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A NYSTRÖM METHOD FOR BOUNDARY
INTEGRAL EQUATIONS ON DOMAINS

WITH A PIECEWISE SMOOTH BOUNDARY

YOUNGMOK JEON

ABSTRACT. We consider the Dirichlet problem for La-
place’s equation on planar domains with corners. A Nyström
method is used to solve the corresponding double layer bound-
ary integral equation. The Nyström method is based on the
trapezoidal rule with a graded mesh method as in [13], but we
adopt a generalized mesh grading. An improved convergence
is observed.

1. Introduction. We investigate a Nyström method for the nu-
merical solution of the double layer boundary integral equation of the
second kind for the planar harmonic Dirichlet problem in domains with
corners. For a smooth boundary which is at least twice continuously
differentiable, a Nyström method with the trapezoidal rule can be ap-
plied; and a standard argument using the collectively compact operator
theory in [1] gives us an easy error analysis. If the boundary curve is
analytic, the double layer density solution is of the same class as the
boundary function. The numerical solution converges exponentially
when the boundary data is analytic.

For a domain with corners, the corresponding integral operator is no
longer compact. But the integral operator can be expressed as the sum
of a compact operator and a noncompact operator with norm less than
1, in suitable function spaces. Then we can use again an error analysis
based on collectively compact operator theory, with some modification.
Also, it is observed in Costabel and Stephan [7] and Grisvard [9] that
the double layer density function may have a singularity of the type

xα∗
, α∗ =

π

π + |π − θ|
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around corners with sufficiently smooth boundary data. Here x is the
distance from the corner and θ is the interior angle at the corner.

Because of the singularity in the solution, the Galerkin and colloca-
tion methods with a uniform mesh show poor convergence. To cope
with this poor convergence, Chandler and Graham [6] adopt a graded
mesh method, both with the Galerkin and collocation methods. In ad-
dition, with the collocation methods, a slight modification around each
corner may be needed to avoid instability in the approximating system.

Basically the concept of a graded mesh method is to make a solution
sufficiently smooth through a change of variable such as x = tn for some
positive integer n. For example, if the original solution is ψ(x) = xα∗

for
some 0 < α∗ < 1, the new solution with the above substitution becomes
ψ̃(t) = tnα∗

, which is sufficiently smooth if n is sufficiently large. For
this new solution, we can develop a rapidly convergent approximating
solution.

Because collocation and Galerkin methods are less practical in the
sense that the evaluation of matrix elements is costly, there has been a
demand for Nyström methods. Graham and Chandler [8] and Atkinson
and Graham [5] use a Nyström method with a locally approximating
quadrature method on each graded subinterval. With this method, the
order of convergence depends on the quadrature method if sufficient
mesh grading is used. However, because the integral equation we
encounter in reality has an integrand that is usually smooth except
at corner points, it is desirable to use a quadrature method based on a
smooth global approximation over each smooth section of the boundary.
Kress [13] adopts this idea and obtains successful numerical results.
The convergence depends on the order of mesh grading. In [5, 8, 13],
a slight modification around corner is needed in the approximating
system to achieve stability. But no modification is necessary in the
actual numerical implementation.

In this paper, we suggest a new Nyström method. Basically, our
method follows the framework of Kress [13]. But we adopt a new
quadrature method, one with an ‘infinite order’ mesh grading. Through
this, we expect a convergence of infinite order; and this is shown in
the numerical results. With this method, some cutoff is necessary
in the numerical approximation to overcome the instability of our
approximating system. The cutoff method used in this paper is similar
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to that used in [5, 8], rather than that of [13].

2. Numerical quadrature method. We first introduce a class of
transformations,

(2.1) wα,β(s) =
γα,β(v(s))

γα,β(v(s)) + γα,β(1 − v(s))

where

(2.2) γα,β(s) =
{

(sα)(1/s)β

if 0 < s ≤ 1
0 if s = 0

and

(2.3) v(s) =
(

1
2
− 1
p

)
(2x− 1)3 +

1
p
(2x− 1) +

1
2

with

(2.4) p = 2β(α+ β log 2) ≥ 2.

