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RECONSTRUCTION OF SOME POTENTIALS
USED IN THE BOUNDARY ELEMENT METHOD

NATALIA T. KOLKOVSKA

ABSTRACT. We present a fast method for evaluation of
some potentials arising when the boundary element method
(BEM) is applied to the investigation of simply supported
plates resting on an elastic foundation of Winkler type. The
main idea is to reformulate this problem as a differential one
and to approximate it by a difference scheme. The solution of
the difference scheme approximates the potential with second
order of accuracy in the W 2

2 mesh norm. It can be obtained by
fast solvers. Exact formulas for the jumps of some derivatives
of the potentials are derived as well.

Introduction. Let D be a finite simply connected domain, bounded
by a closed smooth contour Σ, contained in the rectangle Ω. As
observed in [1, 2], the investigation of simply supported plates, resting
on an elastic foundation of Winkler type, is governed by the boundary
value problem (BVP) with constant coefficients

Δ2u(r) + β2u(r) = 0, r ∈ D,(0.1)
u(r) = u0(r), Δu(r) = u1(r), r ∈ Σ.(0.2)

In order to reduce the problem (0.1), (0.2) to boundary integral
equations, we begin with the definitions of the Green’s function G(r, s),
s ∈ Σ, as the solution to the BVP

Δ2G(r, s) + β2G(r, s) = −δ(r − s), r ∈ Ω,(0.3)
G(r, s) = ∂2G(r, s)/∂n2 = 0, r ∈ ∂Ω.(0.4)

Here n denotes the exterior normal to ∂Ω. Representing the solution
u(r) of (0.1), (0.2) in the form

(0.5) u(r) =
∫

Σ

ΔG(r, s)Φ1(s) ds+
∫

Σ

G(r, s)Φ2(s) ds,
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the boundary conditions (0.2) give two coupled integral equations for
the unknown densities Φ1 and Φ2.

Suppose now that these integral equations are solved numerically
(some efficient methods are proposed and investigated in [3, 4, 5]).
Having found the approximate densities to Φ1 and Φ2, we substitute
them into representation (0.5) and arrive at the problem for evaluation
of the solution u(r) to the initial BVP (0.1), (0.2) by formula (0.5).
A similar problem for evaluation of potentials arises also for the direct
version of the BEM.

The direct evaluation of the potentials by quadrature formulas has
at least two drawbacks. The first one is the high cost when one
is calculating the solution u(r) at N1N2 equi-spaced points of the
rectangle Ω. The second one is that the good accuracy computation of
the potentials at points near Σ needs special procedures (see [7, 12]).

One way to avoid the first problem is to compute the potential values
at a small number of carefully chosen mesh points close to Σ and then
to extend the approximate solution to the rest of the domain using fast
solvers. This idea is proposed and numerically implemented in [7, 13].

Another way to evaluate the potential is to represent it as a solution of
an appropriate BVP. Then this BVP is approximated and the solution
of the discrete problem is found effectively by fast solvers. The difficulty
which occurs here is the numerical treatment of the differential equation
because it always has the Dirac delta function as a singularity. In
[6, 11, 18] Steklov averaging operators are used for approximation
of the delta function. The jumps of the derivatives of the potentials
are included in the approximation of the delta function in [6, 12, 15].
Theoretical investigation and numerical implementation of the last idea
is carried out in [8, 12, 15] only for potentials arising from second order
elliptic problems.

We follow the last method and apply it to the evaluation of the loga-
rithmic potential and potentials from (0.5) relative to the fourth order
elliptic equation (0.1). New difficulties arise from the more complicated
behavior of the kernels and the intention to get a scheme with higher
accuracy −O(h2) in W 2

2 mesh norm, compared with O(h3/2) in [15].
Moreover, the method is applied to evaluate the potentials for fourth
order elliptic equations.

The assumptions imposed in the paper on the potentials are in
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terms of the classical Ck smoothness spaces in D and Ω\D. In a
forthcoming paper [10] the case of Sobolev W k

2 smoothness in D and
Ω\D is treated. The W k

2 smoothness is more suitable for getting error
estimates which agree very well with the required smoothness of the
densities and the boundary curve. But, as one may expect, they are
harder to be obtained. Our numerical experiments have shown a good
agreement with convergence results presented in this article. For these
experiments we refer to the paper mentioned above.

The kernels of the potentials considered in the paper (see (0.5))
contain the Green’s function and its Laplacian. As is well known,
the evaluation of the Green’s function is a difficult problem, especially
when more complicated BVP are treated. The investigated method
does not require computation of Green’s function. This fact is of basic
importance when we consider effective numerical methods for solving
the integral equation system in the unknown densities Φ1 and Φ2 (the
first step of the BEM). For example, one can apply the Galerkin method
to the system of integral equations and then solve iteratively the
obtained system of linear equations using appropriate preconditioners.
At each step of the iterative process, one evaluates only potentials
with densities known from the previous iteration and, according to the
results of this paper, this can be done without evaluation of G(r, s).
Hence the numerical approximations to the densities Φ1 and Φ2 can be
done without numerical evaluation of the Green’s function (see, e.g.,
[16] for some iterative methods for solving integral equations).

Let us also mention that the method considered is not confined to
a special kind of domain (except the smoothness of the boundary).
It allows evaluation of the potential in O(N1N2) points with the same
accuracy and almost the same computational cost as in the well-studied
case of rectangular domains.

The paper consists of two parts. In Part 1 we evaluate all the jumps in
the coordinate directions, derivatives of the logarithmic and biharmonic
potential. In Part 2 we present fast numerical methods for evaluation
of the considered potentials.

