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SOME EXISTENCE RESULTS FOR
NONLINEAR INTEGRAL EQUATIONS

VIA TOPOLOGICAL TRANSVERSALITY

R.B. GUENTHER AND J.W. LEE

ABSTRACT. Existence results are established for nonlinear
integral equations of Hammerstein and Urysohn type. The
results complement and extend related work in the field. A
principal feature of the paper is its rather easy proofs which
are based on topological transversality theory rather than
degree theory.

1. Introduction. In this paper we establish some existence
results for nonlinear integral equations of Hammerstein and Urysohn
type. The results and proofs complement and extend similar results
in the literature; see, for example, [6, 7]. A principal feature of the
paper is the rather easy proofs that are based on a more elementary
topological structure than is usually used. We base our discussion
on the topological transversality theory of A. Granas [3] rather than
on the Leray-Schauder degree. The more elementary point of view of
topological transversality has led to many new results about nonlinear
differential systems; see [2, 4, 5] for an overview. However, the methods
of topological transversality have not been used much (perhaps at all) in
the treatment of nonlinear integral equations. We hope this discussion
will stimulate further work.

The development of a topological degree, such as the Leray-Schauder
degree, requires substantial and rather sophisticated preliminaries. In
contrast, the results typically needed from topological transversality
theory require nothing more demanding than Urysohn’s lemma in a
metric space and a few standard compactness arguments. Full proofs
of the results summarized below may be found in [4, p. 14 15] or in
[1, p. 57 60], which also contains further theory. In applications, some
maps must be known to have nonzero degree or to be essential, in the
case of topological transversality. In either approach, the Schauder
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fixed-point theorem plays a role. It is normally the deepest result used
when the analysis is based on topological transversality.

The approach via topological transversality has the added advantage
that it permits a cone formulation. This leads naturally to the existence
of solutions in a cone, say the cone of nonnegative functions. Particular
instances are noted in Section 3.

We are concerned primarily with the existence of solutions to nonlin-
ear Urysohn equations

(1.1) u(s) = f(s) +
∫ 1

0

k(s, t, u(t)) dt, 0 ≤ s ≤ 1.

The related Urysohn integral operator is

Ku(s) =
∫ 1

0

k(s, t, u(t)) dt.

When a solution u = u(t) is sought in a function space E, natural
conditions are imposed on k(s, t, u) which guarantee that K : E → E
and, of course, f ∈ E is assumed. Then (1.1) is equivalent to the
nonlinear operator equation

(1.1)′ u = Nu

where N : E → E is defined by Nu = f + Ku. Thus, (1.1) has a
solution precisely when the operator N has a fixed point.

As noted above, we shall establish that N has a fixed point by means
of topological transversality theory. We summarize the key elements of
that theory next and refer to [1] for further elaboration and proofs.

A function is compact if it has relatively compact range. It is
completely continuous if it maps bounded sets into relatively compact
sets. By a map we mean a continuous function. Let C denote a convex
subset of a normed linear space E. Let U be open in C, and denote by
U and ∂U the closure and boundary of U in C. Denote by K∂U (U, C)
the family of compact maps from U into C which are fixed point free
on ∂U . A map F ∈ K∂U (U, C) is essential if every map in K∂U (U, C)
which agrees with F on ∂U has a fixed point in U . Evidently every
essential map has a fixed point. An easy application of the Schauder
fixed point theorem establishes
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Proposition 1.1. Let p0 ∈ U be fixed. Then the constant map
sending each point of U to p0 is essential in K∂U (U, C).

The next result permits the identification of other essential maps
via homotopy. Two maps F and G in K∂U (U, C) are homotopic in
K∂U (U, C) if there is a compact homotopy H = H(u, λ) : U×[0, 1] → C
such that Hλ(u) = H(u, λ) : U → C belongs to K∂U (U, C) for each
λ ∈ [0, 1], F = H0, and G = H1.

Topological Transversality Theorem 1.2. Let F and G be
homotopic maps in K∂U (U, C). Then F is essential if and only if
G is essential.

The following nonlinear alternative, a variant of the classical Leray-
Schauder alternative, is often useful in establishing that a particular
operator has a fixed point. It is an immediate consequence of the
topological transversality theorem and Proposition 1.1.

Theorem 1.3. Let N : U → C be a compact map, p0 ∈ U , and
Nλ(u) = N(u, λ) : U × [0, 1] → C a compact map with N1 = N and N0

the constant map to p0. Then either

(1) N has a fixed point in U ; or

(2) there exists λ ∈ (0, 1) such that Nλ has a fixed point in ∂U .

