
JOURNAL OF INTEGRAL EQUATIONS
AND APPLICATIONS
Volume 5, Number 2, Spring 1993

A MODIFIED APPROACH TO
THE NUMERICAL SOLUTION OF

LINEAR WEAKLY SINGULAR VOLTERRA
INTEGRAL EQUATIONS OF THE SECOND KIND

J. ABDALKHANI

Dedicated to the memory of Paul (Bud) Beesack for his contribution

to this work and his love for mathematics.

ABSTRACT. The (unknown) exact solution of a weakly
singular Volterra integral equation of the second kind (with
smooth kernel and forcing function) normally has unbounded
derivatives at the initial point of the interval of integration.
Thus, it is not possible to approximate the exact solution with
a high rate of convergence while using the ordinary polynomial
collocation methods (with uniform meshes) and the resulting
Runge-Kutta and block-by-block methods. To improve the ac-
curacy of approximation using these methods, we produce a
modified integral equation which is obtained from and closely
related to the original equation. This new equation has a sin-
gular forcing function but possesses a smoother (unknown)
exact solution. We shall prove that it is possible to approxi-
mate the solution of this new equation by the above mentioned
numerical methods with a high order of convergence and con-
sequently obtain an accurate approximation for the original
equation.

1. Introduction. We study Volterra integral equations of the
second kind with weakly singular kernels of the form
(1.1)

y(t) = g(t) +
∫ t

0

K(t, s)(t−s)−αy(s) ds, 0 < α < 1, t ∈ I = [0, a]

where g ∈ Cm[I] and K ∈ Cm(T ), T = {(t, s) : 0 ≤ s ≤ t ≤ a}.
These equations arise in many practical applications. Specifically, for
α = 1/2, see [4].
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Throughout we assume the existence of a unique continuous solution
on the interval I. The existence of a unique solution under proper con-
ditions is discussed, for example, in [4, 9, 11]. In general, this solution
cannot be found by analytical methods and therefore it is important to
find an accurate approximation using numerical techniques. It is well
known that the exact analytical solution of equation (1.1), when g and
K are smooth, is typically nonsmooth at t = 0, see [4, Section 1.3.5].
This means that if a numerical method is to possess a high order of
convergence on the whole interval I = [0, a], one has to take into ac-
count the singular behavior of the exact solution near the origin. In
linear multistep methods this is reflected in the special construction
of the starting weights, see [13]. In collocation methods either graded
meshes have been used instead of uniform ones or nonpolynomial spaces
were considered instead of polynomial spaces, see [5] and [6]. We pre-
fer polynomial spline collocation with uniform meshes, since the global
convergence results can be established more easily as compared with
other methods, see [4, Chapter 6]. Moreover, a class of implicit Runge-
Kutta (IRK) methods can be obtained from these methods, and RK
methods are more practical. For connection of collocation with IRK
methods, see [4, Section 5.2.1]. Block-by-block methods can be ob-
tained from IRK, see [11, pp. 114 116 and 136 137]. These methods,
although possessing the same order of convergence as the collocation
and IRK methods, showed better stability when solving numerical ex-
amples. In passing, we would like to mention that there are simpler
numerical methods in the literature which give good accuracy, but on
an interval of the form [ε0, a], ε0 > 0, which does not include the origin,
see [9, 12].

The question is, how do we take into account the singular behavior
of y(t) at t = 0, to be able to use the ordinary polynomial collocation
with uniform meshes and retain a high order of convergence on the
whole interval I? We will simply add a known function f(t) to a new
unknown function Y (t) such that

(1.2) y(t) = Y (t) + f(t),

where Y (t) ∈ Cm[I], and then solve

(1.3) Y (t) = G(t) +
∫ t

0

K(t, s)(t − s)−αY (s) ds
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where

(1.4) G(t) = g(t) − f(t) +
∫ t

0

K(t, s)f(s)(t− s)−α ds.

