by (2.2), it follows that

(2.6) ||(λI − W̃ )−1|| = sup
ω∈R

1
|κ̂(w) − λ| =

1
dist(λ, κ̂(R))

.

Here dist(λ, κ̂(R)) denotes the distance from λ to the curve κ̂(R). It
follows that (λI − W̃ )−1 is a bounded linear operator. The result (2.3)
for ε > 0 follows from (2.6) by the connection between resolvents and
pseudospectra.

The assumption that κ ∈ L1 implies that κ̂ is continuous for ω ∈ R
and that |κ̂(ω)| → 0 as |ω| → ∞. Hence, the spectrum of W̃ is
a continuous closed curve containing the origin. The above theorem
shows that the ε-pseudospectrum of W̃ consists of the spectrum plus a
strip of thickness ε on each side of the spectrum. Finally, we note that
the solution of λu − W̃u = f can be written in the form

(2.7) u(x) =
f(x)

λ
+

1
λ

∫ ∞

−∞
gλ(x − y)f(y) dy,

where gλ(x) is the inverse transform of κ̂/(λ − κ̂).
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We now turn our attention to C-C differential operators. Let Ã be
a C-C operator without any boundary conditions defined on (−∞,∞).
The domain of Ã is D(Ã) = Qn(−∞,∞), where

Qn[b1, b2] = {u ∈ L2[b1, b2] : u(n−1) absolutely continuous
(2.8)

in [b1, b2], u(n) ∈ L2[b1, b2]}

is the maximal domain [9].

The pseudospectra of Ã satisfy a formula similar to (2.3), and the
proof is similar to that given above for W-H operators.

Theorem 2.2. Let Ã be the constant-coefficient differential operator
defined above. Let â be the symbol. The pseudospectra of Ã are given
by

(2.9) Λε(Ã) = â(R) + Δε ∀ ε ≥ 0.

The symbol â(ω) is a polynomial. Hence, the spectrum and the
pseudospectra are unbounded sets. The spectrum can be determined
by examining the differential equation Ãu − λu = 0; λ ∈ Λ(Ã) if and
only if the differential equation has a solution of the form eiγx, where
γ is a real constant.

The solution of the inhomogeneous problem λu − Ãu = f , where
f ∈ L2, is given by a formula similar to (2.7). For later use, we
note that if ||f || = 1 and λ �∈ Λ(Ã), then |u(j)(x)| < C for some
constant C independent of x ∈ R for j = 0, 1, . . . , n − 1. The proof is
straightforward.

The formulas (2.3) and (2.9) suggest that there may be a simple
formula relating the pseudospectra of C-C differential operators and
W-H integral operators on the infinite interval. Suppose that 0 �∈ Λ(Ã).
It is straightforward to show that Ã−1 is the W-H operator W̃ with
the symbol κ̂ = 1/â. If we define the spectrum of Ã so that it includes
the point at ∞ and assume that 1/∞≡0, then by the spectral mapping
theorem [9], we have

(2.10) Λ(W̃ ) = {z : z = 1/λ, λ ∈ Λ(Ã)} = κ̂(R).
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There does not appear to be a simple formula relating the sets Λε(Ã)
and Λε(W̃ ) for ε > 0.

The formulas for the spectra of W̃ and Ã, particularly in the case of
W̃ , are well known [5, 10]. The formula for the resolvent norm, (2.6),
appears to be less well known.

3. Pseudospectra of triangular Wiener-Hopf integral opera-
tors. We now examine the pseudospectra of triangular W-H opera-
tors. For definiteness we assume that κ(x) = 0 for x > 0. In this case
we have

(3.1) [Wbf ](x) =
∫ b

x

κ(x − y)f(y) dy,

where we assume that 0 < b0 ≤ b ≤ ∞. The symbol is

(3.2) κ̂(ω) =
∫ 0

−∞
κ(x)eiωx dx.

The condition κ ∈ L1 guarantees that κ̂(ω) is continuous in the closed
lower half-plane, C−, and that it is analytic in the interior of C− [10].
For each b, we consider Wb to be a map from L2[0, b] to itself. As we
will see, the behavior of the pseudospectra of Wb is similar to that of
the pseudospectra of an upper-triangular Toeplitz matrix.

The following theorem characterizes the pseudospectra of W∞.

Theorem 3.1. Let W∞ be the Wiener-Hopf integral operator defined
by (3.1). Let κ̂ denote the symbol. The pseudospectra of W∞ are given
by

(3.3) Λε(W∞) = κ̂(C−) + Δε ∀ ε ≥ 0.

Proof. We first derive a lower bound for the pseudospectra. For each
γ ∈ int(C−), κ̂(γ) is an eigenvalue of W∞ with the associated decaying
eigenfunction u = e−iγx, and this is easy to show. We have

(3.4) W∞u =
∫ ∞

x

κ(x− y)e−iγy dy = e−iγx

∫ 0

−∞
κ(s)eiγs ds = κ̂(γ)u.
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It follows that κ̂(int(C−))⊆Λ(W∞). Since the spectrum is closed and
κ̂(ω) is continuous for ω ∈ C−, it follows that κ̂(C−)⊆Λ(W∞).

For any closed operator T and number λ �∈ Λ(T ), the resolvent
satisfies [9]

(3.5) ||(zI − T )−1|| ≥ 1
dist(z, Λ(T ))

.

Translated into the language of pseudospectra, (3.5) implies that
Λ(T )+Δε⊆Λε(T ) for all ε ≥ 0. Using the lower bound for the spectrum
derived above, it follows that κ̂(C−) + Δε⊆Λε(W∞) for all ε ≥ 0.

We now derive an upper bound for the pseudospectra. Suppose that
λ �∈ κ̂(C−). Consider the inhomogeneous equation

(3.6) λu −
∫ ∞

x

κ(x − y)u(y) dy = f, x ∈ [0,∞),

where f ∈ L2[0,∞). Let us define f̃ such that f̃(x) = f(x) for x ≥ 0
and f̃(x) = 0 for x < 0 and consider the inhomogeneous problem
λũ − W̃ ũ = f̃ for the infinite interval. The solution, given in (2.7), is

(3.7) ũ(x) =
f̃(x)

λ
+

1
λ

∫ ∞

−∞
gλ(x − y)f̃(y) dy,

where gλ(x) is the inverse transform of ĝλ(ω) = κ̂/(λ−κ̂). If λ �∈ κ̂(C−),
then ĝλ(ω) is analytic for ω in the open lower half-plane and ĝλ(ω) → 0
as ω → ∞ in this half-plane since κ̂ satisfies these properties. Using
standard results on contour integration, it can be shown that gλ(x) = 0
for x > 0 [10], so (3.7) becomes

(3.8) ũ(x) =
f̃(x)

λ
+

1
λ

∫ ∞

x

gλ(x − y)f̃(y) dy.