In typical applications of this nonlinear alternative, a priori bounds
are established for solutions u to Nλu = u. Then U is chosen so that
possibility (2) in Theorem 1.3 cannot occur and, hence, N has a fixed
point.

2. Preliminaries. Consider the nonlinear Urysohn equation

(2.1) u(s) = f(s) +
∫ 1

0

k(s, t, u(t)) dt, 0 ≤ s ≤ 1.

For the moment assume k(s, t, u) is continuous on [0, 1]×[0, 1]×Rd with
values in Rd for some d ≥ 1. Likewise, assume f(s) is continuous from
[0, 1] to Rd. Thus, (2.1) is a scalar equation when d = 1 and a system
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of such equations when d > 1. As usual, C[0, 1] is the Banach space
of continuous functions u : [0, 1] → Rd equipped with the maximum
norm

|u|0 = max{|u(t)| : t ∈ [0, 1]}.
We express (2.1) in operator form by

u = f + Ku

where
K : C[0, 1] → C[0, 1]

is the integral operator

(2.2) Ku(s) =
∫ 1

0

k(s, t, u(t)) dt.

Lemma 2.1. Let k(s, t, u) be continuous on [0, 1]×[0, 1]×Rd into Rd.
Then K : C[0, 1] → C[0, 1] is continuous and completely continuous.

Proof. The continuity of K follows easily from the uniform continuity
of k on compact sets. The complete continuity of K is a direct conse-
quence of the Arzela-Ascoli theorem and the aforementioned uniform
continuity.

Next we relax the hypotheses on k(s, t, u) but still wish to retain the
conclusions in Lemma 2.1. To begin with, let m be a positive integer
and 1 ≤ p ≤ ∞. A function g : [0, 1]×Rm → Rd is an Lp-Carathéodory
function provided: If g = g(t, z), then

(a) the map z → g(t, z) is continuous for almost all t in [0, 1],

(b) the map t → g(t, z) is measurable for all z in Rm,

(c) for each r > 0, there exists hr ∈ Lp[0, 1] such that |z| ≤ r implies
|g(t, z)| ≤ hr(t) for almost all t in [0, 1].

Sometimes we simply call g a Carathéodory function.

Now let k : [0, 1] × [0, 1] × Rd → Rd. We make the following
assumptions (H1 H3) on k.

H1. For each s ∈ [0, 1], the function ks : [0, 1] × Rd → Rd given by
ks(t, u) = k(s, t, u) is an L1-Carathéodory function.
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Then, as Carathéodory showed, (a) and (b) imply that ks(t, u(t)) =
k(s, t, u(t)) is measurable for any measurable function u(t). In view
of (c), ks(t, u(t)) is integrable when u ∈ C[0, 1]. Thus, Ku(s) ∈ Rd

for each u ∈ C[0, 1] and s in [0, 1]. Next, let un → u in C[0, 1].
Then there exists r > 0 such that |un|0 ≤ r and |u|0 ≤ r. By
H1, there is a function hs,r ∈ L1[0, 1] such that |ks(t, un(t))| =
|k(s, t, un(t))| ≤ hs,r(t) for almost all t in [0, 1]. Also, from H1, for
each s in [0, 1], k(s, t, un(t)) → k(s, t, u(t)) for almost all t in [0, 1].
Lebesgue’s dominated convergence theorem implies that Kun(s) →
Ku(s) pointwise on [0, 1]. To guarantee that this convergence is uniform
and, hence, that Ku ∈ C[0, 1] and K is continuous, we assume:

H2. For each r > 0 and s in [0, 1],

∫ 1

0

sup
|u|≤r

|k(s′, t, u) − k(s, t, u)| dt → 0 as s′ → s.

With un → u in C[0, 1] and r > 0 as above, it follows that

|Kun(s′) − Kun(s)| ≤
∫ 1

0

sup
|u|≤r

|k(s′, t, u) − k(s, t, u)| dt.

Consequently, {Kun} is equicontinuous at s for each s in [0, 1], and,
hence, uniformly equicontinuous on [0, 1]. Since Kun also converges
pointwise to Ku on [0, 1], it follows that the convergence is uniform.
Then Ku ∈ C[0, 1], Kun → Ku in C[0, 1] and K : C[0, 1] → C[0, 1] is
continuous.

The reasoning following H2 also shows that KB is equicontinuous for
each bounded set B in C[0, 1]. KB will also be bounded if we assume:

H3. For each r > 0,

sup
s∈[0,1]

∫ 1

0

sup
|u|≤r

|k(s, t, u)| dt < ∞.