The splitting of y into two functions is not unique, but if f(t) is chosen
properly then the exact solution Y (t) of (1.3) is, in fact, smooth of class
Cm, and it can be approximated accurately by means of collocation,
IRK or block-by-block methods, as explained earlier. Equation (1.2)
then can be used to approximate y(t). In Section 2 we demonstrate
how to extract f(t), the singular part of y(t).

Section 3 is mainly devoted to the convergence of collocation methods.
It is known that when g and K in (1.1) are of continuity class Cm

and if we assume y ∈ Cm[I] and y(t) is approximated (properly)
by the collocation methods with uniform meshes, then one would
obtain a global convergence of order m. For more details, see [1]
and [7, p. 411, Table 1.1]. However, as mentioned before, y(t) is not
smooth at t = 0 and therefore we are approximating Y (t). Although
Y ∈ Cm[I], the forcing function G(t) given by (1.4) is singular.
Moreover, the integral on the right hand side of (1.4) normally must be
approximated; therefore, G(t) must be replaced by an approximation
function Ĝ(t). This makes our assumptions different from the known
results in literature and we will therefore give a complete proof of the
convergence of collocation methods (Theorem 3.2). We also discuss
briefly the IRK and block-by-block methods. This discussion is not
self-contained and we refer the interested reader to [4, 11].

Section 4 contains numerical examples. Our approach has its draw-
backs. These are discussed in a conclusion.

2. The singular part of solutions.

Case I. A simple illustration. Consider the most practical case,
α = 1/2. It has been shown that y(t) in (1.1) can be written as

y(t) = u(t) +
√

tv(t) where u, v ∈ Cm,

see [4, p. 29]. Now we write v(t) as v(t) = a + bt + ct2 + Z(t), for some
Z(t), Z(t) = dt3 + . . . . Thus,

y(t) = u(t) +
√

t[(a + bt + ct2) + Z(t)]

= u(t) +
√

tZ(t) +
√

t(a + bt + ct2) = Y (t) + f(t)
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where

Y (t) = u(t) +
√

tZ(t) and f(t) =
√

t(a + bt + ct2).

Y (t) is unknown and Y ∈ C3, while y is only continuous. f(t) will
be a known function when a, b, and c are known. We will find these
constants and show that they only depend on f (i)(0), i = 0, 1, 2, and
∂i+jK(0, 0)/∂ti∂sj , i, j = 0, 1, 2, 0 ≤ i + j ≤ 2.

Case II. The general case, 0 < α < 1. Let y(t) be the exact solution
of the integral equation (1.1). Then y(t) ∈ C[I]∩Cm(0, a] and has the
form

(2.1) y(t) = g(t) +
∞∑

j=1

yj(t)tj(1−α)

where yj(t) ∈ Cm(I). For more details, see [4, p. 30, Theorem 1.3.15
with g1 = g and g2 = 0]. Now we expand yj(t) by the Taylor series
expansion at t = 0 as

(2.2) yj(t) =
m∑

i=0

y
(i)
j (0)

ti

i!
+ Rj(t),

where Rj(t) → 0 as t → 0 faster than tm. Therefore, (2.1) can be
written as

(2.3) y(t) = g(t) +
∞∑

j=1

m∑
i=0

y
(i)
j (0)
i!

ti+j(1−α) +
∞∑

j=1

Rj(t)tj(1−α).

Recalling that g(t) ∈ Cm[I] one can write y(t) as

(2.4) y(t) = Ym(t) + fm,α(t),

with

(2.5) Ym(t) =
m∑

n=0

Y (n)
m (0)

tn

n!
+ R(t)
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and
(2.6) fm,α(t) =

∑
i,j

′ai,jt
i+j(1−α)

where Ym and fm,α are the regular and singular part of y, respectively.
R(t) is a remainder function, which is in Cm[I] and approaches zero
faster than tm, as t → 0. Σ′ signifies a sum over all i, j so that i+j(1−α)
runs through all distinct non-integer values greater than 0 and less than
m that can be written in this form.

Examples.

