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ON INFINITE DELAY INTEGRAL EQUATIONS
HAVING NONLINEAR PERTURBATIONS

M.N. ISLAM

ABSTRACT. The existence of bounded solutions and peri-
odic solutions is studied for a system of infinite delay integral
equations having nonlinear perturbations. An equivalent sys-
tem of equations is obtained in terms of the resolvent kernel.
Then the existence results are shown for the equivalent equa-
tions. Contraction principle, Schauder’s fixed point theorem,
and monotone method are used in the study.

1. Introduction. Let n be a positive integer. In this paper we have
studied the existence of bounded solutions and periodic solutions of

(1) x(t) = f(t)+
∫ t

−∞
a(t, s)[x(s)+g(t, x(s))] ds, t ∈ R = (−∞,∞),

where we assume that f : R → Rn, g : R × Rn → Rn are basically
continuous and bounded functions, a is an n-by-n matrix function
with elements in R, a(t, s) is continuous for −∞ < s ≤ t < ∞, and
a(t, s) = 0 for s > t. We also assume that

(A1) sup
−∞<t<∞

∫ t

−∞
|a(t, s)| ds ≤ A < ∞,

where | · | denotes the matrix norm induced by a vector norm, also
denoted | · |, on vectors in Rn.

If a(t, s) = ā(t − s), then (1) is known as convolution type. Con-
volution forms of (1) are used in studying various types of problems
in physics and engineering. For example, in the study of hereditary
response in continuum physics for a material with large memory [6], or
in the study of the response of nonlinear feedback systems to periodic
input signals [11], constitutive equations can have the form of (1).
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Leitman and Mizel have studied scalar convolution forms of (1) in
[7, 8]. The particular form [x(s) + g(s, x(s))] of (1) instead of simply
g(s, x(s)) as used in [7, 8] enables us to use the resolvent equation

(2) r(t, s) = −a(t, s) +
∫ t

s

a(t, u)r(u, s) du, −∞ < s ≤ u ≤ t.

The advantage of using (2) is that we can derive an equivalent (to
(1)) equation which is easier to study than the equation (1) itself. All
the existence and uniqueness results for solutions of (1) are obtained
by showing the existence and uniqueness of solutions of the equivalent
equation which we have derived in Lemma 2. In Theorem 1 we have
proved the existence and uniqueness of bounded solutions by using the
contraction principle as the basic tool, whereas in Theorems 2 and 3
we have shown the existence of periodic solutions and the existence of
bounded solutions, respectively. Schauder’s fixed point theorem is used
in Theorem 2 and a monotone method is used in Theorem 3.

One can view (1) as an infinite delay equation having nonlinear per-
turbations. Some perturbation results for infinite delay integral and
integrodifferential equations are available in [5]. Studies on perturba-
tion problems in Volterra equations can be found in [1 4, 9, 12 15].

2. Bounded solutions and periodic solutions. It is known [5,
Theorem 1] that for each continuous a(t, s) there exists a continuous
r(t, s) satisfying (2). Suppose

(A2) sup
−∞<t<∞

∫ t

−∞
|r(t, s)| ds ≤ L < ∞.

Assume that g(t, 0) = 0 for all real t, and that for each real α > 0 there
exists a real η > 0 such that

(A3) |g(t, x) − g(t, y)| ≤ α|x − y|

uniformly in t, whenever |x|, |y| ≤ η. Also assume that

(A4) lim
h→0

∫ t

−∞
|a(t + h, s) − a(t, s)| ds = 0
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for each real t.

Lemma 1. If (A1), (A2) and (A4) hold, then

lim
h→0

∫ t

−∞
|r(t + h, s) − r(t, s)| ds = 0

for each real t.

The proof of Lemma 1 involves the use of (2) and the application of
Fubini’s theorem. We omit its proof.

Lemma 2. Assume (A1) and (A2) hold. Then x(t) is a bounded
solution of (1) if and only if x(t) is a bounded solution of

(3) x(t) = f(t) −
∫ t

−∞
r(t, s)[f(s) + g(s, x(s))] ds.

Proof. Let x(t) be a bounded solution of (1) for any real t. Multiply-
ing both sides of (1) by r(t, s), integrating from −∞ to t, interchanging
the order of integrations, and then applying (2) yields (3). In this
process we have used the fact that

∫ t

s

r(t, u)a(u, s) du =
∫ t

s

a(t, u)r(u, s) du

(see [10, p. 193]). The converse is also true since all the above steps
are reversible.

We are motivated by [12, Theorem 1] for our next theorem. We have
shown how Theorem 1 of [12] can be extended to the integral equations
with infinite delay.