Consequently, if k(s, t, u) satisfies H1 H3, then K : C[0, 1] → C[0, 1] is
continuous and completely continuous. In regard to H3, note that, by
H1, given r > 0 and s in [0, 1] there is an hs,r ∈ L1[0, 1] such that

|k(s, t, u)| ≤ hs,r(t) for a.e. t in [0, 1]
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and |u| ≤ r. We call k(s, t, u) L1-Carathéodory uniformly in s if in H1

sup
s∈[0,1]

∫ 1

0

hs,r(t) dt < ∞.

H3 follows easily from this assumption. We summarize this discussion
in

Theorem 2.2. Let k : [0, 1] × [0, 1] × Rd → Rd satisfy H1 H3 or
alternatively satisfy H1, H2 and be L1-Carathéodory uniformly in s.
Then the integral operator K in (2.2) maps C[0, 1] into itself and is
continuous and completely continuous.

Remark. The reasoning above applies when [0, 1] is replaced by any
compact set in some Euclidean space.

Hammerstein integral operators provide important special cases of
the Urysohn operator (2.2). In the Hammerstein case, k(s, t, u) =
l(s, t)g(t, u) where l(s, t) = l(t, s) is a symmetric kernel. We drop the
symmetry requirement on l(s, t) and formulate the following result.

Theorem 2.3. Let k(s, t, u) = l(s, t)g(t, u) and assume:

A. ls(t) = l(s, t) ∈ Lp[0, 1] for each s ∈ [0, 1].

B. The map s �→ ls is continuous from [0, 1] to Lp[0, 1].

C. g(t, u) is Lq-Carathéodory where 1/p + 1/q = 1.

Then k(s, t, u) satisfies H1 H3.

Proof. Clearly ks(t, u) = ls(t)g(t, u) satisfies the continuity and
measurability conditions required by H1. Given r > 0, there exists
hr(t) ∈ Lq[0, 1] such that |g(t, u)| ≤ hr(t) for almost all t ∈ [0, 1] and
all |u| ≤ r. Thus, |ks(t, u)| ≤ |ls(t)|hr(t) for almost all t ∈ [0, 1] and all
|u| ≤ r and the right member is in L1[0, 1]. So H1 holds.
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Next,

∫ 1

0

sup
|u|≤r

|l(s′, t)g(t, u) − l(s, t)g(t, u)| dt

=
∫ 1

0

|l(s′, t) − l(s, t)| sup
|u|≤r

|g(t, u)| dt

≤
∫ 1

0

|l(s′, t) − l(s, t)|hr(t) dt

≤ ||ls′ − ls||p||hr||q → 0 as s′ → s

by B. Thus, H2 holds. Likewise, by B

sup
s∈[0,1]

∫ 1

0

sup
|u|≤r

|l(s, t)g(t, u)| dt ≤ sup
s∈[0,1]

||ls||p||hr||q

= ||hr||q max
s∈[0,1]

||ls||p,

and H3 holds.

3. Existence results. Consider the Urysohn equation

(3.1) u(s) = f(s) +
∫ 1

0

k(s, t, u(t)) dt

and the related family of problems

(3.2) u(s) = f(s) + λ

∫ 1

0

k(s, t, u(t)) dt

for λ ∈ (0, 1). Throughout this section assume that f ∈ C[0, 1] and
k satisfies H1 H3 in Section 2. In case k(s, t, u) = l(s, t)g(t, u), we
assume that l and g satisfy A, B and C in Section 2. Then k = lg
satisfies H1 H3 by Theorem 2.3. The assumptions above imply that
the corresponding Urysohn integral operator

(3.3) Ku(s) =
∫ 1

0

k(s, t, u(t)) dt
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maps C[0, 1] into itself and that K is continuous and completely
continuous. It follows that

N : C[0, 1] × [0, 1] → C[0, 1], N(u, λ) = f + λKu,

is continuous and completely continuous. Evidently, (3.2) is equivalent
to u = N(u, λ). The restriction of N(u, λ) to U × [0, 1] is a continuous,
compact map for any bounded subset U of C[0, 1].

We use these observations and the nonlinear alternative (Theorem
1.3) to establish, very easily, several existence theorems for Urysohn
and Hammerstein integral equations (and systems of such equations).
By a solution of (3.1) we mean a continuous function u that satisfies
(3.1).

