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A FREDHOLM EQUATION FOR THE
HANKEL SINGULAR VALUES OF SYSTEMS

WITH DISTRIBUTED INPUT DELAYS

L. PANDOLFI

ABSTRACT. We study a system with continuous input
delays (no state delay). We show that its Hankel operator
is compact and that the singular values are the square roots
of the positive eigenvalues of a Fredholm integral operator.

1. Introduction. Hankel norm and Hankel singular values of
distributed systems have been studied by several authors in recent times
[2]. Some of these papers deal specifically with delay systems ([3, 1, 10,
11] for example) usually assuming discrete delays. Very few authors
considered specifically systems with distributed delays (see [11] where a
transfer function of a system with distributed delays and no pole was
studied). Actually, a system with only distributed delays admits a
state space representation which is quite simple, and this suggests
that we consider this abstract state space representation described
below as a starting point for formulas which can lead to an alternative
characterization of singular values. A consequence of this fact is that
the operator PQ introduced below is compact so that σ(PQ)/{0} =
σp(PQ)/{0} and the singular values can only accumulate at zero.

In this paper we study the control system

(1) ẋ = Ax +
∫ 0

−τ

B(s)u(t + s) ds + B0u(t) y = Cx(t).

The letters x, y, u denote respectively n-, p- and m-vectors and the
matrices have suitable dimensions. The entries of the matrix B(·) are
square integrable functions while the remaining matrices are constant.

We assume that A is a stable matrix, i.e., that σ(A) ⊆ {z, Re z < 0}
so that it is possible to define the Hankel operator Γ : L2(0, +∞) →
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L2(0, +∞):

(2) (Γu)(t) = C

∫ +∞

0

eA(t+s)

{
B0u(s) +

∫ 0

−τ

B(r)u(s + r) dr

}
ds.

Here we intend that
u(t) = 0 if t < 0.

The singular values of the operator Γ, i.e., the square roots of
the positive eigenvalues σ2

i of Γ∗Γ, have a great importance in the
theory of linear system [5], in particular, in model reduction, and
the largest of them, σ0, is related to the model matching problem:
inf {||T (z)−Q(z)||∞, Q antistable matrix} = σ0. See [4] for references
and applications.

In this paper we show that the singular values are the square roots
of the eigenvalues of a certain Fredholm operator which can easily be
constructed from the coefficients of the equation (1). This reduces the
computation of the singular values to a standard problem in numerical
analysis.

2. Abstract representation of systems with distributed
delays. An abstract state space representation of system (1) was first
proposed in [13]. It is based on the following simple observation: the
solution to the problem

d

dt
V (t, ϑ) = − d

dϑ
V (t, ϑ) + B(ϑ)u(t), −τ < ϑ < 0,

V (t,−τ ) = 0, V (0, ϑ) = η(ϑ)

is:

(3)

V (t, ϑ) =
{

η(ϑ − t) for −τ < ϑ − t < 0

0 otherwise

+
∫ ϑ

max(ϑ−t,−τ)

B(r)u(r + t − ϑ) dr.

If η(·) = 0 and t > τ , then we get V (t, 0) =
∫ 0

−τ
B(r)u(t + r) dr.

This observation suggests the following framework: the state space is
M2 = Rn × L2(−1, 0;Rn) and A is the operator:

dom (A) = {col (h0, h(·)) ∈ M2, h(·) ∈ W 1,2, h(−τ ) = 0},
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(4) A
(

h0

h(·)
)

=
(

Ah0 + h(0)
− d

dϑh(·)
)

.

If B : Rm → M2 is given by: Bu = col (B0u, B(·)u), an abstract
model for system (1) is:

(5)
d

dt
X(t) = AX(t) + Bu(t), y(t) = CX(t).

Here, X denotes a vector of M2, X(t) = col (x(t), x(t, ·)) and C is the
operator defined by CX = Cx.

The precise relation between the solutions of (1) and (5) is described
as follows (see [13]). Let us define the operator M : M2 → M2:

M
(

x0

v(·)
)

=
(

x0∫ ϑ

−τ
B(s)v(s − ϑ) ds

)
.

Moreover, let ut(·) be the segment of control ut(ϑ) = u(t + ϑ),
−τ < ϑ < 0. Then,

Theorem 1. If x(·) solves (1) with x(0) = x0, u(ϑ) = η(ϑ) for
−τ < ϑ < 0 and X(·) is the mild solution to (5) with initial datum
M(x0, η(·)) = (x0,

∫ ϑ

−τ
B(s)η(s − ϑ) ds), then X(t) = M(x(t), ut(·)).