Here α and β are positive real numbers which satisfy (2.4). (2.3) with
(2.4) is considered to make mesh equally distributed over interval [0, 1],
and it is easy to see that w′

α,β(1/2) = 2. wα,β(s) satisfies the following
additional properties.

(2.5) (P1) lim
s→0,s→1

s−k1(1 − s)−k2 [wα,β(s)(1 − wα,β(s))]μ = 0

for any k1, k2 > 0 and μ > 0.
(2.6)

(P2) w
(n)
α,β(s) = fn(s)

[log(s) + log(1 − s)]n

[s(1 − s)](1+β)n
wα,β(s)(1 − wα,β(s))

for n ≥ 1

where fn(s) is continuous on [0, 1]. Furthermore, f1 is nonzero.

For the detailed properties and proofs, see [11]. In [11], (2.3) and
(2.4) are not considered to define wα,β , but, because v is analytic and
|v′(s)| �= 0, we easily see that wα,β defined in this paper satisfies (2.5)
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and (2.6) by simple generalization. Using (2.5), (2.6), it is easy to check
that w(n)

α,β(0) = w
(n)
α,β(1) = 0 for all n ≥ 1. From here on, denote

(2.7) γ(s) = γα,β(s), w(s) = wα,β(s)

for simplicity of notation.

Now it is time to introduce a numerical quadrature method. Before
doing that, we introduce a class of functions in which we are interested.
Define
(2.8)

Sγ,q = {g ∈ Cq(0, 1)|
∫ 1

0

[t(1 − t)]j−γ |g(j)(t)| dt <∞ for j = 0, . . . , q}

and

(2.9) Sγ,∞ =
∞⋂

q=1

Sγ,q.

Here 0 < γ < 2, and q is a positive integer. Let

(2.10) ||g||γ,q = max
0≤j≤q

∫ 1

0

[t(1 − t)]j−γ |g(j)(t)| dt.

Then || · ||γ,q is a norm on Sγ,q. If g ∈ Sγ,q, it is easy to see that

(2.11) [t(1 − t)]j+1−γ |g(j)(t)| ≤ 2 max
0≤j≤q−1

(||g||γ,q, g
(j)(1/2))

for 0 ≤ j ≤ q− 1. Especially, when 1 < γ < 2, note that g(0) = g(1) =
0, and

(2.12) [t(1 − t)]1−γ |g(t)| ≤ ||g||γ,q .

For details, see [13].

Now we propose a numerical quadrature method for the integral

(2.13) I(g) =
∫ 1

0

g(t) dt
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where g ∈ Sγ,q. By the substitution t = w(s), we obtain

(2.14) I(g) =
∫ 1

0

h(s) ds

where
h(s) = w′(s)g(w(s)), 0 ≤ s ≤ 1.

Applying the trapezoidal rule to (2.14), we have the numerical quadra-
ture method.

(2.15) In(g) =
1
2n

2n−1∑
j=1

ajg(tj)

where

aj = w′(sj), tj = w(sj), sj = j/2n for 1 ≤ j ≤ 2n− 1.

According to [11], h(s) has the following property

(2.16) h(m)(s) =
m∑

j=0

um
j (s)g(j)(τ )|τ=w(s)

where

um
j (s) = rm

j (s)
[log(s) + log(1 − s)]m+1

[s(1 − s)](1+β)(m+1)
[τ (1 − τ )]j+1|τ=w(s)

(2.17)

um
j (s) = Λm

j (s)
[log(s) + log(1 − s)]m

[s(1 − s)](1+β)m
[τ (1 − τ )]jw′(s)|τ=w(s)

(2.18)

and rm
j (s) and Λm

j (s) are continuous. From (2.5),

[log(s) + log(1 − s)]k

[s(1 − s)](1+β)k
[τ (1 − τ )]μ|τ=w(s)

is continuous for any μ, k > 0. Then um
j can be rewritten as

um
j (s) = r̃m

j (s)[τ (1 − τ )]j+1−μ|τ=w(s)(2.19)

= Λ̃j(s)[τ (1 − τ )]j−μw′(s)|τ=w(s)(2.20)
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with some continuous functions r̃m
j and Λ̃m

j , depending on μ.

Theorem 2.1. If g ∈ Sγ,2q+2 for 0 < γ < 2,

|I(g) − In(g)| ≤ C

n2q+2
||g||γ,2q+2.