Part 1. Jump relations of some potentials. Our main goal in
this part is to evaluate the jump relations between some derivatives of
potentials with kernels ln |r− s|, |r− s|2 ln |r− s|, ΔG(r, s) and G(r, s).
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These potentials appear in the BEM treatment of the Laplace equation,
the biharmonic equation and equation (0.1). For the construction of an
effective numerical method for evaluation of these potentials we need
explicit expressions for their jumps across Σ.

Our primary tools in the investigations are well known jump relations
of the normal derivatives of the logarithmic potential and the continuity
of its tangential derivatives across the boundary. The jump relations
for the first and second derivatives in the coordinate directions of the
logarithmic potential can be found in Mokin [15]. We extend our
consideration to potentials with more complicated kernels. Similar
ideas applied to the jump relations of double layer logarithmic potential
are investigated by A. Mayo [12].

Section 1 contains preliminary results. In Section 2 we obtain jump
relations for the third derivatives of the logarithmic potential. Then
in Section 3 we consider the biharmonic potential. Some properties of
Green’s function defined by (0.3), (0.4) are included in Section 4. Jump
relations of potentials with kernels ΔG(r, s) and G(r, s) are derived at
the end of part 1 in Section 5.

1. Preliminaries. The following notations will be used in the paper.
Let r(λ) = (x(λ), y(λ)), 0 ≤ λ ≤ 2π, be a parametrization of the curve
Σ and let κ(r) denote its curvature. Set D1 = Ω\D. Without loss of
generality suppose diam (Ω) < 1.

Let Ck(Ω), k ∈ N, be the space of all k-times continuously differen-
tiable functions defined on Ω. Let Hk,α(Ω), k ∈ N, 0 < α ≤ 1, be the
Hölder spaces {u ∈ Ck(Ω) : |Dku(r) −Dku(s)| ≤ c|r − s|a, ∀r, s ∈ Ω}.

Let f(r), r ∈ Ω, be a continuous function relative to the curve Σ, i.e.,
continuous up to the boundary in D and D1. At the points of Σ we
denote by fi the interior limit of this function and by fe the exterior
limit. Then [f ](r), r ∈ Σ (or [f ](λ), 0 ≤ λ ≤ 2π) will stand for the jump
of this function at the point r = r(λ) ∈ Σ, i.e., [f ](r) = fi(r) − fe(r).

Consider the logarithmic potential

(1.1) w(r) = − 1
2π

∫
Σ

g(s) ln |r − s| ds, r ∈ Ω.

The following lemma summarizes some known results (see, e.g., [15]).
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Lemma 1. Assume g ∈ H1+ε(Σ) and Σ ∈ H2+ε[0, 2π]×H2+ε[0, 2π],
ε > 0. Then the jumps in the derivatives of w at r = r(λ) ∈ Σ are
given by

[w] = 0,
[
∂w

∂x

]
=

y′

|r′|g,
[
∂w

∂y

]
= − x′

|r′|g,[
∂2w

∂x2

]
= −

[
∂2w

∂y2

]
= − 1

|r′|2
{

(y′2 − x′2)κg − 2x′y′g′

|r′|
}
.

2. Jumps of the third derivatives of the logarithmic poten-
tial. In this section the jumps of the third derivatives of the logarithmic
potential are found. For this purpose we extend the method used for
obtaining the formulas in Lemma 1.

Assume that g ∈ H2+ε(Σ) and Σ ∈ H3+ε[0, 2π]×H3+ε[0, 2π], ε > 0.
Then w given by (1.1) is a harmonic function in D and D1 and
(∂Δw/∂x)(r) = (∂Δw/∂y)(r) = 0 for r ∈ D and r ∈ D1. These
equalities immediately imply

[
∂3w

∂x3

]
= −

[
∂3w

∂y2∂x

]
and

[
∂3w

∂x2∂y

]
= −

[
∂3w

∂y3

]
.

We change the variables in a neighborhood of Σ introducing new
curvilinear coordinates (λ, t) relative to Σ : r = r(λ) + tn(λ), 0 ≤ λ ≤
2π, |t| ≤ t0. We differentiate the composite function w(r(λ) + tn(λ))
three times, substitute t = 0 and subtract the limits from both sides of
Σ in the obtained formulas. Then we get
(1.2)[

∂3w

∂λ∂t2

]
=

[
∂3w

∂x3

]
x′(3y′2 − x′2)

|r′|2 +
[
∂3w

∂x2∂y

]
y′(y′2 − 3x′2)

|r′|2 + 2κg′.

On the other hand, if we differentiate the well known jump relations of
the normal and tangential derivatives of w and use the definition of the
distribution, we will arrive at the equality [∂3w/∂λ∂t2] = −κg′ − κ′g.
Thus (1.2) leads to

(1.3)
[
∂3w

∂x3

]
x′(3y′2 − x′2)

|r′|2 +
[
∂3w

∂x2∂y

]
y′(y′2 − 3x′2)

|r′|2 = −3κg′ − κ′g.
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Similarly, we treat the other third mixed derivative of w and obtain
(1.4)[
∂3w

∂x3

]
y′(3x′2−y′2)

|r′|3 +
[
∂3w

∂x2∂y

]
x′(3y′2−x′2)

|r′|3 = −2κ2g−g′ |r
′|′

|r′|3 +
g′′

|r′|2 .

From the system (1.3) and (1.4), we find the jumps of the third
derivatives of w. Thus, we have proved the following.