Theorem 1. Assume (A1) (A4) hold. For each λ ∈ (0, 1) there
exists a real β > 0 such that if ||f || = sup{|f(t)| : t ∈ R} ≤ β, then (1)
has a unique bounded solution.
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Proof. Fix λ ∈ (0, 1). Then choose α > 0 such that 1−αL = λ where
L is the constant of (A2). Clearly, αL < 1. For this α, choose η > 0 of
(A3). Let β be such that 0 < β ≤ ηλ/(1 + L). Let

S(η) = {ϕ ∈ BC(−∞,∞) : ||ϕ|| ≤ η}

where BC (−∞,∞) is the Banach space of bounded continuous func-
tions on (−∞,∞) with the usual sup norm. For each ϕ ∈ S, let

(4) (Fϕ)(t) = f(t) −
∫ t

−∞
r(t, s)[f(s) + g(s, ϕ(s))] ds.

It follows from the continuity of r(t, s) that
∫ t+h

t
|r(t + h, s)| ds → 0 as

h → 0. Using this property and Lemma 1, one can easily verify that
(Fϕ)(t) is continuous in t. It also follows from the given assumptions
that ||Fϕ|| ≤ η. Therefore, F maps from S(η) into itself. Finally,
(A2) and (A3) imply that, for each ϕ and Ψ in S(η), ||Fϕ − FΨ|| ≤
αL||ϕ−Ψ||. Since αL < 1, F is a contraction. Therefore, there exists a
unique solution x(t) of (3) (and hence of (1) by Lemma 2) with ||x|| ≤ η.

Assume that, for some T > 0,

(A5) f(t + T ) = f(t) for all real t;

(A6) a(t + T, s + T ) = a(t, s) for −∞ < s ≤ t < ∞;

(A7) g(t + T, x) = g(t, x) for all x.

Corollary 1. Assume (A1) (A7) hold. For each λ ∈ (0, 1) there
exists a β > 0 such that if ||f || ≤ β then (1) has a unique T -periodic
solution.

Proof. It follows from (A5) (A7) that if x(t) is a solution of (1) then
x(t+T ) is also a solution of (1). By the uniqueness property of Theorem
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1, x(t + T ) = x(t) for all real t. This completes the proof of Corollary
1.

Remark. From Theorem 1 and Corollary 1, it follows that the T -
periodic solution x(t) of (1) is also the only bounded solution of (1)
under the assumed hypotheses.

Theorem 2. Assume (A1), (A2), (A4) (A7) hold. Also assume that
for each α > 0 there exists a real η > 0 such that |g(t, x) − g(t, y)| ≤
η|x − y| uniformly in t whenever |x|, |y| ≤ α. Then there exists a
continuous T -periodic solution of (1).

Proof. Let |f(t)| ≤ F for all real t and |g(t, x)| ≤ G for all (t, x) in
R × Rn. Let F + F (L + G) = K, where L is the constant of (A2).
Consider

B = {x ∈ PT (−∞,∞) : ||x|| ≤ K}
where PT (−∞,∞) is the Banach space of continuous T -periodic func-
tions with the sup norm. The space B is obviously convex and closed.
Let us define F : B → B by (4) for each ϕ in B. Assumption (A6) im-
plies that r(t+T, s+T ) = r(t, s) for −∞ < s ≤ t < ∞ [5, Theorem 7].
Now one easily shows that (Fϕ)(t+T ) = (Fϕ)(t). Clearly, ||Fϕ|| ≤ K,
and for ϕ and Ψ from B, one obtains ||Fϕ − FΨ|| ≤ Lη||ϕ − Ψ||.
Therefore, F : B → B is a continuous map. Since all the functions are
T -periodic, we can use the Arzela-Ascoli theorem to show that F (B),
the closure of {Fx : x ∈ B} is compact. The continuity of r(t, s) and
Lemma 1 are used in the arguments of the equicontinuity property.
Therefore, by Schauder’s fixed point theorem there exists a continuous
T -periodic solution x(t) of (1).

Lemma 3. In addition to the basic assumptions that g is continuous
and bounded, we assume that there exists a real M > 0 and a continuous
bounded function ϕ with ϕ(t) → 0 as t → −∞ such that |g(t, x)| ≤
ϕ(t)M . Then for each ε > 0 there exists a real w such that∣∣∣∣

∫ w

−∞
r(t, s)g(s, x(s)) ds

∣∣∣∣ < ε

for every continuous x(s) defined on R.
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The proof of this lemma is a trivial exercise and hence we omit its
proof.

Definition 1. For x, y in Rn, x ≤ y if and only if xi ≤ yi for all
i = 1, 2, 3, . . . , n.

Definition 2. g(t, x) is nonincreasing in x if x ≤ y implies gi(t, x) ≥
gi(t, y) for all i = 1, 2, 3, . . . , n.