Note that ũ(x) depends on f̃(y) for y ≥ x only. This last remark implies
that u(x) = ũ(x) for x ≥ 0. It follows that ||u|| [0,∞) ≤ ||ũ|| (−∞,∞).
Since ||f || [0,∞)] = ||f̃ || (−∞,∞), we obtain

||(λI − W∞)−1|| [0,∞) ≤ ||(λI − W̃ )−1|| (−∞,∞)

(3.9)

=
1

dist(λ, κ̂(R))
=

1
dist(λ, κ̂(C−))

.
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The last result implies that (λ − W∞)−1 is a bounded operator, so
λ �∈ Λ(W∞). Combined with the lower bound derived in the first part
of the proof, it follows that Λ(W∞) = κ̂(C−). Hence, (3.3) holds for
ε = 0. The bound (3.9) also implies that Λε(W∞)⊆κ̂(C−) + Δε for all
ε > 0. Hence, (3.3) holds for all ε > 0 as well.

This result shows that Λε(W∞) consists of κ̂(C−) plus a strip of
thickness ε. Formula (3.3) is analogous to the formula (I) in the
Introduction, with the unit disk replaced by the lower half-plane and
with a geometrically decaying eigenvector [1, z, z2, . . . ]T replaced by an
exponentially decaying eigenfunction e−iγx.

Let us now turn our attention to Wb for finite b. This operator is a
compact Volterra operator. The compactness of Wb follows from the
fact that

(3.10)
∫ b

0

∫ b

0

|κ(x − y)|2 dx dy < ∞.

Compactness implies that the spectrum of Wb is discrete and nonempty
[9]. The fact that Wb is a Volterra operator implies that Wb does not
have any non-zero eigenvalues [7]. Hence, the spectrum is necessarily
the singleton {0}.

What about the pseudospectra of Wb? We are not able to give a pre-
cise formula for the pseudospectra, but we can derive lower and upper
bound sets Lε(Wb) and Uε(Wb) satisfying Lε(Wb)⊆Λε(Wb)⊆Uε(Wb).
We start with the following identity [9]: if λ �∈ Λ(Wb), then

(3.11) ||(λI − Wb)−1|| =
[

inf
u∈D(Wb)

||Wbu − λu||
||u||

]−1

.

A standard technique for determining a lower bound for Λε(Wb) is to
search for functions that are close to achieving the optimum in (3.11).
If there exists u ∈ D(Wb) such that ||u|| = 1 and

(3.12) ||Wbu − λu|| ≤ ε,

then λ ∈ Λε(Wb). The function u is called an ε-pseudo-eigenfunction
[17, 20].
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Motivated by the results in [19], we will see that the exponen-
tials e−iγx are appropriate choices as pseudo-eigenfunctions. Using
these functions we can verify that the resolvent norm of Wb grows
exponentially as in condition (II) in the Introduction. Suppose that
γ ∈ int(Λ(W∞)) and that u = e−iγx is the associated eigenfunction.
Then we have

Wbu − λu =
∫ b

x

κ(x−y)e−iγy dy −
∫ ∞

x

κ(x−y)e−iγy dy

(3.13)

= −
∫ ∞

b

κ(x−y)e−iγy dy.

Bounding the right-hand side of (3.13) we obtain |Wbu − λu| ≤
||κ||1ebImγ , which in turn implies that

(3.14) ||Wbu − λu|| [0,b] ≤ b||κ1||ebIm γ .

Using the fact that ||u|| [0,b] = O(1) as b → ∞, it follows that
||(λI − Wb)−1|| → ∞ exponentially as b → ∞.

It is also straightforward to show that the pseudospectra of Wb

satisfy a nesting property analogous to (III). Suppose that b ≤ b′ ≤
∞. Theorem 3.1 and the discussion of the spectra of Wb imply
that Λε(Wb)⊆Λε(Wb′) for ε = 0. Now, suppose that λ �∈ 0 and
assume that u ∈ L2[0, b] = D(Wb). Let us define ũ such that
ũ(x) = u(x) for x ∈ [0, b] and ũ(x) = 0 for x ∈ (b, b′]. This
function satisfies ũ ∈ D(Wb′). A straightforward calculation shows
that ||Wbu−λu|| [0,b] = ||Wb′ ũ−λũ|| [0,b′]. Since ||ũ|| [0,b] = ||ũ|| [0,b′], it
follows that ||(λI−Wb)−1|| [0,b] ≤ ||(λI−Wb′)−1|| [0,b′] by (3.11). Hence,
Λε(Wb)⊆Λ(Wb′) for ε ≥ 0 as well.

If we set b′ = ∞ in this last argument, we obtain

(3.15) Λε(Wb)⊆Λε(W∞) = κ̂(C−) + Δε ∀ ε ≥ 0.

As we will see in the next section, this upper bound may be far from
sharp.

To obtain a clean formula for the lower bound for the pseudospectra
it is convenient to introduce the truncated symbol [19]

(3.16) κ̂b(ω) =
∫ 0

−b

k(x)eiωx dx.
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The function κ̂b is the symbol of κb(x), which satisfies κb(x) = κ(x) for
x ∈ [−b, 0] and κb(x) = 0 for x �∈ [0, b]. The function κ̂b(ω) is entire
since κb has compact support. In addition, we define C−

t to be the
half-plane {z : Im z ≤ t}.

The following theorem is analogous to Theorem 2.2 in [19].

Theorem 3.2. Let Wb be the Wiener-Hopf integral operator defined
by (3.1). The pseudospectra of Wb are given by

(3.17) κ̂b(C−
t )⊆Λε(Wb)⊆κ̂b(C−) + Δε ∀ ε ≥ 0,

where t = log(ε/||κ||1)/b.

Proof. First, let us consider the lower bound. Let u = e−iγx and
λ = κ̂b(γ). We have

Wbu − λu =
∫ −b

x−b

κb(s)e−iγ(x−s) ds(3.18)

= e−iγb

∫ x

0

κb(x − b − s)e−iγs ds.

For x ∈ [0, b] the integral term on the right-hand side of (3.18) is equal
to the convolution κb(x − b) ∗ ũ, where ũ = u for x ∈ [0, b] and ũ = 0
for x �∈ [0, b]. It follows that

||(Wb − λ)u|| [0,b] = ebIm γ ||κ(x − b) ∗ ũ|| [0,b](3.19)

≤ ebIm γ ||κb||1||ũ|| (−∞,∞)

≤ ebIm γ ||κ||1||u|| [0,b].