Lemma 2. Assume g ∈ H2+ε(Σ) and Σ ∈ H3+ε[0, 2π]×H3+ε[0, 2π],
ε > 0. Then the jump relations of the third derivatives of the logarith-
mic potential with density g are

[
∂3w

∂x3

]
= −

[
∂3w

∂y2∂x

]

= − g

|r′|4 {x
′(3y′2 − x′2)κ′ + 2κ2|r′|y′(3x′2 − y′2)}

+ g′′
y′(3x′2 − y′2)

|r′|5

− g′

|r′|6 {3κ|r
′|2x′(3y′2 − x′2) + |r′|′y′(3x′2 − y′2)},

−
[
∂3w

∂y3

]
=

[
∂3w

∂y∂x2

]
=

g

|r′|4 {y
′(3x′2 − y′2)κ′ − 2κ2|r′|x′(3y′2 − x′2)}

+ g′′
x′(3y′2 − x′2)

|r′|5

+
g′

|r′|6 {3κ|r
′|2y′(3x′2 − y′2) − |r′|′x′(3y′2 − x′2)}.

3. Jumps of the biharmonic potential. Consider the biharmonic
potential ν

(1.5) ν(r) =
∫

Σ

G0(|r − s|)g(s) ds, r ∈ Ω,

with kernel G0(|r − s|), G0(|t|) = −t2 ln t/(8π) the fundamental solu-
tion of the biharmonic equation.

The first and second derivatives Dmν, |m| ≤ 2, are continuous
functions in Ω. This fact is an immediate consequence of the well
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known theorems about continuity of integral operators depending on a
parameter (see, e.g., [14]). We study the jumps of the third and fourth
derivatives of ν. From the identity

2π
∂3G0(r, s)

∂x3
=

∂

∂x
ln

1
|r − s| +

1
2
(x− x(λ))

∂2

∂x2
ln

1
|r − s| ,

valid for arbitrary r = (x, y) ∈ Ω and s = (x(λ), y(λ)) ∈ Σ, the
calculation of [∂3ν/∂x3] is reduced to the calculation of the known
jumps of the logarithmic potential. Thus, [∂3ν/∂x3] is found to be
(y′3/|r′|3)g. Similarly, we treat the other third and fourth derivatives
of ν and obtain the following

Lemma 3. Assume g ∈ H2+ε(Σ) and Σ ∈ H3+ε[0, 2π]×H3+ε[0, 2π],
ε > 0. Then the jumps of the derivatives of the biharmonic potential ν
with density g are[

∂mν

∂xi∂ym−i

]
= 0, 0 ≤ i ≤ m ≤ 2,

[
∂3ν

∂x3

]
=

y′3

|r′|3 g,
[
∂3ν

∂y3

]
= − x′3

|r′|3 g,[
∂3ν

∂x2∂y

]
= −x

′y′2

|r′|3 g,
[
∂3ν

∂x∂y2

]
=
x′2y′

|r′|3 g.[
∂4ν

∂x4

]
= 2κgy′2(3x′2 − y′2)|r′|−4 + 4g′x′y′3|r′|−5,

[
∂4ν

∂y4

]
= 2κgx′2(3y′2 − x′2)|r′|−4 − 4g′x′3y′|r′|−5,

[
∂4ν

∂x2∂y2

]
= κg{x′4 + y′4 − 6x′2y′2}|r′|−4 + 2g′x′y′(x′2 − y′2)|r′|−5.

4. Green’s function. Let p ≥ 1 and let d be the distance between
Σ and ∂Ω. Fix a C∞[0,∞) function e(t) such that e(t) = 1 for t ≤ d/2;
0 < e(t) < 1 for d/2 < t < d and e(t) = 0 for d ≤ t. For d/2 < t < d
one can take, for example,

e(t) =
∫ 1

2t/d−1

exp(−1/(s− s2)) ds/
∫ 1

0

exp(−1/(s− s2)) ds.
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With a standard technique it can be shown that Green’s function and
its Laplacian (with respect to the first variable) Δ1G are symmetric
functions in r and s:

G(r, s) = G(s, r), Δ1G(r, s) = Δ1G(s, r).

Representing Green’s function in the form

(1.6) G(r, s) = e(|r − s|)G0(|r − s|) +G1(r, s)

with G0 defined in Section 3, we study the properties of G1. The
definitions of G, G0 and some simple calculations lead to the BVP for
G1(·, s) for every s ∈ Σ

(1.7) Δ2G1(r, s) + β2G1(r, s) = −f(|r − s|), r ∈ Ω,

(1.8) G1(r, s) =
∂2G1(r, s)

∂n2
= 0, r ∈ ∂Ω,

where

f(t) = (β2e(t) + Δ2e(t))G0(t) + (4e′′′(t) + 6e′′(t)/t− 2e′(t)/t2)G′
0(t)

+ (6e′′(t) + 6e′(t)/t)G′′
0(t) + 4e′(t)G′′′

0 (t).

The singularity of f is of order |r − s|2 ln |r − s| because of the
smoothness of e and G′

0. Hence f belongs to W 2
p (Ω), p ≥ 1. Moreover,

in view of the compactness of Σ, W 2
p (Ω)-norm of f(|r − s|) can be

bounded from above by a constant independent of s. Function G1, as a
solution to (1.7) and (1.8), belongs to W 6

p (Ω). In view of the imbedding
theorem G1 belongs to H5+α(Ω), α = 1 − 2/p, p > 2, and its norm in
this space is estimated from above by a constant independent of s.

The evaluation of ΔG(r, s) from (1.6) gives the equality

(1.9) ΔG(r, s) = −(1/2π) ln |r − s| +G2(r, s), r ∈ Ω.

Here G2 depends on e, G1 and their first and second derivatives only.
Hence, G2 is a smooth function from the Sobolev space W 4

p (Ω), p ≥ 1.
In this way we have proved the following
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Lemma 4. Let p ≥ 1, and let the Green’s function defined by (0.3),
(0.4) be written in the form (1.6). Then:

(i) Green’s function and its Laplacians are symmetric functions of
their arguments.