Proof. From (2.16) and (2.19), for any μ > 0,

h(m)(s) =
m∑

j=0

r̃m
j (s)[τ (1 − τ )]j+1−μg(j)(τ )|τ=w(s)

=
m∑

j=0

r̃m
j (s)[τ (1 − τ )]γ−μ[τ (1 − τ )]j+1−γg(j)(τ )|τ=w(s).

Taking μ < γ, and by (2.11), h(m)(s) = 0 at s = 0 and s = 1 for
0 ≤ m ≤ 2q + 1. If m = 2q + 2, using (2.16) with (2.20), we rewrite
h(m)(s) as follows:

h(m)(s) =
m∑

j=0

Λ̃m
j (s)[τ (1 − τ )]γ−μ[τ (1 − τ )]j−γg(j)(τ )w′(s)|τ=w(s).

Take γ > μ. Then we have

∫ 1

0

|h(m)(s)| ≤ C||g||γ,m.

Applying the Euler-Maclaurin formula for the trapezoidal rule [2], we
immediately have the theorem.

3. A class of singular integral equations. Let us consider the
following integral equation of the second kind.

(3.1) ψ(t)+
∫ 1

0

K(t, τ )[ψ(τ )−ψ(0)] dτ+r(t)ψ(0) = f(t), 0 ≤ t ≤ 1.
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Here r(t) is a sufficiently smooth function. We assume that the
solution ψ is a 1-periodic continuous function, and ψ − ψ(0) belongs
to Sγ,q for some γ, 1 < γ < 2. The kernel K(t, τ ) is assumed to
be a periodic function with period 1, and it is to be smooth in both
variables except at the four corners of [0, 1] × [0, 1]. Furthermore,
K(t, τ ) = L(t, τ )+M(t, τ ), where M is continuous on [0, 1]× [0, 1] and
L is either a nonpositive or nonnegative function with compact support
in ([0, T ]∪[1−T, 1])×([0, T ]∪[1−T, 1]). For our mathematical analysis,
we need additional assumptions on L.

(A1)
∫ 1

0

|L(t, τ )| dτ < 1

(A2)
[(1 − τ )τ ]m+1

∣∣∣∣∂
mL(t, τ )
∂τm

∣∣∣∣ < Cm,

∫ 1

0

[(1 − τ )τ ]m
∣∣∣∣∂

mL(t, τ )
∂τm

∣∣∣∣ dτ < Dm, m ≥ 0

for constants Cm and Dm.

(A3) L(0, ·) = L(1, ·) = 0

Remark 1. In the double layer representation of Laplace’s equation
with the Dirichlet boundary data, the kernel function satisfies the above
assumptions as will be seen in Section 5.

On C[0, 1] we define a norm, || · ||∞,0, as follows

||ψ||∞,0 = |ψ(0)| + max
0≤t≤1

|ψ(t) − ψ(0)|.

It is easy to see that || · ||∞,0 is equivalent to || · ||∞.

Introduce the integral operators,

(Aψ)(t) =
∫ 1

0

L(t, τ )[ψ(τ )− ψ(0)] dτ
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and

(Bψ)(t) =
∫ 1

0

M(t, τ )[ψ(τ )− ψ(0)] dτ + r(t)ψ(0).

Then (3.1) can be rewritten as

ψ + Aψ + Bψ = f.

The operator B is compact from C[0, 1] to C[0, 1] because M(t, τ ) is
continuous. Usually, A is a noncompact operator [5], but we will prove
in the next theorem that A is a bounded operator with ||A|| < 1.

Theorem 3.1. The integral operator A is bounded from C[0, 1] to
C[0, 1] with norm,

||A|| < 1.

Proof. The proof follows a similar way shown in [13].

First, we will prove that Aψ is continuous. Because L is continuous
except at four corners, it is obvious that Aψ is continuous on (0, 1).
We will show that Aψ is continuous at t = 0 and t = 1.