Let x0 = 0, η(·) = 0. Then, from (3) and (4), the first line of Equation
(5) takes the form ẋ(t) = Ax(t) + B0u(t) +

∫ 0

max(−t,−τ)
B(r)u(t + r) dr.

Consequently,

Theorem 2. The Hankel operator for system (5):

(6) (Γu)(t) = C
∫ +∞

0

E(t + s)Bu(s) ds

(where E(t) is the semigroup indeed a group generated by A) is the
same operator as the Hankel operator of system (1).

Remark 1. i) A more general output operator can be associated with
system (5) since a linear bounded operator on M2 has the general form:

Ĉ
(

x0

v(·)
)

= Cx0 +
∫ 0

−τ

C(s)v(s) ds.



246 L. PANDOLFI

But, the corresponding output operator for system (1) looks quite
artificial; the integrated term gives:∫ 0

−τ

C(ϑ)
{∫ ϑ

max(ϑ−t,−h)

B(r)u(r + t − ϑ) dr

}
dϑ.

For this reason we consider the simpler output described by the oper-
ator C.

ii) It is proved in [8] that a system with both input and output
delays can always be represented as a system with only input delays.

The operator v(·) → φ(·), φ(t) = C ∫ +∞
0

E(t + s)v(s) ds is contin-
uous as an operator from L2(0, +∞) to L2(0, +∞) since E(·) decays
exponentially. Moreover, ImB is finite dimensional. Hence,

Theorem 3. The operator Γ is compact.

An important fact, proved in [5], also holds for distributed systems:
a number σ is a singular value of the Hankel operator Γ of system
(5) if and only if σ2 ∈ σp(PQ) where P,Q are the symmetric positive
solutions to the Lyapunov equations

A∗Px + PAx = −C∗Cx ∀x ∈ domA(7)
AQx + QA∗x = −BB∗x ∀x ∈ domA∗(8)

(it is implicitly required that Px ∈ domA∗ for all x ∈ domA and
Qx ∈ domA for all x ∈ domA∗). See [5] for the proof which
goes exactly as for finite dimensional systems (the notations P,Q are
interchanged with respect to those in [5]. But, of course, the nonzero
eigenvalues of PQ and of QP coincide).

The semigroup E of the free evolution of system (1) is exponentially
stable since A is a stable matrix. Hence, both the previous Lyapunov
equations admit unique solutions and P = P∗ ≥ 0, Q = Q∗ ≥ 0. We
shall see in the next section that these solutions are easily represented.

The number σ2 is an eigenvalue of PQ if for some nonzero vector
V ∈ M2 we have: PQV = σ2V so that we must find nonzero solutions
to the equation:

(9) PW = σV QV = σW.
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We shall see that the system of equations (9) can be reduced to the
solution of a system of Fredholm integral equations of the second kind.

Remark 2. If σ ∈ σp(PQ), then σ is nonnegative.

3. Solution of the Lyapunov equations. The elements of M2

will be represented both by upper case letters and by column vectors
as: H = col (h0, h(·)). The notation h(·) is used for a function on
[−τ, 0] whose regularity, if not explicitly declared, will be clear from
the context. It is easily seen that C∗CH = col (C∗Ch0, 0). Let us
represent P in block form

P =
(

P0 P1

P ∗
1 Π

)

(as an operator from M2 to itself, M2 being a product space). The
entry P0 is an n × n matrix while P1 takes the form P1(h(·)) =∫ 0

−τ
P1(s)h(s) ds for each h(·) ∈ L2(0, +∞) so that (P ∗

1 h0)(ϑ) =
P ∗

1 (ϑ)h0.

We recall that if col (h0, h(·)) ∈ domA, then P(h0, h(·)) ∈ domA∗.
In particular, the second component is in W 1,2 if h(·) ∈ W 1,2 with
h(−τ ) = 0 since:

(10) domA∗ =
{(

h0

h(·)
)

, h(·) ∈ W 1,2, h0 = h(0)
}

and

(11) A∗
(

h0

h(·)
)

=
(

A∗h0

(d/dϑ)h(·)
)

.

In particular, ϑ → [Πh(·)](ϑ) is a continuous function. This suggest
the following form for the operator Π : [Πh(·)](ϑ) =

∫ 0

−τ
Π(ϑ, s)h(s) ds

(in fact, the operator Π must be continuously extendable to L2 so that
it cannot depend on ḣ(·). Moreover, the distributional derivative of
ϑ → ∫ 0

−τ
Π(ϑ, s)h(s) ds should exist in L2). If the functions (ϑ, s) →

Π(ϑ, s), ϑ → P (ϑ) and the matrix P0 can be determined, then they
identify the unique solution P to the Lyapunov equation (7).
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As P is self-adjoint, the operator Π must be self-adjoint and this
means that:

(12) Π∗(s, ϑ) = Π(ϑ, s).