(ii) Green’s function differs from e(|r − s|)G0(|r − s|) by the W 6
p -

smooth solution G1(r, s) to the problem (1.7), (1.8).

(iii) For r close to s the Laplacian ΔG(r, s) behaves like −(1/2π)
ln |r − s|. These functions differ by a W 4

p -smooth function G2(r, s),
which can be explicitly written in terms of e, G1 and their first and
second derivatives.

Since Green’s function satisfies (1.6), it can be computed by deter-
mining G1 as the smooth solution to the standard problem (1.7), (1.8)
in a rectangular domain by any fast method.

5. Jump relations of potentials with kernels G and ΔG.
Consider the relative to formulas (0.5) potential V , given by

(1.10) V (r) =
∫

Σ

G(r, s)g(s) ds, r ∈ Ω.

Rewrite (1.6) in the form

G(r, s) = G0(|r − s|) + (e(|r − s|) − 1)G0(|r − s|) +G1(r, s).

From the properties of G (see the proof of Lemma 4), e and G0, we
immediately see that the potentials with kernels (e(|r−s|)−1)G0(|r−s|)
and G1(|r − s|) are H5+α-continuous functions on Ω. Hence, the
smoothness of DmV , |m| ≤ 4, is determined by the smoothness of the
m-th derivatives of the biharmonic potential ν investigated in Section
3. Therefore, we have proved

Lemma 5. Assume g ∈ H2+ε(Σ) and Σ ∈ H3+ε[0, 2π]×H3+ε[0, 2π],
ε > 0. Let ν and V be the potentials defined by (1.5) and (1.10), re-
spectively, with a common density g. Then the jumps of the derivatives
of V are equal to the jumps in the derivatives of ν (explicitly given in
Lemma 3):

[DmV ] = [Dmν], |m| ≤ 4.
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Let us study the potential

(1.11) W (r) =
∫

Σ

ΔG(r, s)g(s) ds, r ∈ Ω.

By analogy with the previous arguments using representation (1.9) for
the kernel ΔG, we obtain the following

Lemma 6. Assume g ∈ H2+ε(Σ) and Σ ∈ H3+ε[0, 2π]×H3+ε[0, 2π],
ε > 0. Let w and W be the potentials defined by (1.5) and (1.11), re-
spectively, with a common density g. Then the jumps of the derivatives
of W are equal to the jumps in the derivatives of w (explicitly given in
Lemmas 1 and 2):

[DmW ] = [Dmw], |m| ≤ 3.

Let us note that all jumps of the derivatives of the potentials, obtained
in Lemmas 1, 2, 3, 5 and 6, are expressed in terms of the given
functions the density g and the parametrization of Σ.

Part 2. Numerical evaluation of some potentials. The aim
of this part is to propose effective numerical methods for evaluation of
the values of the potentials investigated in Part 1 on a uniform mesh
in the rectangle Ω. The main idea used here is to reformulate the
problem instead of the direct computation of the potential we use the
fact that it is a solution of an appropriate BVP with a Dirac delta
function on the right-hand side. Then we approximate the differential
problem by a difference scheme, which contains terms with jumps of
derivatives of the potentials across Σ. The solution of the difference
scheme can be found by fast solvers using O((N2

1 + N2
2 ) log(N1N2))

arithmetic operations.

Section 1 contains some notations and definitions. In Section 2
we give an O(h2) accurate numerical method for evaluation of the
logarithmic potential. In Sections 3 and 4 we discuss the computation
of potentials with kernels G(r, s) and ΔG(r, s), respectively.

1. Notations and definitions. We cover the closed rectangle
Ω = [a1, b1]× [a2, b2] with a uniform mesh with parameter h = (h1, h2)



BOUNDARY ELEMENT METHOD 355

(hi = (bi − ai)/Ni with integer Ni). Denote by ω and γ the set of
all mesh points belonging to the interior of Ω and to ∂Ω, respectively.
Thus, ω ∩ γ = ∅ and ω ∪ γ is a uniform mesh on Ω. Set

γ1 = {(x, y) ∈ γ : a1 < x < b1, y = a2 or y = b2},
γ2 = {(x, y) ∈ γ : a2 < y < b2, x = a1 or x = b1}.

Denote by γ+
1 and γ+

2 these points of γ for which y = b2 and x = b1,
respectively.

For any mesh function z(r), r = (x, y) ∈ ω, define the difference
operators

zx(r) = (z(x+h1, y)−z(x, y))/h1, zx̄(r) = (z(x, y)−z(x−h1, y))/h1

for the first difference quotients in the x-direction (zy(r) and zȳ(r) are
defined analogously in the y-direction).

The norm in C(ω) is defined as usual by |z|C(ω) = maxr∈ω |z(r)|. For
defined ω functions z1(r), z2(r), the scalar product and the norm in
L2(ω) are given by

(z1, z2) =
∑
r∈ω

h1h2z1(r)z2(r), ||z||20,ω = (z, z).

When the above sum runs over ω ∪ γ+
2 , ω ∪ γ+

1 or ω ∪ γ+
1 ∪ γ+

2 , then
the corresponding norms are denoted by ||·〉|, |〈·|| or |〈·〉|, respectively.
The Sobolev spaces Wm

2 (ω), m = 1, 2, 3, 4, consist of mesh functions
defined on ω ∪ γ and vanishing on γ. Their discrete semi-norms are
given by

|z|21,ω = ||zx̄〉|2 + |〈zȳ||2, |z|22,ω = ||zx̄x||2 + ||zȳy||2 + 2|〈zx̄ȳ〉|2,
|z|23,ω = ||zxx̄x̄〉|2 + 3|〈zxx̄ȳ||2 + 3||zyȳx̄〉|2 + |〈zyȳȳ||2,
|z|24,ω = ||zx̄x̄xx||2 + 4〈zxx̄x̄ȳ〉|2 + 6||zyȳx̄x||2 + 4|〈zx̄ȳȳy〉|2 + ||zyyȳȳ||2.