Splitting the integral into three parts and using the assumptions on
L, we can estimate

|Aψ(t)| ≤
∫ 1

0

|L(t, τ )| |ψ(τ )− ψ(0)| dτ

≤ sup
0≤t≤σ

|ψ(τ ) − ψ(0)|
∫ σ

0

|L(t, τ )| dτ

+ sup
1−σ≤τ≤1

|ψ(τ ) − ψ(0)|
∫ 1

1−σ

|L(t, τ )| dτ

+ ||ψ||∞,0

∫ 1−σ

σ

|L(t, τ )| dτ
≤ sup

0≤τ≤σ
|ψ(τ ) − ψ(0)| + sup

1−σ≤τ≤1
|ψ(τ ) − ψ(0)|

+ ||ψ||∞,0

∫ 1−σ

σ

|L(t, τ )| dτ.
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Given ε > 0, there is σ > 0 so that

max
(

sup
0≤t≤σ

|ψ(τ ) − ψ(0)|, sup
1−σ≤t≤1

|ψ(τ ) − ψ(0)|
)
< ε/3

because ψ is a 1-period continuous function. Because
∫ 1−σ

σ
|L(t, τ )| dτ

is continuous and converges to 0 as t → 0 or t → 1 by (A3), there is a
δ > 0 so that ∫ 1−σ

σ

|L(t, τ )| dτ < ε

3||ψ||∞,0

for 0 < t < δ and 1 − δ < t < 1. Then

|Aψ(t)| < ε

for 0 < t < min{σ, δ} and 1 − min{σ, δ} < t < 1. Moreover,
Aψ(0) = Aψ(1) = 0 by (A3). Now we have proved the continuity
of Aψ. It is straightforward that

||A|| ≤
∫ 1

0

|L(t, τ )| dτ < 1.

4. Nyström method. For Nyström’s method, we approximate
(3.1) by using the quadrature method (2.15) as follows:

(4.1) ψn(t) +
1
2n

2n−1∑
j=1

ajK(t, τj)[ψn(τj) − ψn(0)] + r(t)ψn(0) = f(t)

for 0 ≤ t ≤ 1. Define

(Anψ)(t) =
1
2n

2n−1∑
j=1

ajL(t, τj)[ψ(τj) − ψ(0)]

and

(Bnψ)(t) =
1
2n

2n−1∑
j=1

ajM(t, τj)[ψ(τj) − ψ(0)] + r(t)ψ(0).
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Then (4.1) can be rewritten as

ψn + Anψn + Bnψn = f.

Lemma 4.1. Assume ψ − ψ(0) ∈ Sγ,2q+2 for 1 < γ < 2. Then

||(A−An)ψ||∞ ≤ C

n2q+2
||ψ − ψ(0)||γ,2q+2

for some constant C.

Proof. Define

h(s) = w′(s)L(t, τ )ψ(τ )|τ=w(s).

By (2.16), (2.19) and (2.20),

h(m)(s) =
m∑

j=0

um
j (s)

∂jL(t, τ )ψ(τ )
∂τ j

∣∣∣∣
τ=w(s)

where
um

j (s) = r̃m
j (s){τ (1− τ )}j+1−μ|τ=w(s)

or, alternatively,

um
j (s) = Λ̃m

j (s){τ (1 − τ )}j−μw′(s)|τ=w(s)

with some continuous functions r̃m
j and Λ̃m

j , depending on μ > 0.

Because

∂jL(t, τ )ψ(τ )
∂τ j

=
j∑

j′=0

(
j

j′

)
∂j′
L(t, τ )
∂τ j′ ψ(j−j′)(τ ),

(4.2) [τ (1 − τ )]j+1−μ ∂
jL(t, τ )ψ(τ )

∂τ j
=

j∑
j′=0

(
j

j′

)
[τ (1 − τ )]j

′+1

· ∂
j′
L(t, τ )
∂τ j′ [τ (1 − τ )]j−j′+1−γψ(j−j′)(τ )[τ (1− τ )]γ−1−μ.
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Take μ < γ − 1, and replace ψ with ψ−ψ(0). By the assumption (A2)
on L, and (2.11), h(m)(s) = 0 at s = 0, s = 1 if m ≤ 2q + 1. When
m = 2q + 2, as in the proof of Theorem 2.1, we need to rewrite above
(4.2) slightly differently.

