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SIMPLE QUADRATURE FOR SINGULAR INTEGRALS

EZIO VENTURINO

ABSTRACT. In this note quadrature formulae for singular
integrals are derived that retain the nice features of Gauss-
Chebyshev quadrature, for example the easy to calculate
weights and nodes. The reason for these new formulae lies
in their application to a special method for solving singular
integral equations, where such properties need to be preserved.
The study shows that by subtracting the endpoint singulari-
ties, formulae converging to the desired integral are obtained.
The rates of convergence are shown to depend on the expo-
nents of the Gauss-Jacobi weight function. In practice, fast
convergence is attained, giving full accuracy with a very small
number of nodes, with execution times comparable to those
of Gaussian quadrature.

1. Introduction. Quadrature formulae for integrals possessing a
Cauchy principal value singularity have been investigated in the recent
literature; and generally, Gaussian quadrature of some form has been
used. In [10], for example, Gauss-Jacobi formulae have been derived for
applications to singular integral equations. The problem of convergence
of these rules has been resolved in [8]. A different approach has been
considered in [4], where quadrature formulae have been derived so that
the nodes coincide with the “practical” abscissae. Gauss type formulae,
however, are not the only way of dealing with the problem [14].

The aim of this note is to derive formulae and convergence results for
singular integrals with an approach similar to [4] where the nodes are
prescribed to be “practical” abscissae. Here we also retain the simple
weights of the classical Chebyshev quadrature.

The need for such formulae arises in applications to singular integral
equations (SIE’s) [18], where the integral is discretized using Gauss-
Chebyshev quadrature, at the expense of accuracy, since the endpoint
behavior of the solution is ignored. In this way it is possible to make
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use of known results on sums of zeros of Chebyshev polynomials [17] in
the error analysis. The aim of our alternative algorithm is to obtain ex-
ecution times comparable to the ordinary algorithm based on Gaussian
quadrature, but simplifying the code considerably, since no subroutines
for the calculation of quadrature nodes and weights are required. The
error analysis of [18] for the negative index equation breaks down for
index one, the reason being the presence of endpoint singularities. The
present scheme is needed to accelerate the convergence of the scheme
for the solution of the SIE with negative index, and to show conver-
gence in the more physically interesting case of index 1. The rates of
convergence of the proposed quadratures are shown to depend on the
exponents of the Gauss-Jacobi weight. For a smooth integrand, very
fast convergence is obtained, and double precision accuracy in our ex-
amples is reached by using 16 nodes, plus a small number of endpoint
conditions, at most 10. The experiments show that the startup time
for the endpoint interpolatory conditions is very small, and overall the
execution time is comparable to the corresponding Gaussian quadra-
ture. Another advantage of the present scheme is that it avoids the
recalculation of the function evaluations at the nodes when doubling
the system size.

We begin the note by giving the key to the error analysis of the
formulae studied in the later sections. In Section 3 we study the
formulae for a smooth integrand. These results are then extended to
Cauchy principal value integrals in Section 4. In the last section we
provide some illustrative examples of the proposed quadratures.

2. Preliminaries. In order to present the key idea underlying the
paper, let us start by considering the problem of evaluating

(2.1) I =
∫ 1

−1

w(x)f(x) dx,

where we assume ∫ 1

−1

w(x) dx <∞.

Here f ∈ Cm+λ[−1, 1], 0 < λ ≤ 1, m a nonnegative integer, i.e., f has
m continuous derivatives and them-th derivative is a Hölder continuous
function of exponent λ over [−1, 1]:

|f (m)(x) − f (m)(t)| ≤ C|x− t|λ, x, t ∈ (−1, 1),
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which is denoted by writing f (m) ∈ Hλ[−1, 1]. The same notation will
be used later, so that whenever f ∈ Cτ [−1, 1], τ ∈ R+, we will always
understand f ∈ Ct[−1, 1], with t ≡ [τ ], the integer part of τ , and
f (t) ∈ Hτ−t[−1, 1].

A quadrature formula can be constructed by replacing f , the smooth
part of the integrand, with its Lagrange interpolatory polynomial
Ln−1(f,X, x) over a set of nodes X = {x1, . . . , xn}. The weights of
the quadrature are easily obtained

(2.2)

Qn :=
∫ 1

−1

w(x)Ln−1(f,X, x) dx =
n∑

j=1

f(xj)
∫ 1

−1

w(x)lj(x) dx

≡
n∑

j=1

wjf(xj).