By (3.12), this last expression implies that λ ∈ Λε(Wb) for ε =
||κ||1ebIm γ . Setting t = log(ε/||κ||1)/b, we obtain the lower bound
in (3.17).

The upper bounds in (3.17) can be verified using the arguments
leading to (3.15). The key observation is that Wb can be defined as
a finite interval version of an operator W∞ defined by the kernel κb.
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Finally, we verify that property (IV) also holds for upper-triangular
W-H operators.

Theorem 3.3. Let Wb be the Wiener-Hopf integral operator defined
by (3.1). Let κ̂ denote the symbol. For b ≤ b′ ≤ ∞, we have

(3.20) Λε(Wb)⊆Λε(Wb′) ∀ ε ≥ 0.

In addition, for each ε > 0, the pseudospectra satisfy

(3.21) lim
b→∞

Λε(Wb) → Λε(W∞).

Proof. The inclusion (3.20) was proved above.

Let us consider (3.21) and let Zε = limb→∞ Λε(Wb). The limit exists
because the sets Λε(Wb) are nested and are bounded from above. As
b → ∞, we have t → 0 and κ̂b(ω) → κ̂(ω) uniformly for all ω ∈ C−.
Hence, taking the limit of (3.17) as b → ∞, we have

(3.22) Λ(W∞) = κ̂(C−)⊆Zε⊆κ̂(C−) + Δε = Δε(W∞) ∀ ε > 0.

To prove that the right hand inclusion is an inequality we start with
the following property of pseudospectra, valid for all operators T [22]:

(3.23) Λε(T ) + Δδ⊆Λε+δ(T ) ∀ ε ≥ 0.

Substituting Wb in (3.23) and taking the limit b → ∞, we obtain

(3.24) Zε + Δδ⊆Zε+δ, ε > 0 δ ≥ 0.

Suppose that δ > 0. Taking the limit of (3.24) as ε → 0 and using the
fact that limε→0 Zε = Λ(W∞) = κ̂(C−), which follows from (3.22), we
obtain

(3.25) Λ(W∞) + Δδ⊆Zδ ∀ δ > 0,

and the theorem is proved.

Finally, we note that the results in this section can be extended to
lower-triangular W-H operators, defined by kernels satisfying κ(x) = 0
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for x < 0. The adjoint, W+
b , of a lower-triangular W-H operator

is an upper-triangular W-H operator with kernel κ∗(−x), where ∗
denotes complex conjugation [9]. The pseudospectra of Wb can then
be determined using the formula Λε(Wb) = Λ∗

ε(W
+
b ) [22].

4. Examples. We illustrate the results for triangular W-H operators
with two examples.

We first note that the upper bounds (3.15) and (3.17) may not
be sharp. We derive an alternative upper bound. If Wb is upper-
triangular, then the arguments leading to (3.7) can be used to show
that the solution of the problem λu − Wbu = f is

(4.1) u(x) = (λI − Wb)−1f =
f(x)

λ
+

1
λ

∫ b

x

gλ(x − y)f(y) dy,

where gλ(x) is the inverse transform of ĝλ = κ̂/(λ− κ̂). Equation (4.1)
yields the bound [9]
(4.2)

||(λI − Wb)−1|| ≤ 1
|λ|

[
1 +

( ∫ b

0

∫ b

x

|gλ(x − y)|2 dy dx

)1/2]
= B(λ).

The bound (4.2) and the definition of pseudospectra imply that the set

(4.3) Uε(Wb) = {z ∈ ρ(Wb) : B(z) ≥ ε−1} ∪ Λ(Wb)

satisfies Λε(Wb)⊆Uε(Wb) for all ε ≥ 0. We find that (4.2) is sharp if
λ lies in the interior of Λ(W∞) but may not be sharp for λ �∈ Λ(W∞).
When (4.3) is poor we use (3.15).

Let us first consider the upper-triangular W-H operator defined by
κ(x) = ex for x ≤ 0. Straightforward calculations show that ||κ||1 = 1,

κ̂(ω) =
1

1 + iω
,(4.4)

κ̂b(ω) =
1 − e(1+iω)b

1 + iω
,(4.5)

and

(4.6) gλ(x) =
e(1−1/λ)x

λ
.
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The results are shown in Figure 2. The spectrum of W∞ is the shaded
disk, and Λε(W∞) is the disk plus a border of thickness ε. The
spectrum of Wb is the origin. The dashed lines are lower bounds for
the pseudospectra, computed using (3.17), and the solid lines are upper
bounds for the pseudospectra, computed using (3.15) and (4.3).

The figure reveals several important features about the bounds and
the behavior of the pseudospectra of W-H operators. First, the upper
and lower bounds are close, particularly for ε � 1. The upper
bound predicted by Theorem 3.2 is poor; for example, for ε � 1 and
b = 10, κ̂b(C−) + Δε is approximately the shaded disk. Second, the
ε-pseudospectra essentially lie to one side of the spectrum only, and
this is due to the unusual behavior of resolvent in the neighborhood of
the origin. The function (λI − Wb)−1 is singular at λ = 0. However,
as the figure shows, ||(λI − Wb)−1||, for |λ| � 1, depends crucially on
the position of λ. For example, if λ is real and negative, then

(4.7) ||(λI − Wb)−1|| =
1
|λ| .

This result follows from (3.15) and (3.5). On the other hand, using
(3.19) and (4.5), it can be shown that

(4.8) ||(λI − Wb)−1|| ≥ C1e
C2/λ, λ → 0+,

where C1 and C2 are constants. This type of behavior does not oc-
cur for matrices, where the resolvent norm can only have an algebraic
singularity at an eigenvalue. The exponential behavior of the resol-
vent norm at the origin is a characteristic feature of triangular W-H
operators.

For our second example we consider the upper-triangular W-H oper-
ator defined by κ(x) = −xex for x ≤ 0. We have ||κ||1 = 1,

κ̂(ω) =
1

(1 + iω)2
,(4.9)

κ̂b(ω) =
1

(1 + iω)2
− be−(1+iω)b

1 + iω
− e−(1+iω)b

(1 + iω)2
,(4.10)

and

(4.11) gλ(x) = −ex sinh(x/λ1/2)
λ1/2

.
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FIGURE 2. Pseudospectra of the upper-triangular W-H operator defined by
the kernel k(x) = ex for x ≤ 0. Λ(W∞) is the shaded disk. The spectrum of
Wb is the origin. The dashed and solid lines (from inner to outer) are lower
and upper bounds for the pseudospectra of Wb for ε = 10−8, 10−6, 10−4, 10−2.
Here b = 10.