Theorem 3.1. Let k be bounded. Then (3.1) has a solution.

Proof. Let |k(s, t, u)| ≤ M̃ . Then |N(u, λ)| < M = |f |0 + M̃ + 1.
Apply the nonlinear alternative with C = C[0, 1], U = {u ∈ C : |u|0 <
M}, and p0 = f . Alternative (2) is impossible by the choice of U so
N(u, 1) has a fixed point; equivalently, (3.1) has a solution.

Example. u(s) = cos t +
∫ 1

0
est sin(t2eu(t)) dt has a solution.

A slight modification of the proof permits us to show there is a
nonnegative solution, when it is reasonable to expect one.

Theorem 3.2. Let f ≥ 0 and k be nonnegative and bounded for all
s, t ∈ [0, 1] and u ≥ 0. Then (3.1) has a nonnegative solution.

Proof. Replace C in the previous proof by C = {u ∈ C[0, 1] : u ≥ 0}
which is a convex subset of C[0, 1]. Then N(u, λ) : U × [0, 1] → C and
the nonlinear alternative applies as before.

Example.

u(s) = t2 +
∫ 1

0

e−su(t)

1 + u(t)2
dt

has a solution u(t) ≥ 0. Note that k(s, t, u) is not bounded for all
real u.
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Remark. Theorem 3.2 can also be deduced from Theorem 3.1 by
means of the auxiliary kernel k̃(s, t, u) = k(s, t, |u|).

Theorem 3.3. Assume |k(s, t, u)| ≤ ϕ(|u|) where ϕ : [0,∞) →
[0,∞) is a nondecreasing, Borel function such that L = limx→∞ ϕ(x)/x
< 1. Then (3.1) has a solution.

Proof. Suppose u = N(u, λ) for some u ∈ C[0, 1] and λ ∈ (0, 1). Then

|u(s)| ≤ |f |0 +
∫ 1

0

ϕ(|u(t)|) dt ≤ |f |0 + ϕ(|u|0)

because ϕ is nondecreasing. Thus,

1 ≤ |f |0/|u|0 + ϕ(|u|0)/|u|0

provided u �= 0. It follows that there exists a constant M < ∞ and
independent of λ in (0,1) such that |u|0 < M for any u that satisfies
u = N(u, λ). Otherwise, there would exist un = N(un, λn) with
|un|0 → ∞ as n → ∞ and the displayed inequality would yield the
contradiction 1 ≤ L. Thus, u = N(u, λ) implies |u|0 ≤ M . Now apply
the nonlinear alternative just as in Theorem 3.1 to obtain a solution to
(3.1).

Remark. If [0, 1] is replaced by a compact set D in Rd, the condition
L < 1 is replaced by L|D| < 1 where |D| is the volume of D in Rd.

Theorem 3.3 applies, in particular, to kernels with sublinear growth
in u because ϕ(x) = αxβ with α > 0 and 0 < β < 1 has L = 0. The
theorem also covers mildly linear growth in u described by ϕ(x) = αx
for 0 ≤ α < 1, and oscillatory behavior with ϕ(x) = αx| sin x|,
0 ≤ α < 1. A slight modification in the proof of Theorem 3.3 allows a
growth rate that includes an integrable singularity.

Theorem 3.4. Assume |k(s, t, u)| ≤ β(s, t)ϕ(|u|) where for each
s ∈ [0, 1], βs = β(s, t) ∈ L1[0, 1], and ϕ and L are as in Theorem 3.3.
Let b = sup{||βs||1 : s ∈ [0, 1]}. Then (3.1) has a solution if bL < 1.
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Next we turn to nonlinear Hammerstein equations.

Theorem 3.5. Assume that k(s, t, u) = l(s, t)g(t, u) where l(s, t)
is a nonnegative, symmetric, positive definite kernel with smallest
eigenvalue λ1, that A holds with p = 2, and |g(t, u)| ≤ α(t)+ c(t)|u| for
α, c ∈ C[0, 1]. Then (3.1) has a solution if |c|0 < λ1.

Proof. Recall that g and l satisfy A, B, and C in Section 2 according
to our standing assumptions. In particular, the integral operator L with
kernel l maps C[0, 1] into itself. Let 〈·, ·〉 be the usual inner product on
L2[0, 1]. Then u = N(u, λ) implies that

(3.4)
|u(s)| ≤ |f(t)| +

∫ 1

0

l(s, t)α(t) dt +
∫ 1

0

l(s, t)c(t)|u(t)| dt

|u(s)| ≤ |f |0 + |Lα|0 + |c|0
∫ 1

0

l(s, t)|u(t)| dt.

