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STABILITY OF COLLOCATION METHODS FOR
VOLTERRA INTEGRO-DIFFERENTIAL EQUATIONS

M.R. CRISCI, E. RUSSO AND A. VECCHIO

ABSTRACT. We investigate the stability properties of
exact and discretized collocation methods, with respect to
Volterra integro-differential equations, with degenerate kernel
and the basic test equation.

1. Introduction. This paper concerns the stability analysis of
the collocation methods for the Volterra integro-differential equation
(hereafter referred to as VIDE):

(1.1)
y′(t) = f

(
t, y(t),

∫ t

t0

K(t, s, y(s) ds

)
, t ∈ [t0, T ],

y(t0) = y0

where the given functions f and K are assumed to be continuous
respectively for t ∈ [t0, T ] and (t, s) ∈ S∗ = {(t, s) : t0 ≤ s ≤ t ≤
T}. For the sake of completeness, the collocation methods and their
relationship with the Runge-Kutta methods are described in Section 2.

At present, there are few general analyses on the stability properties
of numerical methods for VIDE, and in particular no results are known
to the authors about the collocation methods. Until now, the stability
analysis has been carried out on the basic test equation (see for example
[3, 5, 6, 11, 15, 16]) and on positive-definite kernels ([13, 14]). In
this paper we analyze the stability of the collocation methods, both
exact and discretized, with respect to the linear VIDE with degenerate
kernel of rank n [2, 5]:

(1.2) y′(t) = g(t) + q(t)y(t) +
∫ t

t0

n∑
l=1

al(t)bl(s)y(s) ds

where g, q, al, bl; l = 1, . . . , n are assumed to be continuous.

Received by the editors on October 14, 1991.
Key words and phrases. Volterra integro-differential equation, collocation meth-

ods, stability analysis.

Copyright c©1992 Rocky Mountain Mathematics Consortium

491



492 M.R. CRISCI, E. RUSSO AND A. VECCHIO

We observe that, from the Stone-Weierstrass theorem, it follows that
the class of degenerate kernels:

(1.3) K(t, s) =
n∑

l=1

al(t)bl(s)

is dense in the class of all continuous kernels and therefore (1.2)
can be considered as a significant test equation for stability analysis.
Conditions ensuring the stability of the analytical solution of the
general VIDE (1.1) can be found in [7], while some hypotheses for
the stability of the degenerate kernel VIDE (1.2) are given in [1,
5, p. 427, 8].

In order to carry out the stability analysis we construct, in Section 3,
the stability matrix of the collocation methods and we prove some local
stability conditions. These are independent of the kernel decomposition
and require the localization of the roots of a polynomial, whose degree
is one plus the minimum of the rank of the kernel and the number
of the collocation parameters. In the particular case of a degenerate
convolution kernel and q(t) constant, the above conditions become a
priori stability conditions. Moreover, under the hypothesis of dissipa-
tivity of the “associated ODE system” (see Section 3), we prove that
the numerical solutions, obtained with a particular class of discretized
collocation methods, are contractive.

In Section 4, the particular case of the basic test equation

y′(t) = λy(t) + μ

∫ t

t0

y(s) ds, λ < 0, μ < 0

is considered and we characterize in the {hλ, h2μ} plane the stabil-
ity regions of the exact collocation methods and of a subclass of the
fully implicit discretized collocation methods. We prove that, if the
collocation parameters are symmetric, the above methods cannot be
A0-stable.1 The stability properties of some collocation methods coin-
cide with those of a suitable associated Runge-Kutta Nyström method
applied to the test equation y′′ − λy′ − μy = 0. However, there are no
general results for such methods.

1 The method is said to be A0-stable, if its stability region contains the halfplane
{(hλ, h2μ) : λ < 0, μ < 0} (see [5, 7.4.1, p. 470]).
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More precisely, we show that the stability regions are infinite along
the direction of the horizontal axis hλ, whereas they are bounded along
the direction of the vertical axis h2μ. Moreover, if the collocation
parameters are the zeros of the ultraspherical polynomial Pα

m(t), we
give a lower bound, depending on α and m, to the size of the boundary
of the stability regions on the vertical axis. In the case of the one-point
exact collocation methods, we prove that there is only one A0-stable
method and it is the Backward Euler-Trapezoidal method. Last, for
the implicit discretized collocation method we find a particular class
of methods, related to the A-stable Runge-Kutta methods, which are
A0-stable.