Moreover, the condition that PdomA ⊆ domA∗ implies that:

P0h0 +
∫ 0

−τ

P1(s)h(s) ds = P ∗
1 (0)h0 +

∫ 0

−τ

Π(0, s)h(s) ds

so that

(13) P ∗
1 (0) = P0, Π(0, s) = P (s).

It is now easy to decouple equation (7) into the three equations:

A∗P0 + P0A = −C∗C(14)
d

dϑ
P ∗(ϑ) + P ∗(ϑ)A = 0(15)

d

dϑ
Π(ϑ, s) +

d

ds
Π(ϑ, s) = 0.(16)

Equation (14) is a finite dimensional Lyapunov equation. It can
be solved with algebraic methods and we assume that its solution,
analytically given by P0 =

∫ +∞
0

eA∗tC∗CeAt dt, is known. In term of
this matrix, we have:

(17) P (ϑ) = e−A∗ϑP0, Π(ϑ, s) =
{

P (s−ϑ) −τ ≤ s ≤ ϑ ≤ 0
P ∗(ϑ−s) −τ ≤ ϑ ≤ s ≤ 0.

We note that (ϑ, s) → Π(ϑ, s) is a continuous function, Π(ϑ, ϑ) = P0.

The second Lyapunov equation is a bit more involved since the
operator on the right hand side is:

(18) BB∗
(

h0

h(·)
)

=

(
B0B

∗
0h0 +

∫ 0

−τ
B0B

∗(s)h(s) ds

B(ϑ)B∗
0h0 +

∫ 0

−τ
B(ϑ)B∗(s)h(s) ds

)
.

The operator Q : domA∗ → domA takes the form:

(19) Q
(

h0

h(·)
)

=
(

Q0h0 +
∫ 0

−τ
Q(s) ds

Q∗(ϑ)h0 + (Ωh(·))(ϑ)

)
, h0 = h(0).
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Arguments very much like the previous ones suggest

(20) (Ωh(·))(ϑ) =
∫ 0

−τ

Ω(ϑ, s)h(s) ds, Ω∗(ϑ, s) = Ω(s, ϑ).

As (8) admits a unique solution, this is found if we can calculate
Q0, Q(·), Ω(·, ·). Now it is easily seen that the second Lyapunov
equation (8) is solved if we can solve

d

dϑ
Ω(ϑ, s) +

d

ds
Ω(ϑ, s) = B(ϑ)B∗(s) Ω(ϑ,−τ ) = 0(21)

d

ds
Q(s) = AQ(s) + Ω(0, s) + B0B

∗(s) Q(−τ ) = 0(22)

AQ0 + Q0A
∗ = −{B0B

∗
0 − Q(0) − Q∗(0)}.(23)

This system has the unique solution

(24) Ω(ϑ, s) =

{∫ s

−τ
B(ϑ − s + r)B∗(r) dr −τ ≤ s ≤ ϑ ≤ 0∫ ϑ

−τ
B(r)B∗(s − ϑ + r) dr −τ ≤ ϑ ≤ s ≤ 0

and

Q(ϑ) =
∫ ϑ

−τ

eA(ϑ−s)

{
B0B

∗(s) −
∫ s

−τ

B(r − s)B∗(r) dr

}
ds(25)

Q0 =
∫ +∞

0

eAs{B0B
∗
0 + Q(0) + Q(0)∗}eA∗s ds(26)

We note that the function Ω(·, ·) given by (24) satisfies equation
(21) only in the weak sense: it is the mean square limit of sequences
Ωn(·, ·) which solves (21) with a differentiable function Bn(·) instead
then B(·), Bn(·) → B(·) in the L2 sense. In spite of this,

Theorem 4. The function (ϑ, s) → Ω(ϑ, s) is continuous.

Proof. In fact, let h(ϑ, s) =
∫ s

−τ
B(ϑ − s + r)B∗(r) dr for −τ ≤ s ≤

ϑ ≤ 0 (i.e., h(ϑ, s) = Ω(ϑ, s) on the specified set). We note that

(27) h(ϑ, s) − h(t, ξ)

=
∫ s

ξ

B(t−ξ+r)B∗(r) dr+
∫ s

−τ

[B(ϑ−s+r)−B(t−ξ+r)]B∗(r) dr.
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The first integral is minor than the square root of (
∫ 0

−τ
||B(r)||2 dr)

(
∫ s

ξ
||B(r)||2 dr).