(2.7a) f3,1/2(t) =
∑

n=1,3,5

a0ntn/2,

(2.7b) f3,1/3(t) =
∑

n=1,2,4

a0nt2n/3 +
∑

n=1,2

a1nt1+2n/3,

(2.7c) f3,2/3(t) =
∑

n=1,2,4,5,7,8

a0ntn/3,

(2.7d) f3,0.9(t) =
2∑

i=0

9∑
j=1

aijt
i+j/10,

where Y
(n)
m (0) and aij in (2.5) and (2.6) are constants to be determined.

To obtain these constants, we expand g and K in Taylor polynomials of
order m plus a remainder, and substitute everything into the integral
equation (1.1), which yields the following equation

(2.8)
m∑

n=0

Y (n)
m (0)

tn

n!
+

∑
i,j

′aijt
i+j(1−α) =

m∑
n=0

g(n)(0)tn/n!

+
m∑

n=0

m∑
i=0

i∑
j=0

[
i
j

]
Y

(n)
m (0)
n!i!

∂iK(0, 0)
∂tj∂Si−j

ti+n+(1−α)B(i−j+n+1, 1−α)

+
∑
i,j

′
m∑

l=0

l∑
q=0

[
l
q

]
l!

aij
∂lK(0, 0)
∂tq∂st−q

tl+i+j(1−α)+(1−α)

· B(l − q + i + j(1 − α) + 1, 1 − α) + Remainder.
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Collecting the coefficients of the various powers of t, one obtains a
sequence of equations which can be solved successively, either alge-
braically or numerically, to give aij and Y

(n)
m (0), i = 0, . . . , m.

Although it is possible to derive these coefficients for any m and α
from (2.8), we avoid doing this, since the corresponding equations are
lengthy. Instead, we give the successive equations obtained from (2.8)
for m = 3 and α = 1/2 and 2/3, taking advantage of the following
notations:

(2.9a) K1 := K(0, 0)

(2.9b) T1 :=
∂K(0, 0)

∂t
, S1 :=

∂K(0, 0)
∂S

(2.9c) T2 :=
∂2K(0, 0)

∂t2
, S2 :=

∂2K(0, 0)
∂S2

(2.9d) M1 :=
∂2K(0, 0)

∂t∂S
and Y

(n)
m,0 := Y (n)

m (0)

Example 2.1. m = 3, α = 1/2, f3,1/2(t) given by (2.7a), from (2.8)
we obtain

Y3,0 = g(0), a01 = Y3,0K1B(1/2, 1) = 2g(0)K1,

Y ′
3,0 = g′(0) + a01K1B(1/2, 3/2) = g′(0) + πg(0)K2

1 ,

a03 = Y3,0[T1B(1/2, 1) + S1B(1/2, 2)] + Y ′
3,0K1B(1/2, 2),

Y ′′
3,0 = g′′(0)+2a01[S1B(1/2, 5/2)+T1B(1/2, 3/2)]+2a03K1B(1/2, 5/2),

a05 = Y3,0

[
1
2
S2B

(
1
2
, 3

)
+ M1B

(
1
2
, 2

)
+

1
2
T2B

(
1
2
, 1

)]

+ Y ′
3,0

[
S1B

(
1
2
, 3

)
+ T1B

(
1
2
, 2

)]
+

1
2
Y ′′

3,0K1B

(
1
2
, 3

)
.
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Example 2.2. m = 3, α = 2/3, f3,2/3(t) given by (2.7c)

Y3,0 = g(0), a01 = Y3,0K1B(1, 1/3) = 3K1g(0),

a02 = a01K1B(4/3, 1/3), Y ′
3,0 = g′(0) + a02K1B(5/3, 1/3),

a04 = Y3,0[S1B(2, 1/3) + T1B(1, 1/3)] + Y ′
3,0K1B(2, 1/3),

a05 = a01[S1B(5/3, 1/3) + T1B(4/3, 1/3)] + a04K1B(7/3, 1/3),

Y ′′
3,0 = g′′(0)+2a02[S1B(8/3, 1/3)+T1B(5/3, 1/3)]+2a05K1B(8/3, 1/3),

a07 = Y3,0

[
1
2
S2B

(
3,

1
3

)
+ M1B

(
2,

1
3

)
+

1
2
T2B

(
1,

1
3

)]