[τ (1 − τ )]j−μ ∂
jL(t, τ )ψ(τ )

∂τ j
w′(s)|τ=w(s) =

j∑
j′=0

(
j

j′

)
[τ (1 − τ )]j

′+1

· ∂
j′
L(t, τ )
∂τ j′ [τ (1 − τ )]j−j′−γψ(j−j′)(τ )[τ (1− τ )]γ−1−μw′(s).

Taking μ < γ − 1, we have the desired result by the Euler-Maclaurin
formula.

When (4.1) is used for the numerical approximation, some possible
instability happens in our approximating system, as in [5, 8, 13].
Because this instability is caused by An, we need to modify just An.
But in the actual numerical implementation, we also modify Bn because
it is difficult and cumbersome to separate the kernel K into L and M .
Then we approximate (3.1) as

(4.3) ψn(t)+
1
2n

2n−d(n)∑
j=d(n)

′′ajK(t, τj)[ψn(τj)−ψn(0)]+r(t)ψn(0) = f(t)

instead of (4.1), where

(4.4) d(n) = the greatest integer less than nη

for some 0 < η < 1. Here
∑ ′′ represents the sum of terms obtained by

halving the first and the last terms.

Solve for ψn(0), ψn(td(n)), . . . , ψn(t2n−d(n)) by collocation equation
(4.3) at t = 0, td(n), . . . , t2n−d(n). Then

ψn(t) = − 1
2n

2n−d(n)∑
j=d(n)

′′ajK(t, τj)[ψn(τj) − ψn(0)]

− r(t)ψn(0) + f(t)

is the solution we are looking for.
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Introduce the modified approximating integral operators,

(Aη
nψ)(t) =

1
2n

2n−d(n)∑
j=d(n)

′′ajL(t, τj)[ψ(τj) − ψ(0)]

and

(Bη
nψ)(t) =

1
2n

2n−d(n)∑
j=d(n)

′′ajM(t, τj)[ψ(τj) − ψ(0)] + r(t)ψ(0).

Then (4.3) can be written as

ψn + Aη
nψn + Bη

nψn = f.

Corollary 4.2. Under the same assumption as in Lemma 4.1,

||(A−Aη
n)ψ||∞ ≤ C

n2q+2
||ψ − ψ(0)||γ,2q+2

for some constant C and sufficiently large n.

Proof. First, let us look at |(An −Aη
n)ψ(t)|.

(4.5)

|(An −Aη
n)ψ(t)| ≤ 1

2n

d(n)∑
j=1

aj |L(t, τj)(ψ(τj) − ψ(0))|

+
1
2n

2n−1∑
j=2n−d(n)

aj |L(t, τj)(ψ(τj) − ψ(0))|.

Because τj = w(sj) and sj = j/2n, and using (2.5) and (2.6)

aj = w′(sj) ≤ Cτj
log(sj)

s
(1+β)
j

≤ Cτ1−δ
j , sj < 1/2

for any δ > 0. Also, note that

|ψ(τj) − ψ(0)| ≤ Cτγ−1
j ||ψ − ψ(0)||γ,2q+2, τj < 1/2
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from our assumption on ψ and (2.12), and

τj |L(t, τj)| < C0, τj < 1/2

by (A2). Then

1
2n

d(n)∑
j=1

aj |L(t, τj)(ψ(τj) − ψ(0))| ≤ C

2n

d(n)∑
j=1

(τj)γ−1−δ||ψ − ψ(0)||γ,2q+2

≤ C(τd(n))γ−1−δ||ψ − ψ(0)||γ,2q+2

≤ CM(n)||ψ − ψ(0)||γ,2q+2

where

M(n) =
(

1
2n1−η

)α(2n1−η)β(γ−1−δ)

.

Note that 0 ≤ η < 1. We will also have the same kind of bound for

1
2n

2n−1∑
j=2n−d(n)

aj |L(t, τj)(ψ(τj) − ψ(0))|

by the same way.

Choose 0 < δ < γ − 1 and sufficiently large n. Then

|(An −Aη)ψ| ≤ C

n2q+2
||ψ − ψ(0)||γ,2q+2.

Combined with Lemma 4.1, the main result is straightforward.

Now we turn to the stability of the approximating system, beginning
with the following lemma.