The quadrature error Rn(f) ≡ I −Qn can be estimated using p∗n−1,
the best approximation polynomial of degree n−1 in the uniform norm,
observing that it is interpolated exactly by the above Lagrange formula.

Let En−1(f) denote the best approximation error in the uniform norm,
and let Πn−1 denote the set of polynomials of degree up to n− 1, then

En−1(f) = ||f − p∗n−1||∞ ≡ min
p∈Πn−1

||f − p||∞.

It then follows

|Rn(f)| =
∣∣∣∣
∫ 1

−1

w(x)[f(x) − p∗n−1(x)] dx

+
∫ 1

−1

w(x)Ln−1(p∗n−1 − f,X, x) dx
∣∣∣∣

≤ En−1(f)
[
1 + max

−1≤x≤1

n∑
j=1

|lj(x)|
] ∫ 1

−1

|w(x)| dx

≡ En−1(f)[1 + Λn(X)]
∫ 1

−1

|w(x)| dx.

Let us define Vn ≡ {t1, . . . , tn}, the set of the zeros of Tn(x), the
first kind Chebyshev polynomial of degree n. If Λ(Vn) is the Lebesgue
constant relative to the set Vn, then from [16, (1.3), p. 13],

Λ(Vn) ≤ (2/π) log(n) + 1, n = 1, 2, . . . .



260 E. VENTURINO

Let Sn+1 ≡ {s0 ≡ 1, s1, . . . , sn−1, sn ≡ −1}, where sj , j = 1, . . . , n−1,
denote the zeros of Un−1(x), the second kind Chebyshev polynomial of
degree n−1. It has been shown that Λ(Sn+1) ≤ Λ(Vn), so that a result
similar to the above holds for X ≡ Sn+1, [6, (4.6) and (5.1)].

Let us denote by ω(f, δ) the modulus of continuity of the function f .
The following theorem is well known [11, Theorem VIII, p. 18]. It can
be stated as follows:

Theorem. If f ∈ Cm+λ[−1, 1], with m and λ defined above, then
for every n > m, there is a polynomial of degree n, Pn(x), such that,
for every x ∈ [−1, 1],

|f(x) − Pn(x)| ≤ Cn−mω(f (m), 2/(n−m)).

This result simply estimates the best approximation error in the
uniform norm. Let us observe that the modulus of continuity can be
estimated in terms of the exponent of the Hölder class to which the
function belongs, [4]. We then have, for X ≡ Vn or X ≡ Sn+1,

(2.3)

|Rn(f)| ≤ C1En−1(f)[1 + Λ(X)]

≤ C2n
−mω(f (m), 2/(n−m)) log(n)

≤ C3n
−(m+λ) log(n) ≤ C4n

−(m+λ)+ε,

with ε > 0 arbitrarily small. In summary,

Proposition 1. For w(x) = (1 − x2)−1/2, the rate of convergence
of the quadrature formula (2.2) is determined by (2.3), in the two cases
corresponding to Gauss-Chebyshev quadrature, X ≡ Vn, xk = tk, wk =
n−1, k = 1, . . . , n, and to Lobatto-Chebyshev quadrature, X ≡ Sn+1,
xj = sj, wj = n−1, j = 0, 1, . . . , n.

Remark . From this statement the fundamental role played by the
degree of smoothness of f is evident. An integration rule will be
constructed by suitably modifying the integrand so as to apply Gauss-
Chebyshev or Lobatto-Chebyshev quadrature. Throughout the paper
the result will be used to obtain convergence rates by determining how
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many continuous derivatives the “modified” integrand possesses and in
which Hölder class the highest continuous derivative lies.

To obtain asymptotic estimates on the rates of convergence, the
remainder of the quadrature must be rewritten as a contour integral.
From (2.2), the weights can be explicitly rewritten by letting

pn(x) =
n∏

j=1

(x− xj),

to obtain

(2.4) wj = [p′n(xj)]−1

∫ 1

−1

w(x)pn(x)(x− xj)−1 dx.