+ Y ′
3,0

[
S1B

(
3,

1
3

)
+ T1B

(
2,

1
3

)]
+ Y ′′

3,0

(
1
2
K1B

(
3,

1
3

))
,

a08 = a01

[
1
2
S2B

(
10
3

,
1
3

)
+ M1B

(
7
3
,
1
3

)
+

1
2
T2B

(
4
3
,
1
3

)]

+ a04

[
S1B

(
10
3

,
1
3

)
+ T1B

(
7
3
,
1
3

)]
+ a07K1B

(
10
3

,
1
3

)
.

3. Convergence of collocation, IRK and block-by-block
methods. A collocation method is based on the principle of approxi-
mating the exact solution of a given functional equation in a suitably
chosen finite-dimensional function space such that the approximating
element satisfies the functional equation on a certain finite discrete sub-
set of the interval on which the equation is to be solved. This finite sub-
set is called the collocation set. Collocation methods for Volterra inte-
gral equations are discussed in detail in [4, Chapter 5 and pp. 347 398].
Let I = [0, a] be partitioned by the points tk = kh, k = 0, . . . , N ,
h = a/N , N ≥ 1. Let ZN = {t0, t1, . . . , tN}. We denote the set of all
piecewise polynomials of degree m, (which may possess finite disconti-
nuities at the knots tk) by S−1

m (ZN ), where m + 1 is the same as the
degree of smoothness of Y . We approximate the exact solution of

(3.1) Y (t) = G(t) +
∫ t

0

K(t, s)Y (s)(t−s)−α ds, 0<α< 1, t ∈ [0, a],
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where

(3.2) G(t) := g(t) − f(t) +
∫ t

0

K(t, s)f(s)(t− s)−α ds

and f(t) := fm,α(t) and Y (t) := Ym(t) are given by (2.5) and (2.6),
with an element of S−1

m (ZN ). We define our collocation set X(N) by

X(N) =
N−1⋃
i=0

Xi

(3.3)
Xi = {tn + cih : 0 ≤c1 < c2 < c3 · · · < cm+1 ≤ 1} n = 0, 1, . . . , N−1.

Let u ∈ S−1
m (ZN ) satisfy equation (3.1) on X(N) for t ∈ [tn, tn+1] and

t = tn + cih. Then we have

(3.4) un(tn + cih) = G(tn + cih)

+ h1−α

[ n−1∑
t=0

∫ 1

0

K(tn+cih, tl+τh)ul(tl+τh)
(n − l + ci − τ )α

dτ

+
∫ ci

0

K(tn+cih, tn+τh)un(tn+τh)
(ci − τ )α

dτ

]
.

We also recall that G(t) is given by (3.2) and even if f(t) is evaluated
exactly, the integral in the definition of G(t) must be replaced by a
quadrature formula; therefore, G(t) should be replaced by Ĝ(t) in a
numerical approach.

Now approximate the (moment) integrals in (3.4) by quadrature
formulas and let û be the numerical approximation to u in (3.4). Then
we have
(3.5)
ûn(tn + cih) = Ĝ(tn + cih)

+ h1−α

[ n−1∑
l=0

m+1∑
j=1

wn,l
i,j K(tn + cih, tl + cjh)ûl(tl + cjh)

+
q∑

j=1

bijK(tn + cih, tn + cjh)ûn(t + cjh)
]
.
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We note here that if q = i− 1 we have an explicit numerical method,
and if q = i we obtain an implicit method. In (3.5), wn,l

i,j and bij are
quadrature weights defined by

wn,l
i,j =

∫ 1

0

(n − l + ci − τ )−αlj(τ ) dτ,(3.6a)

bij =
∫ ci

0

(ci − τ )−αl∗j (τ ) dτ,(3.6b)

where lj(τ ) and l∗j (τ ) are the corresponding Lagrange interpolation
polynomials. We note l∗j (τ ) depends on i, j, and also on q.