Multiply by |u(s)| and integrate with respect to s to obtain

||u||22 ≤ (|f |0 + |Lα|0)||u||1 + |c|0〈L|u|, |u|〉,

||u||22 ≤ (|f |0 + |Lα|0)||u||2 + |c|0 ||u||
2
2

λ1
,

||u||2 ≤ |f |0 + |Lα|0
1 − |c|0/λ1

≡ M1,

an a priori bound in L2[0, 1]. Return to (3.4) and apply the Schwarz
inequality to get

|u(s)| ≤ |f |0 + |Lα|0 + |c|0||ls||2||u||2.
By B, ||ls||2 is bounded for s in [0, 1] and, since ||u||2 ≤ M1, we infer
the existence of a constant M independent of λ in (0, 1) such that
|u|0 < M . Now, existence of a solution to (3.1) follows exactly as in
Theorem 3.1.

Remark. Just as in passing from Theorem 3.1 to Theorem 3.2, we
can obtain a nonnegative solution u to (3.1) if we assume that f(t) ≥ 0
and 0 ≤ g(t, u) ≤ α(t) + c(t)u for 0 ≤ t ≤ 1 and u ≥ 0 in Theorem 3.5.
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We conclude with a more subtle result.

Theorem 3.6. Assume k(s, t, u) = l(s, t)g(t, u) satisfies:

(i) The function g(t, u)/u ≥ 0 for u �= 0, and there are constants
0 < α < β, γ ≥ 0, and M > 0 such that

α|u|γ ≤ g(t, u)/u ≤ β|u|γ

for 0 ≤ t ≤ 1 and |u| > M .

(ii) g(t, 0) = 0 and gu(t, u) is an L1-Carathéodory function.

(iii) l(s, t) is symmetric, nonpositive definite, and p = γ + 2 in
condition A of Theorem 2.3.

Then (3.1) has a solution.

Remark. The conditions A, B, C with p = γ + 2 hold in particular
when l(s, t) is continuous and g(t, u) is continuously differentiable,
which also implies gu(t, u) is L1-Carathéodory.

Proof. Define

a(t, u) =
{

g(t, u)/u, u �= 0, 0 ≤ t ≤ 1
gu(t, 0), u = 0, 0 ≤ t ≤ 1

.

It is easy to check that a(t, u) ≥ 0 is an L1-Carathéodory function, a
fact used several times below. Fix u ∈ C[0, 1] such that u = N(u, λ).
Let b(t) = a(t, u(t)). Then

u(s) = f(s) + λ

∫ 1

0

l(s, t)b(t)u(t) dt.

Multiply by b(s)u(s), integrate with respect to s, and recall that l(s, t)
is nonpositive definite to obtain

∫ 1

0

b(s)u(s)2 ds =
∫ 1

0

b(s)f(s)u(s) ds + λ〈Lbu, bu〉,
∫ 1

0

b(s)u(s)2 ds ≤
∫ 1

0

√
b(s)f(s)

√
b(s)u(s) ds.
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By the Schwarz inequality
(3.5)∫ 1

0

b(s)u(s)2 ds ≤
( ∫ 1

0

b(s)f(s)2 ds

)1/2( ∫ 1

0

b(s)u(s)2 ds

)1/2

,

∫ 1

0

b(s)u(s)2 ds ≤
∫ 1

0

b(s)f(s)2 ds.

Let I = {t ∈ [0, 1] : |u(t)| > M}. Then, from (i),

(3.6)
∫ 1

0

b(s)u(s)2 ds ≥
∫

I

b(s)u(s)2 ds ≥ α

∫
I

|u(s)|γ+2 ds,

and

(3.7)
∫ 1

0

b(s)f(s)2 ds ≤ |f |20
∫

Ic

b(s) ds + β

∫
I

|u(s)|γf(s)2 ds.

Since gu is L1-Carathéodory, there exists hM (t) ∈ L1[0, 1] such that

(3.8) |b(s)| = |gu(s, ϑsu(s))| ≤ hM (s) a.e. s ∈ Ic,

where 0 ≤ ϑs < 1 is determined using the mean value theorem. It
follows that there is a constant M1 (independent of λ) such that

∫ 1

0

b(s)f(s)2 ds ≤ M1 + β

∫
I

|u(s)|γf(s)2 ds,

≤ M1 + β

(∫
I

|u(s)|γp ds

)1/p( ∫
I

f(s)2q ds

)1/q

,

for any p ≥ 1 and 1/p+1/q = 1. If γ > 0, choose p such that γp = γ+2,
i.e., p = (γ + 2)/γ > 1. Then

(3.9)
∫ 1

0

b(s)f(s)2 ds ≤ M1 + β||f ||22q

( ∫
I

|u(s)|γ+2 ds

)1/p

.