FIGURE 3. Same as Figure 2 for the upper-triangular W-H operator defined
by k(x) = −xex for x ≤ 0. Here b = 20.
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The results are shown in Figure 3.

5. General Wiener-Hopf integral operators. We now turn our
attention to general Wiener-Hopf integral operators for finite and semi-
infinite intervals. Our focus in this section is on the spectrum of the
family of the operators {Wb}.

The analysis of the operator W∞ is based on a winding number
defined by

(5.1) I(κ̂(R), λ) = − 1
2π

arg[λ − κ̂(ω)]∞−∞, λ �∈ κ̂(R).

If λ ∈ κ̂(R), then I(κ̂(R), λ) is not defined. The function I(κ̂(R), λ) is
equal to the number of times the curve κ̂(R) encircles λ in the counter-
clockwise direction. The following theorem characterizes the spectrum.

Theorem 5.1. Let W∞ be a Wiener-Hopf integral operator with
symbol κ̂ and consider W∞ as an operator from the space L2[0,∞) to
itself. Let I(κ̂(R), λ) denote the winding number. We have

(5.2) Λ(W∞) = {λ �∈ κ̂(R) : I(κ̂(R), λ) �∈ 0} ∪ κ̂(R).

In words, the theorem states that the spectrum consists of the curve
κ̂(R) plus all points enclosed by this curve. If ν = I(κ̂(R), λ) >
0, then λ is an eigenvalue with ν associated linearly independent
eigenfunctions. If ν < 0, then λ lies in the residual spectrum; the co-
dimension of the space (λI −W∞)L2[0,∞) is −ν. Finally, if λ ∈ κ̂(R),
then λ lies in the continuous spectrum. A proof of the theorem for the
case κ ∈ L1 is given by Krein [10]. According to Krein, the central role
of the winding number was first recognized by Rapaport, who proved
a result similar to Theorem 5.1 for a more restrictive class of kernels.

The proof of Theorem 5.1 is based in part on a factorization of the
operator λI − W̃ [10]. If λ �∈ Λ(W∞), then there exist bounded
upper- and lower-triangular W-H operators Ṽ+ and Ṽ− such that
λI − W̃ = Ṽ−Ṽ+ = Ṽ+Ṽ−. These factors are unique up to a constant.
The decomposition leads to a second formula for the solution of the
inhomogeneous problem λũ − W̃ ũ = f̃ . We have ũ = Ṽ −1

+ Ṽ −1
− f̃ =

Ṽ −1
− Ṽ −1

+ f̃ . The factorization can also be used to solve the semi-infinite
inhomogeneous problem λu − W∞u = f [10].
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Except in certain special cases, there does not appear to be a simple
formula for the pseudospectra of W∞. One such case is the class
of normal W-H operators. For these operators, we have Λε(W∞) =
Λ(W∞) + Δε for all ε ≥ 0. One class of normal operators is the
class of self-adjoint W-H operators, defined by kernels satisfying κ(x) =
κ∗(−x). For these operators Λ(W∞) = κ̂(R).

We now turn our attention to Wb for finite b. This operator is
compact, so its spectrum consists of discrete points plus possibly the
origin. There is no general formula for the spectrum. Much of the
previous work on Wb has focused on the behavior of the spectrum as
b → ∞. A classical result, first proved by Kac, Murdock and Szegö
[8] and then extended by Landau [11] to higher dimensional integral
operators, concerns the asymptotic distribution of the eigenvalues when
Wb is self-adjoint. Let n(a1, a2) denote the number of eigenvalues of
Wb lying in the interval (a1, a2), which we assume does not contain the
origin. Let Γ denote the set of points ω ∈ R where κ̂(ω) ∈ (a1, a2),
and let M(a1, a2) be the Lebesgue measure of Γ. If the set of points
for which κ̂(ω) is equal to a1 or a2 has measure zero, then

(5.3) lim
b→∞

n(a1, a2)
b

=
M(a1, a2)

2π
.

This last formula is analogous to a asymptotic formula for the eigen-
values of Toeplitz matrices [8].

In other work, Gohberg and Fel’dman derived formulas for the solu-
tion to the inhomogeneous problem λu − Wbu = f [5]. They showed
that if λ �∈ Λ(W∞) and ũ is the solution of λũ−W∞ũ = f for the same
function f ∈ L2[0,∞), then ||u − ũ|| [0,b] → 0 as b → ∞.

For the remainder of this section we focus on the spectrum of the
family of the operators {Wb}, where the interval length satisfies 0 <
b0 < b < ∞. Recall that a number λ is in the spectrum of the family,
which we denote by P ({Wb}), if lim supb→∞ ||(λI−Wb)−1|| = ∞. Here
is our main result.

Theorem 5.2. The spectrum of the family of the operators {Wb}
satisfies

(5.4) P ({Wb}) = Λ(W∞).
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As mentioned in the Introduction, the theorem is similar to a result
proved by Anselone and Sloan [1]. However, there are several differ-
ences. Let W̃b denote the operator in [1] analogous to our Wb. The
formula for W̃b is the same as that given in (1.3). However, the under-
lying space for W̃b, for both finite and infinite b, is the Banach space
of bounded, continuous, complex-valued functions on [0,∞) with the
|| · ||∞ norm. It turns out that Λ(W̃∞) = Λ(W∞) and that Λ(W̃b) is
discrete for finite b. The main results are that P ({W̃b}) = Λ(W̃∞) and
that for any δ > 0, Λ(W̃b)⊆Λ(W̃∞) + Δδ for all sufficiently large b.

Theorem 5.2 is also related work by Landau on a family of Wiener-
Hopf integral operators arising in the study of lasers [12]. For this
family, the parameter b appears in the kernel and the length of the
interval is fixed. It is shown that the spectrum of the family contains
the unit circle. The main focus of this work is on the number of pseudo-
eigenfunctions associated with each point on the unit circle as b → ∞.
Results on the number of orthogonal pseudo-eigenfunctions for general
W-H operators are presented in [11].

Because of the differences in the definition of the operators and the
underlying spaces, we cannot directly apply the arguments in [1] to
prove Theorem 5.2. We present a different proof, consisting of two
parts. The first part shows that Λ(W∞)⊆P ({Wb}).

Lemma 5.3. If λ ∈ Λ(W∞), then ||(λI − Wb)−1|| [0,b] → ∞ as
b → ∞.

Proof. By (3.11) we are done if we can show that for each δ > 0
there exists φ ∈ L2[0, b] such that ||Wbφ−λφ||[0,b]/||φ|| [0,b] < δ for all
sufficiently large b.