Theorem 3.1. Let Y (t), the exact solution of (3.1), belong to
Cm(I), and let u(t) be the approximation to Y which is obtained by
collocation method, (equation (3.4)). Then

(3.7) |Y (t) − u(t)| ≤ Chm, for all t ∈ I as h → 0+, Nh = a

where C is a constant independent of h and N . This result is valid for
any choice of parameters {ci}m+1

i=1 , 0 ≤ c1 < · · · < cm+1 ≤ 1. See [1,
Theorem 3.1.1].

Remark 3.2. We note here that the proof of Theorem 3.1 depends only
on the smoothness of Y (t). In the literature one uses the smoothness
of the kernel function K and the forcing function g in equations of the
form

z(t) = g(t) +
∫ t

0

K(t, s)z(s) ds

(i.e., the nonsingular case), to guarantee the smoothness of the exact
solution Z(t). However, in the weakly singular case (1.1), the smooth-
ness of K and g leads to nonsmoothness of y(t). The whole purpose
of creating the nonsmooth forcing function G(t) in (3.1) is to obtain
smoothness for Y (t). Once this smoothness is achieved, we can apply
Theorem 3.1.

Theorem 3.2. Let u(t) be as given in Theorem 3.1 and û as in (3.5).
Suppose the moment integrals in (3.4) are evaluated by interpolatory
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quadrature formulas based on m (distinct) abscissas with corresponding
quadrature errors Ei

n,l and Ei
n, respectively, with Ei

n,l ≤ C̃2h
r2 and

Ei
n ≤ C̃3h

r3 , for some constants C̃2 and C̃3, and for 0 ≤ l ≤ n and
0 ≤ n ≤ N , respectively, and i = 1, 2, . . . , m + 1; in addition, suppose
that

|G(t) − Ĝ(t)| ≤ C̃1h
r1 .

Then for Y ∈ Cm[0, a] in (3.1), we have

(3.8) |Y (t) − û(t)| ≤ Ĉhp, for t = tn+cih, n = 0, 1, . . . , N

where p = min(m, r1, r2−α, 1+r3−α) and ĉ is a constant independent
of h and N , Nh = a.

To prove this theorem we need the following lemmas.

Lemma 3.2. Let xi, i = 0, 1, . . . , N , be a sequence of real numbers
satisfying

(3.9) |xi| ≤ δ + Mh1−α
i−1∑
j=0

|xj |
(i − j)α

, i = 1, . . . , N,

where 0 ≤ α < 1, δ ≥ 0, M > 0 is independent of h. Then

(3.10) |xi| ≤ δE1−α[mΓ(a − α)(ih)1−α], i = 0, 1, . . . , N,

where E1−α(z) is the Mittag-Leffler function defined for any α by

E1−α(z) =
∞∑

n=0

zn

Γ(n(1 − α) + 1)
.

For proof, see [8]. A somewhat better result is given in Corollary 2 of
[3]. The improvement consists of replacing E1−α in (3.10) by the finite
sum

i∑
n=0

zn/Γ(n(1 − α) + 1).
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Lemma 3.3. Let 0 ≤ α < 1 and j ≥ 0; then∫ 1

0

(n − l + ci − τ )−ατ j dτ

≤
{ 1

1−α < 2α

1−α if l = n − 1

2α(n − l)−α ≤ 2α

1−α (n − l)−α if 0 ≤ l ≤ n − 2,

where 0 ≤ c1 < c2 < · · · < cm+1 ≤ 1. For proof, see [1, Lemma 3.13].