Lemma 4.3. Let ε(n) = (1/2)(d(n)/n). For arbitrary σ > 0, we
have

(4.6)
1
2n

2n−d(n)∑
j=d(n)

aj |L(t, τj)| ≤ ||A|| + 1
n2

C

ε(n)(1+β)2+σ
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for some constant C, depending on σ.

Proof. Because we assume that L is nonnegative or nonpositive,
we consider L(t, τ ) is nonnegative without loss of generality. Define
δ(n) = w(ε(n)). Then

∣∣∣∣
∫ 1−δ(n)

δ(n)

L(t, τ ) dτ − 1
2n

2n−d(n)∑
j=d(n)

′′ajL(t, τj)
∣∣∣∣

≤ C
1
n2

∫ 1−ε(n)

ε(n)

|h′′(s)| ds

where h(s) = L(t, w(s))w′(s), by the error formula for the trapezoidal
rule [2].

Rewrite h′′ as follows, using (2.16) with (2.18).

h′′(s) =
2∑

j=0

u2
j (s)

∂jL(t, τ )
∂τ j

∣∣∣∣
τ=w(s)

=
2∑

j=0

Λ2
j (s)

[log(s) + log(1−s)]2
[s(1−s)](1+β)2

[τ (1−τ )]j ∂
jL(t, τ )
∂τ

∣∣∣∣
τ=w(s)

w′(s).

Then, by our assumptions on L,

∫ 1−ε(n)

ε(n)

|h′′(τ )| dτ ≤ C

ε(n)(1+β)2+σ
for any σ > 0

for some constant C, depending on σ. By a simple calculation, we get
the desired result.

Remark 2. From Lemma (4.3), if η > 1 − 2/((1 + β)2 + σ) for some
σ > 0, we have (1 − η)[(1 + β)2 + σ] < 2. Then

1
n2

C

ε(n)(1+β)2+σ
→ 0

as n→ ∞, and we have
||Aη

n|| < 1
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for sufficiently large n.

Remark 3. In [5, 8, 13], the number of subintervals cut off does not
depend on n. Here we need a cutoff which is dependent on n.

Theorem 4.4. If η > 1 − 2/((1 + β)2 + σ) for some σ > 0,

||Aψ −Aη
nψ||∞,0 → 0, as n→ ∞

for all ψ ∈ C[0, 1].

Proof. Aη
nψ converges uniformly to Aψ on [0, 1] for all polynomials

ψ by Corollary 4.2. Lemma 4.3 says that ||Aη
n|| is uniformly bounded

in n. Then, by the Banach-Steinhaus theorem, we are done.

Now we state the main theorem which shows the unique solvability
of our approximating system and the error estimate.

Theorem 4.5. Assume I+A+B is bijective from C[0, 1] to C[0, 1].
Let ψ be a solution of (I + A + B)ψ = f and ψ − ψ(0) ∈ Sγ,2q+2,
1 < γ < 2. Then, for

η > 1 − 2
(1 + β)2 + σ

for some σ > 0

and sufficiently large n,

ψn + Aη
nψn + Bη

nψn = f

is uniquely solvable, and we have the error estimate

||ψn − ψ||∞ ≤ C

n2q+2
||ψ − ψ(0)||γ,2q+2.

Proof. First, we prove that {Bη
n} is collectively compact. This is a

standard type of proof; for example, see [1, 12].

Because the operator B is better behaved than the operator A, it
is easy to show that Bη

nψ(t) → Bψ(t) uniformly on [0, 1] as n → ∞.
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Since the quadrature method as defined by (2.15) converges, the weights
satisfy

2n−1∑
k=1

|ak| ≤ C for all n

by Theorem 12.4 in [12]. Then we have the estimate

(4.7) ||Bη
nψ||∞ ≤ C max

t,τ∈[0,1]
|M(t, τ )| · ||ψ||∞

and

(4.8) |(Bη
nψ)(t1)− (Bη

nψ)(t2)| ≤ C max
τ∈[0,1]

|M(t1, τ )−M(t2, τ )| · ||ψ||∞.

From (4.7) and (4.8), {Bη
nψ : ||ψ||∞,0 ≤ 1, n ∈ N} is bounded and

equicontinuous because M is uniformly continuous on [0, 1]× [0, 1]. By
the Arzela-Ascoli theorem [12], {Bη

n} is collectively compact.