Theorem 3. Let r(t, s) ≥ 0, i.e., each element rij(t, s) ≥ 0 for
i, j = 1, 2, 3, . . . , n. Assume (A1), (A2), (A4), and the hypotheses
of Lemma 3 hold. Also, assume g(t, x) ≥ 0, i.e., gi(t, x) ≥ 0 for
i = 1, 2, 3, . . . , n and g(t, x) is nonincreasing in x. Then there exists a
continuous bounded solution of (1).

Proof. Let y(t) = f(t)−∫ t

−∞ r(t, s)f(s) ds. Clearly, y(t) is continuous
and bounded. Let ||y|| ≤ Y . Substituting y(t) in (3) yields

(5) x(t) = y(t) −
∫ t

−∞
r(t, s)g(s, x(s)) ds.

Let x1(t) = y(t), and for n = 1, 2, 3, . . . ,

xn+1(t) = y(t) −
∫ t

−∞
r(t, s)g(s, xn(s)) ds.

It follows from the hypotheses that

xn+1(t) ≤ xn(t)

for n = 1, 2, 3, . . . . Also, one can easily verify that the sequence {xn(t)}
is equicontinuous and uniformly bounded on every compact subset of
R. Lemma 1 is used for the equicontinuity property. Therefore, there
exists a continuous function x∗(t) such that xn(t) → x∗(t), and the
convergence is uniform on every compact subset of R. Clearly, x∗(t) is
bounded.

We shall now prove that x∗(t) is a solution of (1). Let ε > 0 be
arbitrary. Pick any real t. Then choose k > 0 such that −k < t and∣∣∣∣

∫ −k

−∞
r(t, s)g(s, x∗(s)) ds

∣∣∣∣ < ε/4.
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Choosing such k is possible by Lemma 3. Since xn(s) → x∗(s)
uniformly on [−k, t] we can choose a large n such that

|xn+1(s) − x∗(s)| < ε/4 for all s ∈ [−k, t],

and ∣∣∣∣
∫ t

−k

r(t, s)[g(s, x∗(s) − g(s, xn(s))] ds

∣∣∣∣ < ε/4.

Now,
∣∣∣∣x∗(t) −

{
y(t) −

∫ t

−∞
r(t, s)g(s, x∗(s)) ds

}∣∣∣∣
≤ |x∗(t) − xn+1(t)| +

∣∣∣∣xn+1(t) − y(t) +
∫ t

−∞
r(t, s)g(s, xn(s)) ds

∣∣∣∣
+

∣∣∣∣
∫ t

−∞
r(t, s)[g(s, x∗(s)) − g(s, xn(s))] ds

∣∣∣∣
≤ ε/4+0+

∣∣∣∣
∫ −k

−∞
r(t, s)g(s, x∗(s)) ds

∣∣∣∣ +
∣∣∣∣ −

∫ −k

−∞
r(t, s)g(s, xn(s)) ds

∣∣∣∣
+

∣∣∣∣
∫ t

−k

r(t, s)[g(s, x∗(s)) − g(s, xn(s))] ds

∣∣∣∣
≤ ε/4 + ε/4 + ε/4 + ε/4.

This proves by Lemma 2 that x∗(t) is a continuous bounded solution
of (1).

Remark. Theorem 3 holds if we assume r(t, s) ≤ 0, g(t, x) ≤ 0,
and g(t, x) is nondecreasing in x. The proof is similar to the proof of
Theorem 3.

Theorem 4. If a(t, s) > 0, then r(t, s) < 0 for −∞ < s ≤ t.

Proof. From (2) it is clear that r(t, t) = −a(t, t) < 0. Suppose
r(t, s0) = 0 and r(t, u) < 0 for all s0 < u ≤ t. Then, from (2),

r(t, s0) = −a(t, s0) +
∫ t

s0

r(t, u)a(u, s0) du.
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Clearly, r(t, s0) < 0. This contradicts that r(t, s0) = 0. This proves
that r(t, s) < 0 for all s ≤ t.

It remains an open question whether a(t, s) < 0 implies r(t, s) > 0.
However, suppose a(t, s) = −ã(t − s) is of convolution type. Then
r(t, s) = r̃(t− s) is also of convolution type, and the resolvent equation
becomes

r̃(t) = ã(t) −
∫ t

0

ã(t − s)r̃(s) ds.

Let ã(t) > 0, ã(t) is nonincreasing in t > 0, ã(t) ∈ L1(R+), and for
each w > 0, ã(t)/ã(t + w) is nonincreasing in t > 0. Then r̃(t) satisfies
(i) 0 < r̃(t) < ã(t) for all t > 0, and (ii)

∫ ∞
0

r̃(t) dt < 1. (See [10,
Theorem 6.2, p. 212]).
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