Proof of Theorem 3.2. To prove this theorem we first introduce some
notation. Let

(3.11a)
∫ 1

0

K(tn + cih, tl + τh)zl(tl + τh)
(n − l + ci − τ )α

dτ = Ii
n,l(z)

(3.11b)
∫ ci

0

K(tn + cih, tn + τh)xn(tn + τh)
(ci − τ )α

dt = Ii
n(x)

(3.12a)
m+1∑
j=1

wn,l
i,j K(tn + cihtl + cjh)zl(tl + cjh) = Si

n,l(z)

(3.12b)
q∑

j=1

bi,jK(tn + cih, tn + cjh)xn(tn + cjh) = Si
n,q(x).

Now, since

|Y (t) − û(t)| ≤ |Y (t) − u(t)| + |u(t) − û(t)|,
and Theorem 3.1 provides an upper bound for |Y (t)−u(t)|, it is enough
to find an upper bound for |u(t)− û(t)|, for t = tn + cih. But, recalling
that u(t) is the collocation approximation for Y (t), we have (using (3.4)
and (3.11))

(3.13)
un(tn + cih) = G(tn + cih) + h1−α

[ n−1∑
l=0

Ii
n,l(u) + Ii

n(u)
]

n = 0, 1, . . . , N, i = 1, 2, . . . , m + 1.
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Hence, by subtracting equations (3.13) and (3.5) (using (3.12)), we
obtain

|un(tn + cih) − ûn(tn + cih)| ≤ |G(tn + cih) − Ĝ(tn + cih)|

+ h1−α

∣∣∣∣
n−1∑
l=0

[Ii
n,l(u) − Si

n,l(û)] + [Ii
n(u) − Si

n,q(û)]
∣∣∣∣.

Now we add and subtract Si
n,l(u) and Si

n,q(u) inside the absolute value
of the right-hand side of the previous inequality. Taking advantage of
assumptions of Theorem 3.2 and using the notation

|un(tn + cih) − ûn(tn + cih)| := en(tn + cih),
for n = 0, 1, . . . , N, i = 1, . . . , m + 1

|Ii
n,l(u) − Si

n,l(u)| := Ei
n,l, |Ii

n(u) − Si
n,q(u)| := Ei

n

n = 0, 1, . . . , N, 0 ≤ l ≤ n − 1,

we obtain

|en(tn + cih)| ≤ c̃1h
r1 + h1−α

n−1∑
l=0

[|Si
n,l(u − û)| + Ei

n,l]

+ h1−α[|Si
n,q(u − û)| + Ei

n].

Hence,
(3.14)
en(tn+cih) ≤ c̃1h

r1 +h1−α

·
[ n−1∑

l=0

( m+1∑
j=1

|wn,l
i,j K(tn+cih, tl+cjh)|ei(tl+cjh)+Ei

n,l

)]

+ h1−α

[ q∑
j=1

|bijK(tn+cih, tn+cjh)|en(tn+cjh)+Ei
n

]
,

n = 0, 1, . . . , N.

Now we define bij = 0 for j = q + 1, . . . , m + 1 and denote

el := (el(tl + c1h), . . . , el(tl + cm+1h))T , l=0, 1, 2, . . . , n−1, n.

Dn := h1−α[|bijK(tn + cih, tn + cjh)|](m+1)×(m+1)

cn,l := (|wn,l
i,j K(tn + cih, tl + cjh|)(m+1)×(m+1)



WEAKLY SINGULAR INTEGRAL EQUATIONS 161

where n = 1, . . . , N , l = 0, . . . , n − 1. Then (3.14) can be written as

(3.15) (I − Dn)en ≤ c̃1h
r1em + h1−α

[
Ei

nem +
n−1∑
l=0

(cn,lel + Ei
n,le

m)
]

with em = (1, 1, . . . , 1)T .

The rest of the proof is as follows.

First we show that I−Dn is invertible and ||(I−Dn)−1||∞ is uniformly
(in n and h) bounded above for all sufficiently small h > 0 with the
matrix norm || · ||∞ defined for any matrix A = (aij)(m+1)×(m+1) by

||A||∞ = max
1≤i≤m+1

m+1∑
j=1

|aij |.