At a point r = (x, y) ∈ ω, define the discrete Laplacian Δhz(r) =
zxx̄(r)+zyȳ(r). We relate this Laplacian to the pattern P (r) = {(x, η) ∈
Ω : |y − η| ≤ h2} ∪ {(ξ, y) ∈ Ω : |x − ξ| ≤ h1}. Denote by ω∗ the set
of all points r of ω such that P (r) ∩ Σ �= ∅ (in other words, ω∗ is the
subset of ω consisting of those mesh points for which at least one of the
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r̃

r r
Σ

r
Σ

r∗
r∗

FIGURE 1. FIGURE 2.

four neighbor mesh points lie on the other side of Σ, provided h is small
enough). For example, the point r on Figure 1 belongs to ω∗ and the
intersection points of Σ and P (r) in x and y directions are r̄ = (x̄, y)
and r̃ = (x, ỹ). The mesh points are marked by dots.

By analogy to the previous, define the discrete approximation to the
biharmonic operator by Δ2

hz(r) = zx̄x̄xx(r) + 2zxx̄yȳ(r) + zyyȳȳ(r). It
uses 13 values of z at the mesh points ρ ∈ P (r)∩ ω, where the pattern
P (r) is given by P (r) = P (x + h1, y) ∪ P (x − h1, y) ∪ P (x, y + h2) ∪
P (x, y − h2). Denote by ω∗∗ the set of all points r of ω such that
P (r) ∩ Σ �= ∅. Figure 2 illustrates a typical point r ∈ ω∗∗, along with
some intersection points of P (r) and Σ (two of them are r∗ = (x∗, y)
and r∗ = (x, y∗)).

We make use of the truncated power notation (x)n
+, given by (x)n

+ =
xn if x > 0 and 0 otherwise.

Throughout Part 2 the symbol M with different subscripts denotes
positive constants, which may depend only on Ω and Σ. The values of
M may differ at each occurrence.

2. Evaluation of the logarithmic potential. The purpose of this
section is to present a numerical method for calculation at the points
of ω of the logarithmic potential w(r), defined by (1.1). The method
has a second order of accuracy and requires O((N2

1 +N2
2 ) log(N1N2))

arithmetic operations.
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Instead of the direct evaluation of w(r) we shall find it as a solution
to the BVP

Δw(r) = −g(r)δΣ(r), r ∈ Ω,(2.1)

w(r) = − 1
2π

∫
Σ

g(s) ln |r − s| ds, r ∈ ∂Ω.(2.2)

Let the logarithmic potential w(r), r ∈ Ω, be a four times continu-
ously differentiable function relative to the curve Σ (four times contin-
uous up to the boundary in D and D1). Conditions g ∈ H3+ε(Σ) and
Σ ∈ H4+ε[0, 2π] ×H4+ε[0, 2π], ε > 0, will guarantee such smoothness
(see, e.g., [14]).

First, we approximate (2.1) by a difference scheme on the mesh ω
using the discrete Laplacian Δhw. At points of ω\ω∗ (being away from
Σ) Δhw is zero up to terms of second order of h. The difficulties arise
from the approximation of Δhw at the points of ω∗ (close to Σ), where
the right-hand side of (2.1) includes the delta function as a singularity.

Consider a point r ∈ ω∗ (see Figure 1). We expand w(ρ), ρ ∈ P (r)∩ω,
in Taylor series and substitute these expansions into the definition of
the discrete Laplacian. Then we obtain

(2.3) Δhw(r) = Δw(r) + (2χD(r) − 1)Φ(r) +O(h2
1 + h2

2), r ∈ ω∗,

where χD is the characteristic function of the set D and

Φ(r) = sign (x̄− x)
(h1 − |x̄− x|)+

h2
1

[
∂w

∂x

]
(r̄)

+
(h1 − |x̄− x|)2+

2h2
1

[
∂2w

∂x2

]
(r̄)

+ sign (x̄− x)
(h1 − |x̄− x|)3+

6h2
1

[
∂3w

∂x3

]
(r̄)

+ sign (ỹ − y)
(h2 − |y − ỹ|)+

h2
2

[
∂w

∂y

]
(r̃)

+
(h2 − |y − ỹ|)2+

2h2
2

[
∂2w

∂y2

]
(r̃) + sign (ỹ − y)

· (h2 − |y − ỹ|)3+
6h2

2

[
∂3w

∂y3

]
(r̃).
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Let us note that the truncated power notation allows the application
of the above definition of Φ(r) not only for the case demonstrated
in Figure 1, but also when Σ intersects only one of the segments of
P (r). The same definition can be used also for r /∈ ω∗, when obviously
Φ(r) = 0. The function Φ(r) can be explicitly written (see Lemmas 1
and 2 of Part 1) in terms of the density g(r), the parametrization of Σ
and the distances between r and Σ in the x and y direction.

Second, let us approximate boundary condition (2.2). Since the
integrand

F (t, r) = −(1/2π)g(r(t))|r′(t)| log |r(t) − r|

is a 2π-periodic function of t, it is convenient to use the rectangular
rule, due to its extreme accuracy in this case. For any r ∈ ∂Ω, set
ϕn(r) = n−1

∑n
i=1 F (in−1, r) and Rn(F, r) = w(r)−ϕn(r), where w(r)

is known from (2.2).