2. The collocation methods. Let us consider the initial value
problem (1.1) and let ti = t0 + ih, i = 0, . . . , N , tN = T , be a
partition of the interval [t0, T ] whose subintervals are σi = [ti, ti+1],
i = 0, . . . , N − 1. The collocation method approximates the exact
solution y(t) of (1.1) by an element u(t) of the polynomial spline space:

S(d)
m = {u : u ∈ Cd[t0, T ], ui := u|σi

∈ Πm, i = 0, . . . , N − 1}.

Here Πm is the space of real polynomial of degree not exceeding m.
Let 0 ≤ c1 < c2 · · · < cm ≤ 1 be given collocation parameters and
define the collocation points by tij = ti + cjh, j = 1, . . . , m. Then
the collocation solution is the element u(t) of S

(0)
m satisfying (1.1) at

the discrete set of collocation points tij . This leads to the collocation
equations:

(2.2)

u′(tij) = f

(
tij , u(tij),

∫ ti

t0

K(tij , s, u(s)) ds +
∫ tij

ti

K(tij , s, u(s)) ds

)
j = 1, . . . , m, i = 0, . . . , N − 1

which, together with the continuity conditions: ui(ti) = ui(ti−1)
uniquely determine u ∈ S

(0)
m as:

(2.3) u(ti + sh) = ui(ti) + h

m∑
k=1

∫ s

0

Lk(θ) dθu′(tik)
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where

Lk(θ) =
m∏

j=1
j �=k

(θ − cj)/(ck − cj).

If the integrals occurring in the collocation equations (2.2) are calcu-
lated analytically the collocation method is said to be exact, but in most
applications they have to be evaluated by means of suitable quadrature
rules and the method is referred to as discretized. Let u′

ij and ui+1 be
an approximation of u′(tij) and u(ti+1), respectively, and let us denote
with Ψi

j and Φi
j a quadrature formula approximating respectively the

first and the second integral of (2.2). With this notation and remem-
bering (2.3), the discretized version of the collocation method is:

(2.4)

uij = f(tij , ui + h

m∑
k=1

wjku′
ik, Ψi

j + Φi
j)

ui+1 = ui + h

m∑
k=1

wku′
ik

where

(2.5) wjk =
∫ cj

0

Lk(θ) dθ, j, k = 1, . . . , m

(2.6) wk =
∫ 1

0

Lk(θ) dθ, k = 1, . . . , m.

Following [5, Section 5.4.3] two of the most common choices for Ψi
j and

Φi
j are as follows

A) Fully implicit discretization:

(2.7)

Ψi
j = h

i−1∑
ν=0

m∑
k=0

wkK(tij , tνk, uν + h

m∑
l=1

wlku′
νl)

Φi
j = h

m∑
k=1

cjwkK(tij , ti + cjckh, ui + h

m∑
l=1

al
jku′

l)
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where

al
j,k =

∫ cjck

0

Ll(s) ds, j, k, l = 1, . . . , m

and wk are given by (2.6). This method requires the evaluation of K
only in its domain of definition S∗ and it coincides with a de Hoog and
Weiss implicit Runge-Kutta method [4, 11].

B) Implicit discretization: Ψi
j given by (2.7)

Φi
j = h

m∑
k=1

wjkK(tij , tik, ui + h
m∑

l=1

wklu
′
il)

where wjk are defined in (2.5). This method requires the evaluation
of K also outside S∗ and therefore it may cause some trouble if the
extension of K is not smooth enough out of S∗ and it coincides with
an extended m-stage Pouzet Runge-Kutta method (compare also [5,
p. 291]).

3. Stability results. In this section some stability theorems are
derived for the method applied to VIDE with degenerate kernel (1.2).
They hold both for the exact and discretized collocation methods and
are independent of the choice of the discretization formula. The first
step is the construction of the stability matrix. We need the following
definitions:

αi
jl = al(tij), j = 1, . . . , m; l = 1, . . . , n

γk(s) =
∫ s

0

Lk(θ) dθ, k = 1, . . . , m

and those in Table 1.
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TABLE 1. Definitions.