This quantity tends to zero for s− ξ → 0 uniformly with respect to t.

The second integral gives:

(28)
∥∥∥∥
∫ s

−τ

[B(ϑ − s + r) − B(t − ξ + r)]B∗(r) dr

∥∥∥∥
2

≤
∫ 0

−τ

||B(ϑ − s + r) − B(t − ξ + r)||2 dr

∫ 0

−τ

||B(r)||2 dr.

Continuity follows since the shift operator is continuous on L2.

Consequently, (ϑ, s) → Ω(ϑ, s) is continuous on −τ ≤ s ≤ ϑ ≤ 0. An
analogous argument proves continuity also on −τ ≤ ϑ ≤ s ≤ 0.

At this point we must characterize those nonzero numbers σ such
that there exist vectors V, W in M2 (not both zero) such that (9) is
satisfied.

4. Fredholm integral equation for the singular values. Equa-
tion (9) is an equation on M2: a number σ such that (9) admits a
nonzero solution is an eigenvalue of the operator(

0 Q
P 0

)
.

It is easy to see that this is a compact operator so that its spectrum is
finite, or it is the image of a sequence of eigenvalues which converges
to zero plus the point zero.

Actually, (9) can be decoupled as follows:

σv0 = P0w0 +
∫ 0

−τ

P (s)w(s) ds(29)

σw0 = Q0v0 +
∫ 0

−τ

Q(s)v(s) ds(30)

σv(ϑ) = P ∗(ϑ)w0 +
∫ 0

−τ

Π(ϑ, s)w(s) ds(31)

σw(ϑ) = Q∗(ϑ)v0 +
∫ 0

−τ

Ω(ϑ, s)v(s) ds.(32)
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The first equation states that v(0) = v0, v(·) given by (31). This is
already known since the image of P must be contained in domA∗.

The previous equations must be solved for σ different from zero. Let
us forget equation (29) for the moment. Substitution of equations (30)
and (32) into (31) gives that:

Proposition 5. The number σ > 0 is a singular value if and only if
there exists a nonzero function v(·) which solves:

(33)
σ2v(ϑ) =

{
P ∗(ϑ)Q0 +

∫ 0

−τ

Π(ϑ, s)Q∗(s) ds

}
v0

+
∫ 0

−τ

{
P ∗(ϑ)Q(s) +

∫ 0

−τ

Π(ϑ, ρ)Ω(ρ, s) dρ

}
v(s) ds

and: v(0) = v0.

Equation (33) is a Fredholm equation of the second kind of a quite
special form:

(34) σ2v(ϑ) = J(ϑ)v0 +
∫ 0

−τ

K(ϑ, s)v(s) ds v(0) = v0.

It can be considered as a Fredholm equation whose kernel contains a
Dirac’s delta function. The usual theory of Fredholm equations extends
to this case ([7, pg. 286 287]). Moreover,

Theorem 6. The functions J(·) and K(·, ·) which appear in (34) (as
defined by comparison with (33)) are continuous functions.

Proof. Continuity of the functions P (·), Q(·), Π(·, ·) is seen directly
from the definitions. Continuity of the function Ω(·, ·) is proved in
Theorem 4.

A very special case is when the system has no lag: B(·) = 0. In this
case Ω(·, ·) = 0 and also Q(·) is zero so that σ2v(ϑ) = P ∗(ϑ)Q0v0 =
e−A∗ϑP0Q0v0. We see that σ2 is an eigenvalue of P0Q0 by taking ϑ = 0.
This is known from finite dimensional theory [5].



252 L. PANDOLFI

In the special case that the kernel is degenerate, it is easy to find
an algebraic characterization of the singular values, whose number is
now finite. This characterization can also be used to approximate
the singular values in general, since any continuous kernel can be
approximated with degenerate kernels (see [7]). By definition, the
kernel K(ϑ, s) = {P ∗(ϑ)Q(s) +

∫ 0

−τ
Π(ϑ, ρ)Ω(ρ, s) dρ} is degenerate

when

(35)

∫ 0

−τ

Π(ϑ, ρ)Ω(ρ, s) dρ =
r∑

i=1

Li(ϑ)Λi(s)

i.e., K(ϑ, s) =
N∑

i=1

Hi(ϑ)Ki(s).