From (3.5), (3.6), and (3.9) there are constants M1 and M2 such that

α

∫
I

|u(s)|γ+2 ds ≤ M1 + βM2

( ∫
I

|u(s)|γ+2 ds

)1/p
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for p = (γ + 2)/γ > 1. Since α
∫

Ic |u(s)|γ+2 ds ≤ αMγ+2 there is a
constant M3 such that

α

∫ 1

0

|u(s)|γ+2 ds ≤ M3 + βM2

( ∫ 1

0

|u(s)|γ+2 ds

)1/p

for p = 1 + 2/γ. It follows that

(3.10)
∫ 1

0

|u(s)|γ+2 ds ≤ M4

for some constant M4 independent of λ. Now consider γ = 0. When
γ = 0, (3.7) and (3.8) imply that

∫ 1

0

b(s)f(s)2 ds ≤ |f |20
∫ 1

0

hM (s) ds + β

∫
I

f(s)2 ds = M̃

a bound independent of λ. Now (3.5), (3.6) and this bound yields

α

∫
I

|u(s)|2 ds ≤ M̃,

and, hence,

α

∫ 1

0

|u(s)|2 ds ≤ M̃ + αM2

which is a bound of the form (3.10) when γ = 0. Thus, (3.10) holds for
γ ≥ 0.

Finally, to obtain an a priori bound in the maximum norm, return to
(3.2) to find

|u(s)| ≤ |f |0 +
∫ 1

0

|l(s, t)||g(t, u(t))| dt

≤ |f |0 +
( ∫ 1

0

|l(s, t))p dt

)1/p( ∫ 1

0

|g(t, u(t))|q dt

)1/q

with p = γ+2 as in (iii) and, therefore, q = (γ+2)/(γ+1). By B there
is a constant Ms such that ||ls||p ≤ M5 for all s in [0, 1]. Consequently,

(3.11) |u(s)| ≤ |f |0 + M5

( ∫ 1

0

|g(t, u(t))|q dt

)1/q
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where q = (γ + 2)/(γ + 1). Since g is an Lq-Carathéodory function,
there exists hM (t) ∈ Lq[0, 1] such that

|g(t, u(t))| ≤ hM (t) a.e. t ∈ Ic,

while by (i),
|g(t, u(t))| ≤ β|u(t)|γ+1 for t ∈ I.

These estimates imply that

∫ 1

0

|g(t, u(t))|q dt ≤
∫ 1

0

hM (t)q dt +
∫ 1

0

βq|u(t)|γ+2 dt,

where we have used q(γ + 1) = γ + 2. Finally, (3.10), (3.11) and this
estimate yields a constant M6 such that |u(s)| ≤ M6 for all s ∈ [0, 1].

As mentioned in the introduction, the interval [0, 1] can be replaced
by any compact set in Rd and the same reasoning establishes the
corresponding theorems. In a final example, we apply Theorem 3.6
to a compact domain D ⊂ Rd for d = 2 and d = 3. We assume D has
a smooth boundary ∂D.

Example. Consider the nonlinear Dirichlet problem

(3.12)
{

Δu = g(x, u), x ∈ D

u = ϕ(x), x ∈ ∂D

with smooth boundary data ϕ(x) and g ∈ C1(D × R). If f is the
harmonic function in D with boundary values ϕ and l(x, y) is the
Green’s function for the Laplacian with zero boundary data, then (3.12)
is equivalent to the Hammerstein equation

(3.13) u(x) = f(x) +
∫

D

l(x, y)g(y, u(y)) dy.

The Green’s function is symmetric and negative definite. If d = 2,
l(x, y) has a logarithmic singularity when y = x and, hence, lx ∈ Lp(D)
for any p ≥ 1. If g(t, u) satisfies (i) and (ii) in Theorem 3.6 for some
γ > 0, then l(x, y) satisfies (iii) for p = γ + 2. Therefore, (3.13) and,
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hence, (3.12) has a solution. If d = 3, l(x, y) has a singularity of the
form |x − y|−1 and lx ∈ Lp(D) only for p ≤ 2. In this case Theorem
3.6 only applies when γ = 0, in which case p = 2 in (iii).
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