First, let us suppose that λ is in the continuous spectrum or the point
spectrum of W∞ and let δ > 0 be given. Then there exists φ ∈ L2[0,∞)
such that ||W∞φ−λφ|| [0,b]/||φ|| [0,b] ≤ δ/2 for all sufficiently large b. A
straightforward calculation shows that
(5.5)
||Wbφ − λφ|| [0,b]

||φ|| [0,b]
≤ ||W∞φ − λφ|| [0,b]

||φ|| [0,b]
+

|| ∫ ∞
b

κ(x − y)φ(y)dy|| [0,b]

||φ|| [0,b]
.

We need to estimate the second term on the right-hand side. Let us
define φ̃ such that φ̃(x) = φ(x) for x ∈ [b,∞) and φ̃(x) = 0 for x < b.
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The integral in the second term is the convolution κ ∗ φ̃. Hence, we
have
(5.6)

|| ∫ ∞
b

κ(x − y)φ(y)dy|| [0,b]

||φ|| [0,b]
≤ ||κ||1||φ̃|| (−∞,∞)

||φ|| [0,b]
≤ ||κ||1||φ|| [b,∞)

||φ|| [0,b]
.

We can make this term to be ≤ δ/2 by choosing b to be sufficiently
large.

Second, suppose that λ is in the residual spectrum of W∞. We prove
the lemma by considering the adjoint W+

b , which is the W-H operator
with kernel κ∗(−x) [9]. Standard analysis shows that λ∗ lies in the
point spectrum of W+

∞. The desired result follows from the first part
of the proof and the identity ||(λI−Wb)−1|| [0,b] = ||(λ∗I−W+

b )−1|| [0,b]

[9].

For upper-triangular W-H operators, the resolvent norm ||(λI −
Wb)−1|| [0,b] grows exponentially as b→∞ for λ ∈ int(Λ(W∞)), and this
occurs because the eigenfunctions of W∞ are exponentials. For general
W-H operators, the eigenfunctions need not be exponential functions;
the form of the eigenfunctions of W∞ and the asymptotic behavior of
the resolvent norm depend on the kernel.

The next result completes the proof of Theorem 5.2 by showing that
P ({Wb})⊆Λ(W∞).

Lemma 5.4. If λ �∈ Λ(W∞), then ||(λI − Wb)−1|| [0,b] is uniformly
bounded for all sufficiently large b.

Proof. The lemma can be proved by adapting an argument used by
Baxter in his proof of an analogous result for Toeplitz matrices [3]. We
present a sketch of the proof.

We are done if we can show that the solution of the inhomogeneous
problem λu−Wbu = f for λ �∈ Λ(W∞) satisfies ||u|| [0,b]/||f ||[0,b] < C
independent of b for all f ∈ L2[0, b] and all sufficiently large b. Choose
u ∈ L2[0, b] and define ũ for x ∈ (−∞,∞) so that it has compact
support in the interval [0, b] and ũ(x) = u(x) for x ∈ [0, b]. Extending
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the inhomogeneous problem to the infinite interval, we have

(λ−W̃ )ũ = λũ−
∫ b

0

κ(x−y)ũ(y) dy = f(x) + g̃1(x) + g̃2(x).(5.7)

[0, b] (−∞, 0) (b,∞)

The second line in this last expression indicates the support of f , g̃1,
and g̃2.

Multiplying by (λI−W̃ )−1 and using the factorization defined above,
we have

(5.8) ũ = Ṽ −1
+ Ṽ −1

− f + Ṽ −1
− Ṽ −1

+ g̃1 + Ṽ −1
+ Ṽ −1

− g̃2.

The operators Ṽ −1
+ and Ṽ −1

− are both bounded operators. The proof
is completed by showing that ||Ṽ −1

+ g̃1|| [0,b] and ||Ṽ −1
− g̃2|| [0,b] are both

bounded by C1||f || [0,b] for some constant C1 independent of b for all
sufficiently large b.

Theorem 5.2 shows that if λ �∈ Λ(W∞), then λ is not an eigenvalue of
Wb for all sufficiently large b. However, the theorem does not directly
state what happens to the eigenvalues as b → ∞. It can be shown that
for any δ > 0,

(5.9) Λ(Wb)⊆Λ(W∞) + Δδ

for all sufficiently large b. The proof is the same as that in [1] and relies
on Theorem 5.2 and the fact that Λ(Wb) lies in a fixed compact set for
all b.

We conclude this section by examining what can be said about the
pseudospectra of Wb as b → ∞. As mentioned in the Introduction, for
general Toeplitz matrices Λε(TN ) → Λε(T∞) as the dimension N → ∞
for all ε > 0 [19, 24]. The close relationship between Toeplitz matrices
and Wiener-Hopf integral operators suggests that a similar convergence
result ought to be true for W-H integral operators. We have been
unable to prove such a result.

We have been able to take a first step towards a convergence result.
It can be shown that

(5.10) Λε(W∞)⊆ lim
b→∞

Λε(Wb), ∀ ε > 0,
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and the proof is similar to the first part of the proof of Lemma
5.3. For normal W-H operators we can obtain a convergence result
by proving that the opposite inclusion holds. For normal operators,
Λε(Wb) = Λ(Wb) + Δε for all ε ≥ 0. This last formula and (5.9) imply
that for any given δ > 0,

(5.11) Λε(Wb)⊆Λ(W∞) + Δε + Δδ = Λε(W∞) + Δδ

for all sufficiently large b. Letting b → ∞, which implies that
we can take δ to be arbitrarily small in (5.11), it follows that
limb→∞ Λε(Wb)⊆Λε(W∞).

6. Pseudospectra of triangular constant-coefficient differen-
tial operators. In this section we extend the results of Section 3
to upper-triangular constant-coefficient differential operators. These
operators are defined by the boundary conditions

(6.1) u(i)(b) = 0, i = 0, 1, . . . , n − 1,

where n is the order of the differential operator. The domain of Ab is

(6.2) D(Ab) = {u ∈ Qn[0, b] : u(i)(b) = 0, i = 0, 1, . . . , n − 1},

where Qn[0, b] is the maximal space of n-times differential functions
introduced in Section 2. We consider Ab to be an operator from the
space L2[0, b] to itself. Recall that the symbol is

(6.3) â(ω) = an(−iω)n + an−1(−iω)n−1 + . . . + a1(−iω) + a0.

In this and the next section we will let A denote the differential
operator Ab without any boundary conditions, particularly when we
consider the inhomogeneous problem

(6.4) Au − λu = f.

If s is a root of â(ω)−λ, then u = e−isx is a solution of the homogeneous
part of (6.4).