We note that this norm is subordinate to the vector norm defined
by ||(u1, . . . , um+1)T || = max1≤j≤m+1 |uj |. Second, we find an upper
bound for

h1−α

[
||Ei

nem|| +
n−1∑
l=0

||Ei
n,le

m||
]
.

Finally, using these two parts, Lemma 3.2 and Lemma 3.3, we find an
upper bound for en.

To prove the first part, we have

I − Dn = I − h1−α(|bijK(tn + cih, tn + cjh)|)(m+1)×(m+1).

But the bij ’s are given by

bij =
∫ ci

0

(ci − τ )−αl∗j (τ ) dτ with l∗j (τ ) =
q∏

i=1
i �=j

(τ − ci)
(cj − ci)

.

Now
∫ ci

0
(ci−τ )−ατk dτ ≤ ∫ ci

0
(ci−τ )−α dτ ≤ 1/(1−α), since 0 ≤ ci ≤ 1,

and therefore the bij ’s are bounded for any given set of ci. On the
other hand, |K(t, s)| ≤ M is uniformly bounded for all (t, s) ∈ T , and
therefore by Banach’s lemma (see [14, p. 32]), I − Dn is invertible for
sufficiently small h > 0 and ||(I −Dn)−1||∞ is uniformly bounded, say

(3.16) ||(I − Dn)−1||∞ ≤ Γ.
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Secondly, we recall that Ei
n,l and Ei

n are quadrature errors in evaluating
the integrals Ii

n,l(u) and Ii
n(u), respectively. Hence, by the hypothesis

of the theorem,

Ei
n,l ≤ c̃2h

r2 , for 0 ≤ l ≤ n − 1, 1 ≤ i ≤ m + 1

Ei
n ≤ c̃3h

r3 , for n = 0, 1, . . . , N, 1 ≤ i ≤ m + 1.

With vector norm ||(v1, . . . , vm+1)|| = max1≤i≤m+1 |vi| which implies
||em|| = 1, we have

h1−α

(
||Ei

nem||+
n−1∑
l=0

||Ei
n,le

m||
)

≤ h1−α

(
c̃3h

r3 +
n−1∑
l=0

c̃2h
r2

)

= c̃3h
1+r3−α + h−α · a · c̃2h

r2

where a is the length of the interval I = [0, a]. Hence,

(3.17) h1−α

(
||Ei

nem|| +
n−1∑
l=0

||Ei
n,le

m||
)

≤ c̃3h
1+r3−α + c̃hr2−α

where c̃ is a constant independent of n, h and N . Now using (3.15),
(3.16) and (3.17), we have

(3.18) ||en|| ≤ Γ(c̃1h
r1 + c̃hr2−α + c̃3h

1+r3−α)+h1−αΓ
n−1∑
l=0

||cn,l|| ||el||.

Now if we consider a typical element of cn,l. We have

|wn,l
i,j K(tn + cih, tl + cjh)| ≤ M

∫ 1

0

lj(τ ) dτ

(n + ci − l − τ )α
.

By Lemma 3.3,
∫ 1

0

(n + ci − l − τ )−ατ j dτ ≤ 2α

1 − α
(n − l)−α,

and therefore, for an appropriate constant A = A(c1, . . . , cm+1),

|wn,l
i,j K(tn + cih, tl + cjh)| ≤ MA2α

1 − α
(n − l)−α.
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Hence, (3.18) can be written as

||en|| ≤ Γ(c̃1h
r1 +c̃hr2−α+c̃3h

1+r3−α) + ΓDh1−α
n−1∑
l=0

||el||
(n − l)α

,

with
D =

MA2α

1 − α
.

Now let r = min(r1, r2 − α, 1 + r3 − α), to obtain

||en|| ≤ chr + (DΓ)h1−α
n−1∑
l=0

||el||
(n − l)α

.

By Lemma 3.2, this implies

(3.19)
||en|| ≤ chrE1−α[MΓ(1−α)(nh)1−α], (M = DΓ)

≤ chrE1−α[MΓ(1−α)a1−α] = khr, n = 0, 1, . . . , N,

where c and k are constants independent of n, h and N . Hence,

|Y (tn + cih) − û(tn + cih)| ≤ Chm + khr = ĉhp,

where p = min(m, r) = min(m, r1, r2 − α, 1 + r3 − α). This completes
the proof.