The “second kind functions” are defined as follows [2]:

(2.5) qn(z) :=
∫ 1

−1

w(x)pn(x)(z − x)−1 dx, z /∈ [−1, 1].

From Cauchy’s formula, if C is a contour containing the interval [−1, 1]
in its interior, with no singularity of f lying on it or in its interior, we
can write

(2.6)
∫ 1

−1

f(t)w(t) dt = (2πi)−1

∫
C

f(z)
∫ 1

−1

w(t)(z − t)−1 dt dz.

Define P̂ (z) by

P̂ (z) := [pn(z)]−1

∫ 1

−1

[pn(z) − pn(t)]w(t)(z − t)−1 dt, z /∈ [−1, 1].

Then from (2.4) wj is the residual of P̂ (z) at z ≡ xj , so that

(2.7)
n∑

j=1

wjf(xj) =
n∑

j=1

Res (P̂ f, xj) = (2πi)−1

∫
C

f(z)P̂ (z) dz.
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On using the definition of P̂ in (2.7), from (2.6) and the definition of
Rn(f), it follows

(2.8) Rn(f) = (2πi)−1

∫
C

f(z)qn(z)/pn(z) dz.

We will use this formula together with the representations for
qn(z)/pn(z) provided by [5], which hold for any z ∈ C, for pn(z) being
the first and second kind Chebyshev polynomials. In the former case,
from [5, (A.4)], we have

(2.9) qn(z)/Tn(z) = 2π(z2 − 1)−1/2{[z + (z2 − 1)1/2]2n + 1}−1.

For Lobatto-Chebyshev quadrature, notice that pn(x) in (2.5) should
be replaced by the polynomial (1 − x2)Un−1(x). Let qLC

n+1(z) denote
the second kind function arising from these polynomials. It is easily
seen that, denoting by q2K

n−1(z), the same function arising from the
second kind Chebyshev polynomials, i.e., from the replacement of pn

in formula (2.5) by the polynomial Un−1, we have

qLC
n+1(z) ≡

∫ 1

−1

Un−1(x)(1 − x2)(z − t)−1(1 − x2)−1/2 dt

≡
∫ 1

−1

Un−1(x)(z − t)−1(1 − x2)1/2 dt ≡ q2K
n−1(z).

We can then use (A.5) of [5] for q2K
n−1(z)/Un−1(z) to get

(2.10)

qLC
n+1(z)(z

2−1)−1/Un−1(z) ≡ 2π(z2−1)−1/2{[z + (z2−1)1/2]2n −1}−1.

Since these functions have branch points at ±1, we choose the cuts to
be from 1 to infinity along the positive real axis, and symmetrically on
the negative real axis, i.e., we assume

(2.11) −π < arg(z + 1) < π, 0 < arg(z − 1) < 2π.

In the rest of the paper, the following quantities will be used

(2.12)
α = γ + 1/2, β = δ + 1/2,
λ = α+ r + 1, ζ = β + l + 1,
τ = min(λ, ζ), ξ = τ − 1.
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3. Smooth integrands. Let us define ρδγ(x) = (1 + x)δ(1 − x)γ .
The integral under consideration in this section can be written as

(3.1) I =
1
π

∫ 1

−1

ρδγ(x)g(x) dx

with g(x) smooth in [−1, 1]. The integrability conditions require that
γ, δ > −1; and the worst case is −1 < γ, δ < 0, for which the integrand
is unbounded at both endpoints. Introducing the Chebyshev weight of
the first kind, we can rewrite (3.1) as

(3.2) I =
1
π

∫ 1

−1

ρβα(x)g(x)
dx√

1 − x2
.

Let p	r(x) represent the polynomial of degree ≤ �+r+1 interpolating
g(x) and its first � derivatives at −1, and interpolating g and its first r
derivatives at 1. Explicitly, letting Dj ≡ dj/dxj ,

(3.3) p	r(x) =
	∑

i=0

L	r
i (x)g(i)(−1) +

r∑
i=0

R	r
i (x)g(i)(1),

where L	r
i (x) and R	r

i (x) satisfy

(3.4)

(DqL	r
i )(−1) = δiq i, q = 0, 1, . . . , �,

(DqL	r
i )(1) = 0, i = 0, 1, . . . , �, q = 0, 1, . . . , r,

(DqR	r
i )(−1) = 0 i = 0, 1, . . . , r, q = 0, 1, . . . , �.