The operator A∞ does not have explicit boundary conditions at
x = ∞; the condition D(A∞) = Qn[0,∞) ensures that (6.1) is satisfied
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for b = ∞. The pseudospectra of A∞ can be characterized in a simple
manner. The following theorem and its proof are similar to the result
for upper-triangular W-H operators.

Theorem 6.1. Let A∞ be an upper-triangular constant-coefficient
differential operator defined on [0,∞) with symbol â. The pseudospectra
of A∞ are given by

(6.5) Λε(A∞) = â(C−) + Δε ∀ ε ≥ 0.

We now turn to the finite interval case. It is straightforward to verify
that the solution of the inhomogeneous problem Abu − λu = f , where
f ∈ L2[0, b], can be written

(6.6) u(x) =
∫ b

x

gλ(x − y)f(y) dy.

For all λ, the Green’s function gλ(x) is continuous for x ∈ [0, b] [14],
and this implies that the integral operator in (6.6) is bounded. Hence,
Λ(Ab) is the empty set. In a certain sense, which will become more clear
below, we can consider λ = ∞ to be the sole point in the spectrum.

The behavior of the pseudospectra of Ab is similar to that of Wb. It
is straightforward to show that if b ≤ b′, then

(6.7) Λε(Ab)⊆Λε(Ab′) ∀ ε ≥ 0;

the proof is similar to that given in Section 3. It follows that

(6.8) Λε(Ab)⊆Λε(A∞) ∀ ε ≥ 0.

We have been unable to derive a general lower bound formula for
the pseudospectra analogous to (3.17). We can, however, verify that
the resolvent norm of Ab satisfies an exponential growth estimate
similar to condition (II). Suppose that γ ∈ int(C−) and λ = â(γ).
Roughly speaking, (II) holds because u = e−iγx satisfies the boundary
conditions to within a factor of O(ebIm γ) as b → ∞. We cannot use
u as a pseudo-eigenfunction because u �∈ D(Ab). Instead, we consider
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w(x) = u(x) + v(x), where the small correction function v is chosen so
that w ∈ D(Ab). The idea is to pick v so that
(6.9)

||Av−λv|| [0,b] = O(ebIm γ) and ||v|| [0,b] = o(||u|| [0,b]) b → ∞.

This choice implies

(6.10)
||Abw−λw|| [0,b]

||w|| [0,b]
=

||Av−λv||[ 0,b]

||u + v|| [0,b]
= O(ebIm γ) b → ∞.

Here we have used the fact that ||u||[0,b] = O(1) as b → ∞.

A candidate for v is

(6.11) v(x) =
n∑

j=1

die
βj(x−b).

Here the constants {βj} satisfy βj > 0 and βj �= βk if j �= k. The
constants di are chosen so that w satisfies the boundary conditions,
and these constants exist because the exponentials in the sum in (6.11)
form a linearly independent set. Straightforward calculations show that
the conditions in (6.9) hold.

The above arguments show that λ ∈ Λε(Ab) for ε = CebIm γ and
b � 1. In this case C depends on λ and the constants {βj}. Hence,
for ε � 1, an approximate lower bound for the ε-pseudospectrum
is Lε(Ab)≈ â(C−

t ), where t = log(ε/C)/b. We do not have a precise
formula for C.

Let us illustrate these ideas with an example. The simplest upper-
triangular C-C differential operator is the operator defined by Abu =
du/dx and u(b) = 0, which has the symbol â = −iω. The spectra of
this and related operators are analyzed in [15]. Theorem 6.1 implies
that the spectrum of A∞ is the left half-plane; if Re λ < 0, then eλx

is an eigenfunction with eigenvalue λ. For each ε, the Λε(A∞) is the
half-plane {z : Re z ≤ ε}.

To get a lower bound for Λε(Ab) we choose a pseudo-eigenfunction
of the form w = eλx − exIm λ+bRe λex−b for Re λ < 0 and a modified
version of this function for Re λ ≥ 0. This choice leads to lower bound
sets Lε(Ab) that are half-planes. To get a sharp upper bound we start
with the formula (6.6), where in this case gλ(x) = −eλx, and this leads
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FIGURE 4. Pseudospectra of the derivative operator with boundary condition
at x = b. The spectrum of A∞ is the shaded region, and for each ε > 0, the
ε-pseudospectrum of A∞ is the shaded region plus a strip of thickness ε. The
dashed and solid lines (from left to right) are lower and upper bounds for the
pseudospectra of Ab for ε = 10−30, 10−20, 10−10, 100, 101. Here b = 2.

to a resolvent bound similar to (4.2). Again, when this last method
yields a poor result we use (6.8) in our calculations. It can be shown
that the resulting upper bound set Uε(Ab) is a half-plane as well.

The results for the example are shown in Figure 4. The shaded
region is the spectrum of A∞. The solid and dashed lines are
the boundaries of the upper and lower bound sets for Ab for ε =
10−30, 10−20, 10−10, 100, 101. The sets Lε(Ab) and Uε(Ab) are the half-
planes lying to the left of these vertical lines. It can be shown that the
sets Λε(Ab) are half-planes as well.

Again the upper and lower bounds are reasonable sharp for ε � 1.
Note the logarithmic spacing of the contours in the left half-plane.
Using the pseudo-eigenfunction above, it can be shown that

(6.12) ||(λI − Ab)−1||≈ e−bRe λ Re λ → −∞,

On the other hand, (6.8) implies that

(6.13) ||(λI − Ab)−1|| = O((Reλ)−1) Re λ → ∞.

If we consider λ = ∞ as the sole point in the spectrum of Ab, then
this behavior of the resolvent is similar to that for triangular W-H
operators.
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FIGURE 5. Same as Figure 4 for the operator Abu = u′′ with u(b) = u′(b) = 0
and b = 4. The dashed and solid lines (from right to left) are lower and upper
bounds for the ε-pseudospectra for ε = 10−8, 10−6, 10−4, 10−2.

The behavior of the pseudospectra of triangular C-C differential
operators in the limit b → ∞ is similar to that of W-H operators:

Theorem 6.2. Let Ab be an upper-triangular constant-coefficient
differential operator defined on the interval [0, b] with symbol â. For
b ≤ b′ ≤ ∞, we have

(6.14) Λε(Ab)⊆Λε(Ab′) ∀ ε ≥ 0.

In addition, for each ε > 0 the pseudospectra satisfy

(6.15) lim
b→∞

Λε(Ab) → Λε(A∞).