We define our IRK method by letting m + 1 = 3, q = i, i = 1, 2, 3,
c1 = 0, c2 = 0.5 and c3 = 1 in (3.5). Moreover, we define

ûl(tl + cjh) := uj
l , l = 0, . . . , n − 1

ûn(tn + cih) := ui
n, n = 0, 1, . . . , N − 1

together with u1
n := u3

n−1, n = 1, . . . , N . The coefficients wn,l
i,j and bij

are defined by (3.6). It is helpful to note that, for these choices of ci,
m and α = 1/2. bij are given by

b11 = b12 = b13 = b23 = 0, b21 =
√

2/3, b22 = 2
√

2/3,

b31 = 2/15, b32 = 16/15, b33 = 4/5.
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A block-by-block method can be obtained as explained in [11, pp.
114 116 and 136 137] using the IRK method; we omit the details.
Both methods have the same degree of convergence as the collocation
method. In (3.5), Ĝ is an approximation for G, (G(t) given by (3.2)).
Since f(t) is a known function, one can use an accurate quadrature to
approximate G, see examples below.

4. Numerical examples. We solve

(4.1) y(t) = ept(1 − λ2πt) + λ

∫ t

0

ep(t−s)(t − s)−1/2y(s) ds,

with exact solution

(4.2) y(t) = ept(1 + 2λ
√

t).

See [2] for more details. The singular part of y(t) for m = 3 is given by

(4.3) f(t) = 2λ
√

t + 2pλt
√

t + λp2t2
√

t.

We solve these equations for different values of p and λ, once with
f = 0 (i.e., singularity is not extracted) and once with f(t) given by
(4.3). In numerically solving these equations, the integrals of the form
λ

∫ t

0
ep(t−s)(t − s)−1/2 ds are replaced by quadrature formulas which

were obtained from [10].

TABLE 4.1. Maximum (relative) errors are listed.

IRK, f = 0, h = 0.01, 0 ≤ t ≤ 1

λ=1, p=0 λ=1, p=−1 λ=1, p=1 λ=−1, p=0 λ=−1, p=−1 λ=−1, p=1

1.38 0.19 1.41 2.22 (-3) 2.009 (-3) 2.45 (-3)

at t = 0.9 at t = 1 at t = 1 at t = 0.1 at t = 0.1 at t = 0.1

We did not continue for larger t since the errors for positive kernels are
already large.

TABLE 4.2. IRK, f given by (4.3), h = 0.01, 0 ≤ t ≤ 2.

λ=1, p=0 λ=1, p=−1 λ=1, p=1 λ=−1, p=0 λ=−1, p=−1 λ=−1, p=1

2.71 (-6) 0.02 .205 5.58 (-9) 7.75 (-4) 2.62 (-4)

at t = 2 at t = 2 at t = 2 at t = 1.9 at t = 2 at t = 2
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TABLE 4.3. Block-by-block method, f given by (4.3), h = 0.01, 0 ≤ t ≤ 2.

λ=1, p=0 λ=1, p=−1 λ=1, p=1 λ=−1, p=0 λ=−1, p=−1 λ=−1, p=1

1.97 (-6) 1.28 (−6) 9.96 (−5) 1.16 (-8) 3.16 (-8) 3.72 (-8)

at t = 2 at t = 2 at t = 2 at t = 0.2 at t = 2 at t = 1.9

Conclusion. Extraction of singularity improves the accuracy of nu-
merical solutions in linear equations if we work with “good” equations.
That is, if derivatives of g and K are computable at the left end point
of the interval of integration and if the numerical cancellation does not
present a problem. Moreover, for some α’s, e.g., α = 0.9, as equation
(2.7d) shows that even if we are dealing with a “good” equation finding
f(t) is not easy.
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