(DqR	r
i )(1) = δiq, i, q = 0, 1, . . . , r.

The polynomials L	r
i (x), i = 0, 1, . . . , �, and R	r

j (x), j = 0, 1, . . . , r,
can be written in terms of powers of (1 − x) and (1 + x) as follows:

(3.5)

L	r
i (x) = (1 − x)r+1

	∑
j=0

l	rij (1 + x)j , i = 0, . . . , �,

R	r
i (x) = (1 + x)	+1

r∑
j=0

r	r
ij (1 − x)j , i = 0, . . . , r.
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Lemma. The coefficients in the above expressions have the explicit
form

(3.6)

l	rij =

⎧⎨
⎩

0 for i > j

2−(r+j+1−i)/i!
(
r + j − i

r

)
for i ≤ j

r	r
ij =

⎧⎨
⎩

0 for i > j

(−1)i2−(	+j+1−i)/i!
(
�+ j − i

�

)
for i ≤ j.

Proof. We only sketch the proof of the first claim. Omitting the
superscripts, from (3.5) for q < i, we have a homogeneous nonsingular
triangular system, so that li,j = 0, j = 0, 1, . . . , i − 1. Using this fact
for q = i, we immediately have lii = 1/i!2−r−1, verifying (3.6). By
induction, we then need to show that

q∑
k=0

(−1)k

(
q
k

)
(r + 1)k2r+1−kli,q−k(q − k)! = 0.

Rewriting, using the inductive assumption, the previous result, and
(3.6), the claim is then reduced to showing that

q−i∑
k=0

(−1)k+1

(
r + 1
k

) (
r + q − k − i

r

)
= 0.

The identity

(
r + 1
k

) (
r + q − k − i

r

)
=

(
r + q − i
r + k

) (
r + k
r

)

is verified since the left hand side counts the number of ways of selecting
k objects from a set of r+1, then adding to the set another q−i objects
and selecting additional r. The same result is obtained by immediately
adding to the box the q − i − 1 extra objects, selecting r + k of them
and, from these, then selecting a subset of r elements. The right hand
side counts the number of ways of proceeding in this way. Using the
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identity we verify the former formula, since it reduces to (1 − x)q−i

evaluated at x = 1.

Now let H	r(x) ≡ ρβα(x)[g(x)−p	r(x)]. Subtracting out the endpoint
singularities, the integral I can be rewritten as

(3.7) I =
1
π

∫ 1

−1

H	r(x)
dx√

1 − x2
+

1
π

∫ 1

−1

ρδγ(x)p	r(x) dx.

Gauss Chebyshev quadrature can now be applied to the first integral.
The second term can be evaluated analytically by means of [9, (3.196.3),
p. 285]

(3.8)

E(ν, μ) ≡ 1
π

∫ 1

−1

(1 − x)μ(1 + x)ν dx =
2μ+ν+1

π

Γ(μ+ 1)Γ(ν + 1)
Γ(μ+ ν + 2)

,

Re (μ),Re (ν) > 0.

We obtain in this way an approximate value for I, which we denote
by Q	r

n , since it is obtained with �, r-type endpoint interpolation and n
quadrature nodes. Then

(3.9)

Q	r
n :=

1
n

n∑
k=1

H	r(tk) +
	∑

i=0

g(i)(−1)
	∑

j=0

l	rijE(j + δ, r + 1 + γ)

+
r∑

i=0

g(i)(1)
r∑

j=0

r	r
ijE(�+ 1 + δ, j + γ).

Alternatively, Lobatto-Chebyshev quadrature can be used. Proceeding
as above, we are led to the quadrature which we denote by Q̂	r

n+1:
(3.10)

Q̂	r
n+1 :=

1
n

n∑′′

k=0

H	r(sk) +
	∑

i=0

g(i)(−1)
	∑

j=0

l	rijE(j + δ, r + 1 + γ)

+
r∑

i=0

g(i)(1)
r∑

j=0

r	r
ijE(�+ 1 + δ, j + γ),
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where the terms for k = 0 and k = n in the first sum are halved.