Exact Discretized A Discretized B

zi
l

∫ ti

t0
bl(s)u(s) ds

i−1∑
ν=0

m∑
k=1

bl(tνk)[uν+

i−1∑
ν=0

m∑
k=1

bl(tνk)[uν+

l=1, . . . , m h

m∑
r=1

wrku′
νr] h

m∑
r=1

wrku′
νr]

si
jk hwjkq(tij)+ hwjkq(tij)+ hwjkq(tij)+

j, k=1, . . . , m h2
∫ cj

0
K(tij , ti+ h2

m∑
r=1

cjwrak
jrK(tij , ti+ h2

m∑
r=1

wjrwrkK(tij , tir)

sh)γk(s) ds cjcrh)

βi
lk h

∫ 1

0
bl(ti+

l=1, . . . , n sh)γk(s) ds h2

m∑
r=1

wrwrkbl(tir) h2

m∑
r=1

wrwrkbl(tir)

k=1, . . . , m

pi
j q(tij)+ q(tij)+ q(tij)+

j =1, . . . , m h
∫ cj

0
K(tij , ti+sh) ds h

m∑
k=1

cjwkK(tij , ti+ h

m∑
k=1

wjkK(tij , tik)

cjckh)

di
l h

∫ 1

0
bl(ti + sh) ds h

m∑
k=1

wkbl(tik) h

m∑
k=1

wkbl(tik)

l=1, . . . , n

Let I be the identity matrix and

Si = (si
jk); Ai = (αi

ij); Bi = (βi
jk);

Pi = (pi
j); Di = (di

j); w = (wj);

U ′ = [u′
i1, . . . , u′

im]T , Zi+1 = [zi+1
1 , . . . , zi+1

n ]T ,

Gi = [g(ti1), . . . , g(tim)]T ; Yi = [ui, Zi]T ,

(3.1)
Mi =

(
1 + hw(I − Si)−1Pi hw(I − Si)−1Ai

Di + Bi(I − Si)−1Pi I + Bi(I − Si)−1Ai

)
,

Ti = [hw(I − Si)−1Gi, Bi(I − Si)−1Gi]T .
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Then the following theorem holds:

Theorem 3.1. The application of the collocation method on VIDE
with degenerate kernel leads to the finite recurrence relation

(3.2) Yi+1 = MiYi + Ti.

Proof. Let us consider the fully implicit discretized method. Using
the above notation we have

Ψi
j = h

n∑
l=1

al(tij)zi
l

and zi
l satisfies

zi+1
l = zi

l + uid
i
l +

m∑
r=1

βi
lru

′
ir.

Therefore, (2.4) written in vectorial form becomes

ui+1 = ui + hwU ′
i+1(3.3)

(I − Si)U ′
i+1 = Gi + uiPi + AiZi(3.4)

Zi+1 = Zi + uiDi + BiU
′
i+1.(3.5)

Assuming that (I − Si)−1 exists, computing U ′
i+1 from (3.4) and

replacing it in (3.3) and (3.5), we get that the method applied to (1.2)
leads to recursive relation (3.2). An analogous proof applies both to
the exact and to the implicit discretized methods. For the former such
a proof can also be found in [8].

We observe that the elements of Mi depend on the step number i,
therefore we first derive some local stability results.

Referring to [5, p. 432] we give the following

Definition 3.1. The one step collocation method is called

a) locally stable in the strong sense if all the eigenvalues of Mi lie
within the unit circle;
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b) locally stable if all the eigenvalues of Mi are within or on the
unit circle and those on the unit circle are weakly stable, i.e., they
correspond to Jordan blocks of order one in the Jordan normal form of
the matrix Mi.

Moreover, let us define the m + 1 dimensional matrix:

E(x) =
(

x − 1 −hw
−(x − 1)Pi − AiDi (x − 1)(I − Si) − AiBi

)

and the polynomial

C(x) = det (E(x)).

Hereafter we will proceed analogously to [10]. Therefore, we will
report only the fundamental steps of the proof of the following results.
The details can be found in [10].

Theorem 3.2. The exact discretized collocation method is locally
stable in ti in the strong sense if all the zeros of

(x − 1)n−mC(x) = 0

are within the unit circle, it is locally stable if they are within the
unit circle and those on the unit circle correspond to weakly stable
eigenvalues of Mi.