Since the problem (2.1), (2.2) is linear, we separate it to two problems:
for finding function w1 as the solution to the problem

Δw1(r) = 0, r ∈ Ω,(2.4)
w1(r) = Rn(F, r), r ∈ ∂Ω(2.5)

and a function w2(r) = w(r)−w1(r), which is a solution to the problem

Δw2(r) = −g(r)δΣ(r), r ∈ Ω,
w2(r) = ϕn(r), r ∈ ∂Ω.

Function w1 gives the influence inside the rectangle of the error of
quadrature formulas ϕn(r) used for evaluation of the integral from (2.2).

Theorem 1. Let k,m ∈ N, g ∈ Ck(Σ) and Σ ∈ Ck+1[0, 2π] ×
Ck+1[0, 2π]. Assume w1 is a solution to the BVP (2.4), (2.5). Then
we have

|w1|W m
2 (Ω) ≤Mn−k|g|Ck(Σ)|r(·)|Ck+1(Σ).

Proof. First we estimate the Wm
2 (∂Ω) norm of Rn(F, r). Since

∂lRn(F, r)/∂xi∂yl−i = Rn(F1, r) with F1(r, t) = g(r(t))|r′(t)|∂l
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log |r(t)− r|/∂xi∂yl−i, the problem is reduced to the estimation of the
error of the rectangular rule with step 1/n applied to the new function
F1(r, t). Following the results of [17], the error is bounded from above
by the τk(F1, 1/n)1 the k-th averaged modulus of smoothness of F1.
The smoothness of F1 is determined by the smoothness of g(r(t))|r′(t)|,
since r(t) ∈ Σ, r ∈ ∂Ω, dist (Σ, ∂Ω) > 0. Using the properties of the τk
modulus, we conclude τk(F1, 1/n)1 = O(n−k) under the assumptions
on g and Σ. Hence, for any natural m, the Wm

2 norm of Rn(F, r) on
the sides of the rectangle Ω is of order O(n−k) (with a constant in “big
O” depending on m).

We apply the a priori estimates inWm
2 (Ω) norm for the solution of the

BVP (2.4), (2.5), in the case of the convex polygonal domain. Necessary
and sufficient conditions [9] for the coupling of the boundary conditions
at the corner points of the rectangle are satisfied, since Rn(F, r) is a
harmonic function at each point r ∈ ∂Ω. Hence, the a priori estimate
|w1|m,Ω ≤ M |Rn|m,∂Ω holds. We combine it with the Wm

2 norm of
Rn(F, r) on the sides of the rectangle Ω and obtain the desired estimate.

Due to Theorem 1 the effect of replacing the integral in the boundary
condition (2.2) with ϕn(r) is negligible from a numerical point of view.
Moreover the jumps of the derivatives of w2 at the points of Σ coincide
with the jumps of the derivatives of the logarithmic potential w because
of the harmonicity of w1 inside the rectangle. Thus, to the end of this
section we freely use the notation w for w2.

We approximate the problem (2.1), (2.2), by the difference scheme

Δhwh(r) = (2χD(r) − 1)Φ(r), r ∈ ω,(2.6)
wh(r) = ϕn(r), r ∈ γ.(2.7)

The approximation error of the mesh function wh(r) to w(r) is given
by

Theorem 2. Let the logarithmic potential w(r) be a C4 smooth
function relative to Σ, and let wh(r) be the solution to the finite
difference scheme (2.6) and (2.7). Then one has

|w − wh|2,ω ≤M1(h2
1 + h2

2)||w||C4(D)∩C4(D1),

|w − wh|C(ω) ≤M2(h2
1 + h2

2)||w||C4(D)∩C4(D1).
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Proof. The error z(r) = w(r) − wh(r) is a solution to the problem
Δhz(r) = ψ(r), r ∈ ω and z(r) = 0, r ∈ γ with ψ(r) = Δhw(r)−Φ(r).
In view of (2.3), function ψ(r) is of order O(h2

1 + h2
2) for each r ∈ ω,

hence |ψ|0,ω = O(h2
1 + h2

2). Thus, the a priori estimate |w − wh|2,ω ≤
M |ψ|0,ω and the imbedding inequality

(2.8) |z|C(ω) ≤M |z|2,ω

prove the theorem.

Thus, we have shown that the method has a second order accuracy
in C(ω) in the whole domain, in particular at the mesh points close to
Σ.

Let us compare the accuracy of the presented method and the method
proposed by Mokin [15] under one and the same smoothness require-
ments for the solution. The rate of convergence in [15] is O(h1.5) in
W 2

2 (ω) norm. We have obtained a higher accuracy in Theorem 2 be-
cause the terms of first order in h were included in Φ(r).

Let us count the arithmetic operations used for evaluation of the
approximation wh of the potential w(r) at the N1N2 points of ω. The
determination of Φ(r) at points r ∈ ω∗ requires O(N1+N2) operations.
The evaluation of the logarithmic potential at O(N1 + N2) points of
the boundary γ by the n points rectangular rule needs O((N1 +N2)n)
operations. The solution wh of (2.6) and (2.7) can be found by any
fast solver. If we use FFT, O((N2

1 + N2
2 ) log(N1N2)) operations are

required. Therefore, the proposed algorithm for evaluation of w(r) at
N1N2 points of ω can be realized by O((N2

1 +N2
2 ) log(N1N2)) arithmetic

operations.

3. Evaluation of a potential with kernel G(r, s). The aim of
this section is to present a second order accurate numerical method for
calculation of the potential V (r) with kernel G(r, s) at the N1N2 points
of ω with operation count O((N2

1 +N2
2 ) log(N1N2)).