To determine the rate of convergence of these formulae, use Proposi-
tion 1. We then have

Proposition 2. The error in the quadrature formulae (3.9) and
(3.10) converges at worst as

(3.11) |Rn(H	r)| ≤ Cn−τ+ε, |R̂n(H	r)| ≤ Ĉn−τ+ε,

with ε > 0 arbitrarily small, C, Ĉ being constants, where we recall that
τ = min(λ, ζ).

Proof. We need only to determine the behavior of H	r(x) near each
endpoint, since inside the interval (−1, 1) H	r is smooth; by using
Taylor’s formula, it is easily seen that it behaves as (1 − x)λ near
x = 1 and as (1 + x)ζ near x = −1, with α, β > −1/2. It follows that
H	r ∈ Cτ [−1, 1]. The claim follows from Proposition 1.

An improvement can be obtained by using an asymptotic analysis,
following [2, 5]. The function ρβα(x), from which H	r(x) depends, is
extended to the complex plane by the cuts (2.11). We specialize now
the contour C of (2.8) by taking it to be made by two arcs of the
circle in the complex plane Re iθ, ϕ ≤ θ ≤ π − ϕ, ϕ = arcsin(η/R),
η > 0 small, and π + ϕ ≤ θ ≤ 2π − ϕ, R > 1, by two arcs of circle of
radius ε < 1 around the points −1 and 1, 1 + εeiθ, ψ ≤ θ ≤ 2π − ψ,
and −1 + εeiθ, π − ψ < θ ≤ −π + ψ, ψ = arcsin(η/ε), and by the
portions of the real axis joining these circles, described once in each
sense, i.e., the four segments [1+ ε+ iη, R+ iη], [−R+ iη,−1− ε+ iη],
[−1− ε− iη,−R− iη], [R− iη, 1 + ε− iη]. The result can be stated as
follows.

Proposition 3. If c(H	r, τ ) denotes a constant depending on the
integrand but independent of n, with τ as defined in (2.12), for the
quadrature formulae (3.9) and (3.10), we have asymptotically,

(3.12) Rn(H	r) ∼= c(H	r, τ )n−2τ−1, R̂n(H	r) ∼= ĉ(H	r, τ )n−2τ−1.



SIMPLE QUADRATURE FOR SINGULAR INTEGRALS 267

Proof. From the definition of H	r, asymptotically as z → ±1, [2],

(3.13) H	r(z) ∼= (z + 1)ζ(1 − z)λ.

Since the contributions of the segments of the contour C are the only
ones that are not negligible in the limit as R → ∞ and ε → 0, from
(2.8) for η > 0, we obtain

Rn(H	r)(2πi)−1

[ ∫ R+iη

1+ε+iη

+
∫ −1−ε+iη

−R+iη

+
∫ −R−iη

−1−R−iη

+
∫ 1+ε−iη

R−iη

]
H	r(z)qn(z)/pn(z) dz.

Let

Ψ(x) ≡

⎧⎪⎪⎨
⎪⎪⎩

{[x+ (x2 − 1)1/2]2n + 1}−1,

if Gauss-Chebyshev quadrature is used
{[x+ (x2 − 1)1/2]2n − 1}−1,

if Lobatto-Chebyshev quadrature is used.

As ε, η → 0, R → ∞, using (3.13), (2.9) and (2.10), the expression for
the remainder becomes

Rn(H	r) = 2 sin(πλ)
∫ ∞

1

(1 + x)δ+	+1(x− 1)γ+r+1Ψ(x) dx

+ (−1)γ+δ+r+	2 sin(πζ)

·
∫ ∞

1

(1 + x)γ+r+1(x− 1)δ+	+1Ψ(−x) dx.

Use now the substitution x = coshθ. Notice that Ψ(coshθ) ∼=
(cosh θ)−2n ∼= e−2nθ, so that for large θ the integrand is negligible.
Thus the major contribution of the integrand is near the origin. These
considerations make the replacement 1+coshθ ∼= 2+ θ2/2 ∼= 2 permis-
sible. We finally obtain the estimate

Rn(H	r) ∼= 2δ+	+1−γ−r sin(πλ)
∫ ∞

0

θ2γ+2r+3e−2nθ dθ

+ (−1)γ+δ+r+	2γ+r+1−δ−	 sin(πζ)
∫ ∞

0

θ2δ+2	+3e−2nθ dθ.
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Letting t = nθ, the claim finally follows.