We conclude this section with a second example. Let Ab = d2/dx2

and u(b) = u′(b) = 0. The symbol in this case is â(ω) = −ω2. The
symbol maps C− to the entire complex plane. Hence, Λε(A∞) = C
for all ε ≥ 0. The pseudospectra of Ab can be computed using the
techniques described above, and the results are shown in Figure 5. The
pseudospectra are shaped like giant mouths. As b → ∞, the mouths
close.
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Finally, we note that the results of this section can be extended to
lower-triangular C-C operators, defined with n boundary conditions at
x = 0. The adjoint of a lower-triangular C-C operator with symbol â is
an upper-triangular C-C operator with symbol â+ = â∗ [14]. Again, we
can compute the pseudospectra using the formula Λε(Ab) = Λ∗

ε(A
+
b ).

7. Results for general constant-coefficient differential oper-
ators. In this section we extend the results on the spectrum of the
family in Section 5 to constant-coefficient differential operators with
boundary conditions at both endpoints.

Let Ab be an nth order C-C differential operator with n boundary
conditions of the form (1.5). The domain of Ab is

D(Ab) = {u ∈ Qn[0, b] : u(j)(0) = 0, j = 0, 1, . . . , s0 − 1,

(7.1)

u(j)(b) = 0, j = 0, 1, . . . , sb − 1}.

The operator A∞ is defined with s0 boundary conditions at x = 0 and
no explicit boundary conditions at x = ∞.

As in the case of W-H operators, it is convenient to introduce a
winding number. The appropriate function is

(7.2) J(â(R), λ) =
n

2
− s0 − 1

2π
arg[λ − â(ω)]|∞−∞ λ �∈ â(R).

The winding number is not defined for λ ∈ â(R). Applying the
principle of the argument, it can be shown that J(â(R), λ) + s0 is
equal to the number of roots of â(ω) − λ lying in the lower half-plane
[13]. This quantity is equal to the number of exponentially decaying
solutions of the homogeneous equation

(7.3) Au − λu = 0.

(Recall that A denotes the operator Ab without any boundary condi-
tions.) The curve â(R) divides the complex plane into a number of
open components, and J(â(R), λ) is constant in each component.

The following theorem is similar to Theorem 5.1.
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Theorem 7.1. Let A∞ be an nth order constant-coefficient differ-
ential operator defined on [0,∞) with symbol â and winding number
J(â(R), λ). We have

(7.4) Λ(A∞) = {z �∈ â(R) : J(â(R), z) �= 0} ∪ â(R).

Proof. Choose λ ∈ C and let us first suppose that λ �∈ â(R). As the
above discussion indicates, if J(â(R), λ) > 0, the equation (6.4) has
more than s0 linearly independent decaying solutions. These solutions
can be linearly superposed to create a function that satisfies the s0

boundary conditions. Hence, λ is an eigenvalue of A∞.

Second, let us suppose that J(â(R), λ, ) < 0. We show that λ ∈
Λ(A∞) by considering the adjoint A+

∞. A straightforward calculation
shows that A+

∞ is the C-C differential operator defined by the symbol
â∗(ω) with s+

0 = n − s0 boundary conditions at x = 0 [14]. It can
be shown that the equation A+u = λ∗u has more that s+

0 linearly
independent decaying solutions. Hence, λ∗ ∈ Λ(A+

∞), which implies
that λ ∈ Λ(A∞).

If λ ∈ â(R), then (7.3) has at least one purely sinusoidal solution,
which does not grow or decay. If (7.3) has more than s0 linearly
independent decaying solutions, then λ is an eigenvalue. If there are
more than n−s0 growing solutions, then λ lies in the residual spectrum.
If there are exactly s0 decaying solutions or n − s0 growing solutions,
then it can be shown that λ lies in the continuous spectrum. We
will omit the details. Hence, we have {z �∈ â(R) : J(â(R), λ) �= 0}
∪â(R)⊆Λ(Ab).

Now, let us suppose that λ �∈ â(R) and J(â(R), λ) = 0. We show that
λ �∈ Λ(A∞) by showing that (λI − A∞)−1 is bounded. Consider the
inhomogeneous problem Au − λu = f with s0 homogeneous boundary
conditions at x = 0. Let us assume that ||f || [0,∞] = 1. The
homogeneous part of this equation has exactly s0 linearly independent
decaying solutions, which we will denote by {ξj}. A bounded solution
of the inhomogeneous problem can be written in the form

(7.5) u(x) = ũ(x) +
s0∑

j=1

αjξj(x).

Here ũ is the solution of the infinite interval problem Ãũ−λũ = f̃ , where
f̃(x) = f(x) for x ∈ [0,∞) and f̃(x) = 0 for x ∈ (−∞, 0). The function
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u is a solution to the full inhomogeneous problem if the constants {αj}
can be chosen so that u satisfies the boundary conditions. The results
in Section 2 show that ||ũ|| [0,∞) is bounded independent of f . Since
each of the functions ξj satisfies ||ξj || [0,∞) < ∞, we are done if we can
show that each of the constants in (7.5) is bounded uniformly for all f .

The constants are the solution of the linear system Fd(0)α = −v0,
where

(7.6) Fd(x) =

⎡
⎢⎢⎢⎢⎣

ξ
(0)
1 (x) ξ

(0)
2 (x) · · · ξ

(0)
s0 (x)

ξ
(1)
1 (x) ξ

(1)
2 (x) · · · ξ

(1)
s0 (x)

...
...

...
ξ
(s0−1)
1 (x) ξ

(s0−1)
2 (x) · · · ξ

(s0−1)
s0 (x)

⎤
⎥⎥⎥⎥⎦

is the Wronskian of the functions {ξj}, v0 = (ũ(0), ũ(1)(0), . . . ,
ũ(s0−1)(0))T , and α is the vector of the constants. Since the functions
{ξj} are linearly independent, Fd(0) is invertible. As mentioned in Sec-
tion 2, |ũ(j)(0)| is bounded independent of f for j = 0, 1, . . . s0−1. This
and the invertibility of Fd(0) imply that each of the constants satisfy
|αj | < C for some C, independent of f [6].

As in the case of general W-H operators, there does not appear to
be a simple formula for the pseudospectra of A∞, except for normal
and other special classes of C-C differential. For normal operators,
Λε(A∞) = Λ(A∞) + Δε for all ε ≥ 0. This formula is also valid for the
convection-diffusion operators defined by A∞ = u′′ + u′ with s0 = 1
[18].

For finite b, the spectrum of Ab consists of a countable number of
discrete points, and these eigenvalues have no finite accumulation point
[14]. Upper and lower bounds for the pseudospectra can be computed
using the techniques described in the previous section; see [16] for
results on the convection-diffusion operator.

Our main focus is on the spectrum of the family of the operators
{Ab}. The following theorem is similar to Theorem 5.2.