Let xi =
∫ 0

−τ
Ki(s)v(s) ds. We have:

(36) σ2v(ϑ) = J(ϑ)v0 +
N∑

i=1

Hi(ϑ)xi

and xr satisfies:

(37)
σ2xr =

∫ 0

−τ

Kr(ϑ)J(ϑ) dϑv0 +
N∑

i=1

kr,ixi,

kr,i =
∫ 0

−τ

Kr(ϑ)Hi(ϑ) dϑ.

Let K be the block matrix K = (kr,i) and J be the block matrix
J = col (

∫ 0

−τ
Kr(ϑ)J(ϑ) dϑ) so that

(38) (σ2I −K)col (xr) = J v0.

Theorem 7. Let us assume that the functions Hi(·) are continuous.
Then,

i) If det (σ2I − K)) 	= 0, then σ 	= 0 is a Hankel singular value if
and only if

(39) det (σ2I − J(0) − [H1(0), . . . , HN (0)](σ2I −K)−1J ) = 0;
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ii) If det (σ2I −K) = 0, then σ 	= 0 is a Hankel singular value if and
only if there exist vectors v0 	= 0 and ξ0 such that
(40)

(σ2I−J(0) − [H1(0), . . . , HN (0)]RJ )v0 = 0 Jv0 = (σ2I−K)ξ0.

Here, R is the inverse of (σ2I −K) from {Ker (σ2I −K)}⊥.

Proof. If det (σ2I − K) 	= 0, then (39) is obtained from (40) with
ξ0 = (σ2I − K)−1J . So, we prove the second statement. We note
that σ2 	= 0 is a singular value if and only if the function v(ϑ) defined
by (36) and (38) satisfies v(0) = v0. Equation (38) can be solved if
ImJ ∩ Im (σ2I − K) 	= {0}, i.e., if and only if Jv0 = (σ2I − K)ξ0 for
some ξ0. In this case, col (xr) = R(J v0) so that

(41) v(ϑ) = (1/σ2){J(ϑ)v0 + [H1(ϑ), . . . , HN (ϑ)]RJ v0}.

The condition v(0) = v0 is equivalent to the first equality in (40) since
the functions J(·), Hi(·) are continuous. Of course, the function v(ϑ)
given by (41) is not zero since in this case the right hand side would
be zero in particular for ϑ = 0 (because the functions J(·), Hi(·) are
continuous). This fact, (41) and the first equality in (40) would imply
that v0 = 0.

The assumption that the functions Hi(ϑ) are continuous is not
restrictive.

Equality (41) in the previous proposition gives an explicit expression
for v(ϑ) (and for v0 = v(0)). This can be replaced in (30 32) to get both
w0 and w(·). A Smith pair for the singular value σ can be constructed
from this.

The previous proposition takes in account a very special, and un-
usual, case. But it is well known that any continuous kernel can be
approximated with degenerate kernels. Such approximation is the first
step of a method due to Smith ([7] or [12]) for the solution of the orig-
inal Fredholm equation for an unspecified value of v0. The condition
v(0) = v0 must then be imposed. Alternatively, other methods, like
Galerkin type approximations, can be invoked [9].

We recall now Theorem 6 according to which both the functions J(·)
and the kernel K(·, ·) of the integral are continuous functions so that
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the search for the eigenvalues expressed by (34) can be seen as an
eigenvalue problem over the space C(−τ, 0) of the continuous functions
on the interval [−τ, 0]. In this setting, both the integral operator and
the operator v(·) → J(ϑ)v(0) which appear in (34) are continuous
operators. Let In be a sequence of operators, In ∈ L(C(−τ, 0)), which
converges to the integral operator on the right hand side of (33). It may
be a sequence of operators which are obtained by an approximation
with degenerate kernels. Then, if σ2

n is an eigenvalue with the operator
In replacing the integral operator in (34), and if the sequence {σ2

n}
is convergent to α2, then α2 belongs to the spectrum of the original
equation [6]. If α is not zero, it is a singular value.

We note that, the operators being bounded, it is not restrictive to
assume that the sequence {σ2

n} is bounded.

A system which is, in principle, without delays, may in fact contains
“small delays” due to small “transportation delays” between its dif-
ferent parts. These delays can be considered “small” or because τ is
a small time interval (almost instantaneous transmission) or because
the matrix function B(·) has a very small norm (weak coupling). The
previous observation implies that in both these cases the “real system,”
which is affected by delays, has singular values which are close to those
of the “nominal system” (the one without delays) plus, possibly, a se-
quence of singular values which are in a neighborhood of zero.
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