4. Cauchy principal value integrals. The integral considered in
this section is

(4.1) I(a) =
1
π

∫ 1

−1

− ρδγ(x)
g(x)
x− a

dx,

where the symbol on the right hand side represents the Cauchy principal
value and g is smooth in [−1, 1]. It can be rewritten as follows:

(4.2) I(a) =
1
π

∫ 1

−1

− ρβα(x)
g(x)
x− a

dx√
1 − x2

.

For SIE’s, an important quantity which ties the physics of the under-
lying phenomenon with the mathematical properties of the solution is
given by the index χ, defined in terms of the coefficients of the equa-
tion, see [18]. For equations with constant coefficients, the index can
be shown to be χ = −(γ + δ) and always to attain the values −1, 0 or
1. For the negative index −1, the function ρβα(x) is bounded at the
endpoints. After adding and subtracting g(a) from g(x), the integral is
split and the Cauchy principal value is thus replaced by a bounded term,
using the smoothness assumption on g. Gauss-Chebyshev quadrature
can thus be applied. For the SIE discretized in this way, convergence is
ensured. For the details on the procedure and on the results, see [18].
The same situation occurs if the index is zero and −1/2 ≤ γ ≤ 0 or
−1/2 ≤ δ ≤ 0. The remaining cases lead to a function ρβα(x) which
is unbounded at least at one of the two endpoints; using the above
analysis, not even convergence can be obtained. The worst case arises
for −1 < γ ≤ −1/2 ≤ δ < 0, or for the symmetric situation obtained
by exchanging δ and γ. In such situations, the behavior of the weight
function must explicitly be taken into account, before being able to ap-
ply the quadrature. The following scheme is proposed as a corrective.
It is our hope that it will help in solving SIE’s of positive index and,
perhaps, lead to a viable speedup also for the scheme already proposed
for negative index SIE’s.

Let us define

(4.3) σ	r(x) = ρβα(x)[g(x) − p	r(x)].
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Observe that σ	r is smooth inside (−1, 1), and near the endpoints,

σ	r(x) ∼= C(1 − x)λ, σ	r(x) ∼= C(1 + x)ζ ,

so that σ	r ∈ Cτ [−1, 1], provided that g belongs at least to the same
class. The integral can then be calculated by rewriting it as follows:

(4.4)
I(a) =

1
π

∫ 1

−1

[σ	r(x) − σ	r(a)](x− a)−1 dx√
1 − x2

+ π−1

∫ 1

−1

− ρδγ(x)p	r(x)/(x− a) dx,

where we have used the fact that∫ 1

−1

− (x− a)−1 dx√
1 − x2

= 0.

On the first integral, Gauss-Chebyshev quadrature can be applied,
and the second integral can be evaluated by means of the following
formula [9 (3.228.3), p. 290]
(4.5)

E∗(ν, μ, a) =
∫ 1

−1

− (1 + x)ν(1 − x)μ

x− a
dx

= (1 + a)ν(1 − a)μ cot(π(μ+ 1))
− 2μ+νB(μ, ν + 1)2F1(−μ− ν, 1; 1 − μ; (1 − a)/2),

Reμ,Re ν > 0,−1 < a < 1.

Define the following function:

(4.6) h	r(x) =
{

[σ	r(x) − σ	r(a)](x− a)−1, if x 	= a

σ′
	r(a), if x = a.

Thus h	r(x) ∈ Cξ(−1, 1). Then, proceeding similarly to the previous
section, we can introduce the quadrature Q	r

n (a), obtained by �, r-type
endpoint interpolation on the singular integral, followed by Gauss-
Chebyshev quadrature
(4.7)

Q	r
n (a) : =

1
n

n∑
k=1

h	r(tk) +
	∑

i=0

g(i)(−1)
	∑

j=0

l	rijE
∗(j + δ, r + 1 + γ, a)

+
r∑

i=0

g(i)(1)
r∑

j=0

r	r
ijE

∗(�+ 1 + δ, j + γ, a).