Theorem 7.2. The spectrum of the family of the operators {Ab}
satisfies

(7.7) P ({Ab}) = Λ(A∞).
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We again split the proof of the theorem into two parts. The following
lemma is similar to Lemma 5.3.

Theorem 7.3. If λ ∈ Λ(A∞), then ||(λI − Ab)−1||[0,b] → ∞ as
b → ∞.

Proof. The proof is similar in spirit to the proof of Lemma 5.3. As
in that previous proof, we need only consider the point spectrum and
continuous spectrum.

Suppose that λ lies in the point spectrum or the continuous spectrum
of A∞. Let δ > 0 be given. Then there exists φ ∈ D(A∞) such that
||Aφ−λφ|| [0,b]/||φ|| [0,b] < δ for all sufficiently large b. The function φ
cannot be used as a pseudo-eigenfunction because it need not satisfy
the boundary conditions at x = b. Let us instead consider a pseudo-
eigenfunction of the form

(7.8) w(x) = φ(x) + v(x) = φ(x) +
s0∑

j=1

djξj(x) +
sb∑

j=1

ejχj(x − b),

where {ξj} and {χj} are arbitrary sets of linearly independent expo-
nentially decaying and growing functions, respectively. This formula
for v in (7.8) is similar to (6.11) except now decaying functions {χi}
are required to handle the boundary conditions at x = 0. The con-
stants {dj} and {ej} are chosen so that w ∈ D(Ab). Estimating
||Abw − λw|| [0,b]/||w|| [0,b], we obtain

(7.9)
||Abw − λw|| [0,b]

||w|| [0,b]
≤ ||Aφ − λφ|| [0,b]

||φ + v|| [0,b]
+

||Av − λv|| [0,b]

||φ + v|| [0,b]

We must show that the two terms on the right-hand side decay to
0 as b → ∞. We do this by showing that ||Av − λv|| [0,b] → 0 and
||v|| [0,b] → 0 as b → ∞. Since ||ξj(x)|| [0,b] and ||χj(x− b)|| [0,b] are
uniformly bounded as b → ∞ for all j, we are done if we can show that
the constants {dj} and {ej} decrease to 0 as b → ∞.

The constants in (7.8) can be determined from the linear system

(7.10)
[

Fd(0) F̃g(b)
F̃d(b) Fg(b)

] [
d
e

]
=

[
φ0

φb

]
,
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which is obtained from the boundary conditions. Let us explain the
notation. Here d and e are the s0- and sv-vectors of the constants. The
vector on the right-hand side consists of φ0, the zero-vector of length
s0, and φb = −(φ(b), φ(1)(b), . . . , φ(sb−1)(b))T . Let F denote the full
2 × 2 block matrix. The upper left block Fd(0) is given in (7.6). The
block Fg(x) is the Wronskian of the functions {χj(x − b)}, and Fg(b)
has the same form as Fd(0) with ξj replaced by χj . The elements of
F̃g(b) and F̃d(b) are of the form χ(i)

j (−b) and ξ
(i)
j (b), respectively. These

elements become exponentially small as b → ∞.

For each j, the constants satisfy the bound

(7.11) |dj | ≤ ||F−1||2||φb||2, |ej | ≤ ||F−1||2||φb||2,

where the 2 denotes the Euclidian norm [6]. Since φ ∈ D(A∞), we have

(7.12) ||φb||2 → 0, b → ∞.

The determinant of F satisfies det(F) = det(Fd(0)) det(Fg(b)) + F̃ ,
where the last term is the contribution from F̃g(b) and F̃d(b). Since
the functions {χj} and {ξj} are linearly independent, det(Fd(0)) �= 0
and det(Fg(b)) �= 0. The term F̃ becomes exponentially small as
b → ∞. Hence, | det(F)| > C1 for all sufficiently large b for some
constant C1 > 0. It follows that F is invertible. Each element of F
is uniformly bounded as b → ∞. This last fact and the bound on the
determinant imply that ||F−1||2 is uniformly bounded for sufficiently
large b. Combined with (7.11) and (7.12), this last result implies that
the constants satisfy |dj | → 0 and |ej | → 0 as b → ∞.

Unlike the W-H case, we can estimate the behavior of the resolvent
norm in Lemma 7.3. If J(â(R), λ) > 0, then we can choose φ to
be an eigenfunction of A∞. This function is exponentially decaying.
If we analyze the proof of Lemma 7.3, then it can be shown that
||(λI − Ab)−1|| [0,b] → ∞ exponentially as b → ∞. A similar result
holds if J(â(R), λ) < 0.

The following result completes the proof of Theorem 7.2.

Lemma 7.4. If λ �∈ Λ(A∞), then ||(λI − Ab)−1|| [0,b] is uniformly
bounded for all sufficiently large b.
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Proof. Suppose that λ �∈ Λ(A∞) and consider the inhomogeneous
problem Au − λu = f with the n boundary conditions (1.5). Let us
assume that ||f || [0,b] = 1. The result is proved if we can show that
||u|| [0,b] is uniformly bounded as b → ∞, independent of f ∈ L2[0, b].

If λ �∈ Λ(A∞), then the homogeneous part of the equation has s0 lin-
early independent decaying solutions, {ξj} and sb linearly independent
growing solutions, {χj}. We can write the solution to the full problem
in the form

(7.13) u(x) = ũ(x) +
s0∑

j=1

djξj(x) +
sb∑

j=1

ejχj(x − b).

Here ũ is the solution of the inhomogeneous problem Ãũ − λũ = f̃ on
the infinite interval, where f̃(x) = f(x) for x ∈ [0, b] and f̃(x) = 0
for x �∈ [0, b]. The results in Section 2 show that ||ũ|| [0,b] is bounded
independent of f and b. To complete the proof we need to show that
the constants {dj} and {ej} are bounded independent of f and b, for
sufficiently large b. The proof is similar to the proof of Lemma 7.3.

The precise behavior of the sets Λε(Ab) in the limit b → ∞ is
not known for general C-C operators. Again, we can show that the
Λε(A∞)⊆ limb→∞ Λε(Ab) for all ε > 0, and the proof is similar to the
proof of Lemma 7.3.

Finally, we note that we have examined the pseudospectra of the
convection-diffusion operator defined by Abu = u′′+u′ in detail, and the
results are reported in [18]. For this operator we show that Λε(A∞) =
Λ(A∞) + Δε for all ε ≥ 0 and that limb→∞ Λε(Ab) → Λε(A∞) for all
ε > 0. In addition, we derive asymptotic formulas for large b for the
resolvent norm ||(λI − Ab)−1|| [0,b].

Acknowledgments. I am grateful to Nick Trefethen for his com-
ments on an earlier draft of this paper and for many discussions about
pseudospectra.
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