Let the (defined by (1.10)) potential V (r) be a C2 smooth function in
Ω and a C6 smooth function relative to the curve Σ (these conditions



BOUNDARY ELEMENT METHOD 361

are fulfilled if we assume g ∈ H3+ε(Σ) and Σ ∈ H4+ε[0, 2π], ε > 0).
Our method is based on the fact that the potential V (r) is a solution
to the problem

Δ2V (r) + β2V (r) = −g(r)δΣ(r), r ∈ Ω,(2.9)

V (r) =
∂2V (r)
∂n2

= 0, r ∈ ∂Ω.(2.10)

We approximate (2.9) and (2.10) by a difference scheme on the mesh
ω. For the differential operator, we use the well-known 13-point discrete
approximation Δ2

hV (r) + β2V (r). At the points of ω\ω∗∗ this discrete
operator is zero up to terms of the order O(h2

1+h2
2). We shall find with

accuracy O(h1 + h2) the values of the discrete operator at the points
of ω∗∗ explicitly.

Expanding V (r), V (x + h1, y), V (x + 2h1, y), V (x − 2h1, y) and
V (x−h1, y) in Taylor series and replacing into the definition of Vx̄x̄xx(r),
we obtain

Vxxx̄x̄(r) =
∂4V (r)
∂x4

+ (2χD(r) − 1)Φ1(r) +O(h1 + h2), r ∈ ω∗∗,

where

Φ1(r) = sign (x∗−x) (2h1 − |x∗−x|)3+ − 4(h1 − |x∗−x|)3+
6h4

1

[
∂3V

∂x3

]
(r∗)

+
(2h1 − |x∗ − x|)4+ − 4(h1 − |x∗ − x|)4+

24h4
1

[
∂4V

∂x4

]
(r∗).

By analogy with the x-direction we obtain in the y-direction

Vyyȳȳ(r) =
∂4V (r)
∂y4

+ (2χD(r) − 1)Φ2(r) +O(h1 + h2), r ∈ ω∗∗,

where

Φ2(r) = sign (y∗ − y)
(2h2 − |y∗ − y|)3+ − 4(h2 − |y∗ − y|)3+

6h4
2

[
∂3V

∂y3

]
(r∗)

+
(2h2 − |y∗ − y|)4+ − 4(h2 − |y∗ − y|)4+

24h4
2

[
∂4V

∂y4

]
(r∗).
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Since the finite difference operator Vyȳxx̄ is the tensor product of the
univariate operators Vxx̄ and Vyȳ, we apply Vxx̄ for points (x, y + h2),
(x, y) and (x, y − h2) and evaluate Vyȳxx̄. We find

Vxx̄yȳ(r) =
∂4V (r)
∂x2∂y2

+ (2χD(r) − 1)Φ3(r) +O(h1 + h2), r ∈ ω∗∗,

where

Φ3(r) =
{

sign (x∗ − x)
(h1 − |x∗ − x|)3+

6h2
1

[
∂3V

∂x3

]
(r∗)

}
yȳ

+
{

(h1 − |x∗ − x|)4+
24h2

1

[
∂4V

∂x4

]
(r∗)

}
yȳ

+
h2

1

12h2
2

(h2 − |y − y∗|)0+
[
∂4V

∂x4

]
(r∗)

+ sign (y∗ − y)
(h2 − |y − y∗|)1+

h2
2

[
∂3V

∂x2∂y

]
(r∗)

+
(h2 − |y − y∗|)2+

2h2
2

[
∂4V

∂x2∂y2

]
(r∗)

Let us note that the truncated power notation allows us to apply the
above definitions of Φi(r), i = 1, 2, 3, not only for the case demonstrated
in Figure 2, but also when Σ intersects P (r) in another way. The
same definition can be used also for r ∈ ω\ω∗∗, when obviously
Φi(r) = 0. By Lemma 5, the jumps in the third and fourth derivatives
of V (r) are explicitly evaluated through the density function g(r) and
the parametrization of Σ. Hence the functions Φi(r), i = 1, 2, 3,
are determined in terms of g(r), the parametrization of Σ and some
distances from given points to the curve Σ.

We approximate problem (2.9) and (2.10) by the following difference
problem for the mesh function Vh

Δ2
hVh(r)+β2Vh(r) = (2χD(r)−1)(Φ1(r)+Φ2(r)+2Φ3(r)), r ∈ ω,

(2.11)

Vh(r)=0, r∈γ, Vh,yȳ(r)=0, r∈γ1, Vh,xx̄(r)=0, r∈γ2.
(2.12)
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Note that Vh is determined not only at the points of ω∪γ, but also at all
mesh points lying at distance h1 or h2 from ∂Ω outside Ω. The number
of unknown values of Vh(r) coincides with the number of equations in
(2.11) and (2.12), and the problem (2.11) and (2.12) is well posed.

The convergence analysis of (2.11) and (2.12) is carried out by using
the framework of finite difference schemes methods.

Theorem 3. Suppose V (r) is a potential defined by (1.10) which is
a C6 smooth function relative to Σ. Assume Vh(r) is the solution to
the problem (2.11) and (2.12). Then there exist positive constants Mi,
i = 1, 2, 3, depending only on Σ, such that

|V − Vh|4,ω ≤M1h
1.5|V |C6(D)∩C6(D1),

|V − Vh|3,ω ≤M2h
2(log h−1)0.5|V |C6(D)∩C6(D1),

|V − Vh|2,ω ≤M3h
2|V |C6(D)∩C6(D1).

Proof. We prove Theorem 3 in three steps.