Now we will show that {(I + Aη
n)−1Bη

n} is collectively compact. By
a simple algebraic manipulation,

(I + Aη
n)−1Bη

n = (I + A)−1Bη
n + (I + Aη

n)−1(A−Aη
n)(I + A)−1Bη

n.

Let U = {(I + A)−1Bη
nψ : ||ψ||∞,0 < 1}. Then U is compact. Because

{I + Aη
n}−1 is uniformly bounded by Remark 2, (I + Aη

n)−1(Aη
n − A)

converges uniformly to 0 on the compact set U . So {(I + Aη
n)−1Bη

n} is
collectively compact. Then (I+(I+Aη

n)−1Bη
n)−1 exists and is uniformly

bounded for sufficiently large n. Because

(I + Aη
n + Bη

n)−1 = (I + (I + Aη
n)−1Bη

n)−1(I + Aη
n)−1,

(I+Aη
n +Bη

n)−1 is invertible and is uniformly bounded with respect to
n. By a standard argument, we have an error bound,

||ψn − ψ||∞ ≤ C[||(A−Aη
n)ψ||∞,0 + ||(B − Bη

n)ψ||∞,0].

The proof of the theorem is now straightforward.

5. The Dirichlet problem in plane domains with corners.
We consider the Dirichlet problem for the Laplace’s equation, given as
follows:

Δu = 0 in D



A NYSTRÖM METHOD 237

u = g on Γ = ∂D

where D is a bounded simply connected region, and Γ is at least twice
continuously differentiable, except at a corner x = x0. Here we have
only one corner. With a little extra work, we can extend the results to
domains with a finite number of corners.

Let νy be the outward unit normal vector at y ∈ Γ. We use a double
layer potential representation for u,

(5.1) u(x) =
1
2π

∫
Γ

φ(y)
∂

∂νy
log |x− y| dSy, x ∈ D.

By Green’s theorem,

1
2π

∫
Γ

∂

∂νy
log |x− y| dSy = 1, x ∈ D,

we can rewrite (5.1) as follows:

u(x) =
1
2π

∫
Γ

[φ(y) − φ(x0)]
∂

∂νy
log |x− y| dSy + φ(x0),

x ∈ D.

On the boundary we have

(5.2) φ(x) +
1
π

∫
Γ

[φ(y) − φ(x0)]
∂

∂νy
log |x− y| dSy + φ(x0)

= 2g(x), x ∈ Γ.

Parametrize the boundary curve Γ as follows:

x(t) = (x1(t), x2(t)), 0 ≤ t ≤ 1

where [x′1(t)]
2 + [x′2(t)]

2 > 0. The corner x0 of Γ corresponds to t = 0.
By this parametrization, (5.2) can be transformed into the form,

(5.3) ψ(t) +
∫ 1

0

K(t, τ )[ψ(τ )− ψ(0)] dτ + ψ(0) = f(t), 0 ≤ t ≤ 1.

Here ψ(t) = φ(x(t)), f(t) = 2g(x(t)), and
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K(t, τ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
π

x′2(τ )[x1(t) − x1(τ )] − x′1(τ )[x2(t) − x2(τ )]
[x1(t) − x1(τ )]2 + [x2(t) − x2(τ )]2

, t �= τ

1
2π

x′2(t)x′′1(t) − x′1(t)x′′2(t)
[x′1(t)]2 + [x′2(t)]2

, t = τ .

Note that K(t, τ ) is continuous on (0, 1)× (0, 1) because Γ is at least
twice continuously differentiable, except at the corners.

As shown in [4, 6, 13], K(t, τ ) satisfies the following property around
t = τ = 0

K(t, τ ) = L(t, τ ) +M(t, τ )

where
|L(t, τ )| ≤ 1

π

t sin θ
τ2 − 2tτ cos θ + t2

around t = τ = 0 and M is continuous on [0, 1] × [0, 1]. Here θ is the
interior angle at the corner. We can easily check that L(t, τ ) satisfies
the assumptions in Section 3. Furthermore,∫ ∞

0

|L(t, s)| ds ≤ |π − θ|
π

< 1.