270 E. VENTURINO

An alternative procedure is to repeat the argument followed by
Lobatto-Chebyshev quadrature, thus obtaining the quadrature denoted
by Q̂	r

n+1(a):
(4.8)

Q̂	r
n+1(a) : =

1
n

n∑′′

k=0

h	r(sk) +
	∑

i=0

g(i)(−1)
	∑

j=0

l	rijE
∗(j + δ, r + 1 + γ, a)

+
r∑

i=0

g(i)(1)
r∑

j=0

r	r
ijE

∗(�+ 1 + δ, j + γ, a).

We then have

Proposition 4. The quadrature formulae (4.7) and (4.8) for the
Cauchy principal value integral (4.2) converge at worst as

(4.9) |Rn(h	r)| ≤ Cn−ξ+ε, |R̂n(h	r)| ≤ Ĉn−ξ+ε,

with ε > 0 arbitrarily small. Asymptotically, a better estimate is given
by

(4.10) Rn(h	r) ∼= c(h	r, ξ)n−2ξ−1, R̂n(h	r) ∼= ĉ(h	r, ξ)n−2ξ−1,

where we recall ξ = min(λ, ζ) − 1.

Proof. The first claim follows from Proposition 1, since σ	r ∈
Cξ[−1, 1], by repeating the arguments of Proposition 2. For the
asymptotic estimate, proceed as in Proposition 3, with H	r replaced
by h	r, observing that in this case we have h	r

∼= (1 +x)ζ−1(1−x)λ−1.

In the particular case that a is a zero of a Chebyshev polynomial
of the second kind, Un(a) = 0 for some n; then also Uq(a) = 0 for
q = n · 2m and m = 1, 2, . . . . The remark following (2.10) of [8] on
the convergence to zero of the quadrature error Rn(h	r) can then be
applied so that the rate of convergence will be τ rather than ξ. Using
results on the sum of zeros of Chebyshev polynomials of first and second
kind of [17],

n∑
k=1

1
tk − sj

= 0, j = 1, . . . , n− 1,
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we can simplify (4.7) as follows:
(4.11)

Q	r
n (a) =

1
n

n∑
k=1

σ	r(tk)
tk − a

+
	∑

i=0

g(i)(−1)
	∑

j=0

l	rijE
∗(j + γ, r + 1 + δ, a)

+
r∑

i=0

g(i)(1)
r∑

j=0

r	r
ijE

∗(�+ 1 + γ, j + δ, a).

5. Numerical experiments and discussion. We performed some
experiments on an 80386-based machine. In all the examples, the
smooth part of the integrand is exp(x). We provide for comparison
the value and the execution time for the corresponding Gaussian
quadrature. We give the time for Gaussian quadrature for the minimum
number of nodes that gives double precision accuracy, and also for a
larger number of nodes. We do this because to obtain an accurate
answer in solving an SIE, a system of about that size must be solved.
Also we give the startup time to calculate the quantities E(ν, μ) and
E∗(ν, μ, a) for evaluating the interpolatory polynomials. This time
added to the execution time of each run is seen to be comparable to
the time needed by Gaussian quadrature. We show the results obtained
by running some different cases. By increasing the degree of endpoint
interpolation, the rate of convergence is increased at the expense of
execution time and of the complexity of the code. We found that a
4,4-type formula is satisfactory from both points of view.

Even though the integrand does not satisfy the hypotheses of the
asymptotic analysis, we see that the actual convergence rate is close to
the theoretical one. At first, it is usually larger than the theoretical
value, then decreasing with the increase of n. The final values shown in
the tables do not show any improvement since they are clearly affected
by round-off errors. However, this is easily explained by observing that
we are down to machine accuracy, by counting the digits of the result.
Even Gaussian quadrature exhibits oscillations in the next to the last
digit in Table 1.

Table 1 illustrates Section 3 using formula (3.9). The results exhibit
fast convergence, even when the endpoint singularities approach −1.
In Table 2, we consider the Cauchy principal value integral. The
“collocation point” a is chosen to be very close to the endpoint, to show
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the behavior of quadrature (4.7) on this badly behaved case, when the
endpoint singular behavior is coupled with the Cauchy principal value
singularity. This must be analyzed since, in case of an integral equation,
when the size of the system grows large, the collocation points approach
the endpoints. Even in this situation the proposed algorithm exhibits
fast convergence. It is our hope that a scheme for the solution of
singular integral equations with variable coefficients can be constructed
using the method presented here. This has the advantage of avoiding
the construction of the nonclassical weights and nodes required by the
integral. Should a second run with twice as many nodes be required,
another advantage is the reuse of previous function evaluations at the
old nodes, if the Lobatto-Chebyshev scheme is used.