Step 1. The error z(r) = V (r) − Vh(r) satisfies a problem of type
(2.11) and (2.12) with a right-hand side given by ψ(r) = Δ2

hV (r) +
β2V (r)−(2χD(r)−1)(Φ1(r)+Φ2(r)+2Φ3(r)). The local representations
of Vx̄x̄xx, Vyyȳȳ and Vxx̄yȳ obtained above give ψ(r) = O(h1 + h2) for
r ∈ ω∗∗. We have ψ(r) = O(h2

1 + h2
2) for r ∈ ω\ω∗∗.

Step 2. Regroup the terms in the scalar products (Δ2
hz+ β2z,Δ2

hz+
β2z), (Δ2

hz + β2z,Δhz) and (Δ2
hz + β2z, z). Then we obtain the

following a priori estimates

|z|24,ω + 2β2|z|22,ω + β4|z|20,ω ≤ |ψ|20,ω,(2.13)

|z|23,ω + β2|z|21,ω ≤ |(Δhz, ψ)|,(2.14)

|z|22,ω + β2|z|20,ω ≤ |(z, ψ)|.(2.15)

Consider (2.14). The estimate

max
r∈ω

|u(r)| ≤M(log h−1)0.5|u|1,ω
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is valid for any mesh function u(r) vanishing on γ. Applying the above
estimate for u = Δhz and combining with (2.14), we get

|z|23,ω ≤ (1, |ψ|) max
r∈ω

|Δhz| ≤M(1, |ψ|)(log h−1)0.5|z|3,ω.

Finally, we obtain

(2.16) |z|3,ω ≤M(1, |ψ|)(log h−1)0.5.

Using (2.8), we derive in a similar way from (2.15) that

(2.17) |z|2,ω ≤M(1, |ψ|).

Step 3. We substitute the formulas for ψ(r) obtained in Step 1 into
|ψ|0,ω and (1, |ψ|). Since the number of points in ω∗∗ is O(N1+N2), we
conclude that |ψ|0,ω = O(h1.5) and (1, |ψ|) = O(h2

1 + h2
2). Using these

estimates in (2.13), (2.16) and (2.17), we complete the proof.

The presented method for evaluation of potential V (r) leads to the
difference problem (2.11) and (2.12). The determination of Φi(r),
i = 1, 2, 3, at O(N1+N2) points of ω∗∗ requires O(N1+N2) operations.
The solution Vh(r) of (2.11) and (2.12) can be found by using fast algo-
rithms. For example, if we set uh = ΔhVh, problem (2.11) and (2.12)
can be treated as a couple of second order finite difference schemes for
Vh(r) and uh(r) with zero boundary conditions in a rectangular do-
main. Each of the two schemes can be solved using FFT. Therefore,
the total number of arithmetic operations is O((N2

1 +N2
2 ) log(N1N2)).

4. Evaluation of a potential with kernel ΔG(r, s). Consider
the potential W (r) defined by (1.11). Using a procedure similar to the
previous cases we can find W (r) as a solution to the BVP

(2.18) ΔW (r) = −g(r)δΣ(r) − β2

∫
Σ

G(r, s)g(s) ds, r ∈ Ω,

(2.19) W (r) = 0, r ∈ ∂Ω.
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Let the potential W (r), r ∈ Ω, be a four times continuously differen-
tiable function relative to the curve Σ. Conditions g ∈ H3+ε(Σ) and
Σ ∈ H4+ε[0, 2π]×H4+ε[0, 2π], ε > 0, provides the smoothness required.

Since the potential V1(r), defined by the kernel G(r, s) and the
same density g(r), satisfies the assumptions of Theorem 3, it can be
approximated as in Section 3 of Part 2 by the mesh function V1,h(r)
with an error bound

(2.20) |V1 − V1,h|2,ω ≤M4(h2
1 + h2

2)|V1|C6(D)∩C6(D1).

At the points r ∈ ω∗ with the same function Φ(r) we write, similarly
to (2.3),

ΔhW (r) = ΔW (r) + (2χD(r) − 1)Φ(r) +O(h2
1 + h2

2)

= −β2V1(r) + (2χD(r) − 1)Φ(r) +O(h2
1 + h2

2).

Approximate (2.15) and (2.16) by the finite difference scheme

ΔhWh(r) = −β2V1,h(r) + (2χD(r) − 1)Φ(r), r ∈ ω,(2.21)
Wh(r) = 0, r ∈ γ.(2.22)

Theorem 4. Suppose the potential W (r) defined by (1.11) is a four
times continuously differentiable function relative to the curve Σ. Let
Wh(r) be the solution to the difference scheme (2.21) and (2.22). Then
there exists a positive constant M5 such that

|W −Wh|2,ω ≤M5(h2
1 + h2

2)|W |C4(D)∩C4(D1).

The arguments given in the proof of Theorem 1 combined with
inequality (2.20) yield the estimate of Theorem 4.

Numerical computation of the solution Wh(r) to (2.21) and (2.22)
can be performed in three steps. First we evaluate an approximation
V1,h(r) to the potential V1(r) with kernel G(r, s) and the same density
g(r) at all points of the mesh ω. This part was described in Section 3
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of Part 2. Second we evaluate Φ(r) at the O(N1 + N2) points of ω∗.
In this way we obtain the right-hand side terms of (2.21). Third we
solve (2.21) and (2.22) using any fast solver (e.g., FFT). The amount of
arithmetic operations is O((N2

1 +N2
2 ) log(N1N2)) at the first and third

step and O(N1 + N2) at the second step. Hence, the total number
of operations required is approximately equal to the number of mesh
values (up to a logarithmic factor).

The methods considered in Sections 3 and 4 of Part 2 do not require
the evaluation of Green’s function.
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