Using the regularity results for solutions of Laplace’s equations in
nonsmooth domain [7, 9, 10], we have

u+ = h+(ϑ)rπ/θ + smoother terms

u− = h−(ϑ)rπ/(2π−θ) + smoother terms

around the corner with some smooth functions h±, where u+ is har-
monic in D and u− is harmonic in R2/D. Here (r, ϑ) represents the
polar coordinate system with the origin at the corner. Because the
double layer density function satisfies ψ = (u+ − u−)|Γ [3], we have

ψ = Crα∗
+ smoother terms, α∗ =

π

π + |π − θ|
around the corner. Then, by the definition of S1+γ,∞ in (2.9),

ψ − ψ(0) ∈ S1+γ,∞ with 0 < γ <
π

π + |π − θ|
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FIGURE 1.

for any smooth boundary data f .

6. Numerical examples. We consider solving Laplace’s equations
on two domains with a corner, which are defined as follows:

Domain 1: X(t) = ((2/
√

3) sin(πt),− sin(2πt))
Domain 2: X(t) = (−(2/3) sin(3πt),− sin(2πt))

for 0 ≤ t ≤ 1. Domain 1 is a drop-shaped domain with interior angle
2π/3, and Domain 2 has a reentrant corner with interior angle 3π/2.
Figures 1 and 2 show Domains 1 and 2, respectively.

Let us consider the following test harmonic functions to give boundary
conditions.

Example 1. u(r, ϑ) = r3/2 cos(3/2)ϑ on Domain 1.

Example 2. u(r, ϑ) = r2/3 cos(2/3)ϑ on Domain 2.

Let us look at wα,β as defined in Section 2. When β = 0, it is
an algebraic mesh grading considered in [13]. If β �= 0, it is an
exponential mesh grading. Table 1 and Table 2 show the effect of
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various mesh gradings on convergence of density functions. Because
the mesh tends to be heavily toward a corner point when a larger β
is used, our numerical experiments concentrate on suitable size of α’s
and small β’s.

TABLE 1. En with various mesh grading for Example 1.

n (2, 0) (2, 1/5) (2, 1/3) (4, 0) (4, 1/5) (4, 1/3)
4 .17E 00 .15E 00 .16E 00 .15E 00 .13E 00 .14E-00
8 .78E-02 .81E-02 .76E-02 .80E-02 .92E-02 .13E-01

16 .15E-04 .77E-05 .10E-04 .12E-04 .21E-04 .37E-04
32 .22E-05 .58E-06 .29E-07 .82E-07 .33E-08 .29E-08
64 .31E-06 .68E-08 .13E-09 .15E-09 .65E-11 .31E-11

In the tables, the first column is the number of node points in [0, 1/2],
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the first row represents the mesh grading parameters {α, β}, and

En = sup
1≤i≤n

{|ψn(xi) − ψ2n(xi)| : xi = wα,β(i/2n)}

where ψn is an approximating double layer density function. Note that
the second and the fifth columns in each table represent the case when
an algebraic mesh grading is used. It is clear that convergence improves
as the mesh grading parameter β becomes bigger with the fixed α.

TABLE 2. En with various mesh grading for Example 2.

n (2, 0) (2, 1/5) (2, 1/3) (4, 0) (4, 1/5) (4, 1/3)
4 .11E 01 .12E 01 .12E 01 .13E 01 .14E 01 .17E 01
8 .39E-01 .44E-01 .59E-01 .63E-01 .64E-01 .11E 00

16 .25E-02 .25E-01 .32E-02 .22E-02 .14E-02 .52E-02
32 .90E-03 .48E-03 .29E-03 .33E-03 .74E-04 .58E-04
64 .34E-03 .50E-04 .15E-04 .51E-04 .31E-05 .16E-05

128 .13E-03 .35E-05 .54E-06 .80E-05 .80E-07 .22E-07

The cutoff criteria is, as in (4.4) with η in Remark 2,

d(n) = integer part of nη, η = 1 − 2
(1 + β)2 + σ

, σ > 0.

In [13], the cutoff around the corner is not necessary in the actual
numerical implementation. We also observe that the above cutoff crite-
ria is not strictly applied to our method in our numerical experiments.
It is interesting to note that d(n) does not depend on α, and d(n) = 1
when β = 0, which would mean that we don’t need cutoff when an
algebraic mesh grading is used.
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