TABLE 1.

g(x) = exp(x), γ = −.97600, δ = −.98900, startup time = 0.05

Gaussian quadrature:
8 nodes, value 74.02104606681937; time used = .06
35 nodes, value 74.02104606681917; time used = .44

� = 2, r = 2 2τ + 1 = 6.022
time n Rn(H	r) log |Rn(H	r)/R2n(H	r)|/ log(2)
.00 2 -.751E-03
.00 4 .549E-05 7.09
.00 8 .468E-07 6.87
.05 16 .636E-09 6.20
.06 32 .936E-11 6.09
.11 64 .568E-13 7.36
.22 128 -.852E-13 -.58

� = 3, r = 3 2τ + 1 = 8.022
time n Rn(H	r) log |Rn(H	r)/R2n(H	r)|/ log(2)
.00 2 .165E-04
.05 4 .260E-06 5.98
.00 8 .171E-09 10.57
.06 16 .412E-12 8.70
.11 32 -.852E-13 2.27
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TABLE 1 (continued).

� = 3, r = 4 2τ + 1 = 8.022
time n Rn(H	r) log |Rn(H	r)/R2n(H	r)|/ log(2)
.05 2 -.202E-05
.00 4 -.410E-07 5.63
.06 8 -.185E-10 11.11
.11 16 -.142E-12 7.03
.11 32 -.852E-13 .74

� = 2, r = 4 2τ + 1 = 6.022
time n Rn(H	r) log |Rn(H	r)/R2n(H	r)|/ log(2)
.00 2 -.132E-04
.00 4 .469E-06 4.82
.06 8 .204E-08 7.84
.05 16 .262E-10 6.29
.11 32 .312E-12 6.39
.22 64 -.710E-13 2.14
.44 128 -.852E-13 -.26

� = 4, r = 4 2τ + 1 = 10.022
time n Rn(H	r) log |Rn(H	r)/R2n(H	r)|/ log(2)
.00 2 -.192E-06
.06 4 -.121E-07 3.99
.05 8 .710E-12 14.06
.06 16 -.710E-13 3.32
.22 32 -.852E-13 -.26
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TABLE 2.

g(x) = exp(x), a = .99, γ = −.9900, δ = −.0100, startup time = 0.05

Gaussian quadrature:
7 nodes, value 25784.92851530243; time used = .05
35 nodes, value 25784.92851530243; time used = .50

� = 2, r = 3 2ξ + 1 = 5.98
time n Rn(h	r) log |Rn(h	r)/R2n(h	r)|/ log(2)
.00 2 -.116E-03
.06 4 .118E-05 6.62
.05 8 .723E-08 7.36
.06 16 .618E-10 6.87
.16 32 -.727E-11 3.09

� = 3, r = 3 2ξ + 1 = 6.02
time n Rn(h	r) log |Rn(h	r)/R2n(h	r)|/ log(2)
.00 2 -.921E-05
.00 4 .500E-06 4.20
.11 8 .172E-08 8.18
.11 16 .727E-11 7.89
.22 32 -.727E-11 .00

� = 3, r = 4 2ξ + 1 = 7.98
time n Rn(h	r) log |Rn(h	r)/R2n(h	r)|/ log(2)
.05 2 .202E-05
.00 4 .218E-07 6.53
.11 8 .145E-10 10.55
.17 16 -.727E-11 1.00
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TABLE 2 (continued).

� = 2, r = 4 2ξ + 1 = 5.98
time n Rn(h	r) log |Rn(h	r)/R2n(h	r)|/ log(2)
.00 2 .206E-04
.06 4 .309E-06 6.06
.05 8 .200E-09 10.60
.11 16 -.727E-11 4.78

� = 4, r = 4 2ξ + 1 = 8.02
time n Rn(h	r) log |Rn(h	r)/R2n(h	r)|/ log(2)
.00 2 .170E-06
.06 4 .789E-08 4.42
.05 8 -.000E-00
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