Proof. We give the proof in the case m = n. It can be easily verified
that in this case

(3.6) detE(x) = det

⎛
⎜⎜⎜⎜⎝

1 0 1 0
− Pi (I − Si) 0 Ai

0 hw
(x − 1)I

Di Bi

⎞
⎟⎟⎟⎟⎠

since the matrix blocks have the same dimension m + 1, by using a
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known property of determinants, we can write
C(x)

= det
(

1 0
−Pi (I − Si)

)

· det

{
(x − 1)I −

(
0 hw
Di Bi

) (
1 0

−Pi (I − Si)

)−1 (
1 0
0 Ai

)}

= det
(

1 0
−Pi (I − Si)

)

· det
{

(x − 1)I −
(

hw(I − Si)−1Pi, hw(I − Si)−1Ai

Di + Bi(I − Si)−1Pi, Bi(I − Si)−1Ai

)}
which proves that the zeros of C(x) are equal to the eigenvalues of
Mi(x). The proof can be easily extended to the case m �= n by adding
a suitable number of rows and columns, which do not change the value
of the determinant and make again the blocks appearing in (3.6) of the
same order.

Remark 3.1. The polynomial C(x) does not depend on the kernel
decomposition. In fact, the elements of the vector AiDi and of the
matrix AiBi have the following expression:

(AiDi)j =

{
h

∫ 1

0
K(tij , ti + sh) ds for exact collocation methods

h
∑m

k=1 wkK(tij , tik) for discretization A) and B)

(AiBi)jk =

{∫ 1

0
K(tij , ti + sh)γk(s) for exact coll. methods

h2
∑m

r=1 wrwrkK(tijtir) for discretization A) and B).

Remark 3.2. The calculation of the n + 1 eigenvalues of Mi is
reduced, in virtue of Theorem 3.2, to the determination of the roots of
a polynomial whose degree is min{m, n} + 1.

Remark 3.3. In the case n > m, the n − m eigenvalues equal to 1
are weakly stable since their algebraic and geometrical multiplicities
coincide. In fact, the matrix Mi − I can be written as

Mi − I =
[

hw 0
Bi I

] [
(I − Si)−1 0

0 I

] [
Pi Ai

Di 0

]
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and then

rank (Mi − I) ≤ rank
[

Pi Ai

Di 0

]
≤ m + 1.

Theorem 3.3. If q(t) is constant and K(t, s) is convolution degen-
erate kernel K(t−s) then the eigenvalues of the matrix Mi are constant
with respect to i.

Proof. The elements of the matrix E are independent of i, as can be
easily seen by the variable change s = ti + θh.

Now let us consider the implicit discretization (Table 1B) and give
the following

Definition 3.2. An implicit discretized collocation method whose
parameters are c = (cj), W = (wjk), w = (wj) and a Runge-Kutta

ODE method characterized by the same Butcher array c W
w

are said

to be associated.

Before establishing the subsequent result we recall that the following
ODE system can be defined as “the ODE system associated to the
degenerate VIDE (1.2)” (compare [1, 5]):

(3.7)
{

φ′(t) = F (t, φ(t))
φ(t0) = φ∗

0

with

φ = [φ0, . . . , φn]T , F = [F0, . . . , Fn]T φ∗
0 = [y0, 0, . . . , 0]T

F0(t, φ(t)) = g(t) + q(t)φ0(t) +
n∑

l=1

al(t)φl(t)

Fl(t, φ(t)) = bl(t)φ0(t), l = 1, . . . , n.

The following theorem relates the stability properties of the colloca-
tion methods to those of the associated Runge-Kutta method. We refer
to [12] for the definitions of dissipative ODE system (p. 17), B-stability
and contractivity (p. 97).
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Theorem 3.4. If the ODE associated system is dissipative, and the
associated ODE Runge-Kutta method is B-stable, then the numerical
solutions obtained with the implicit discretized collocation method ap-
plied to (1.2) are contractive.

Proof. We prove that the numerical solution obtained by applying the
collocation method to (1.2) is equal to the numerical solution obtained
by applying the associated Runge-Kutta method to the associated ODE
system. Therefore, let us put

vk = [v0
k, . . . , vn

k ]T , where v0
k = u′

ik,

vl
k = bl(tik)

[
ui + h

m∑
r=1

wkru
′
ir

]
, l = 1, . . . , n

where the subscript i in v has been omitted for simplicity. With these
positions and recalling that Yi = [ui, z

i
1, . . . , zi

m], we can rewrite (3.3)
and (3.5) in a unique vectorial form:

(3.8) Yi+1 = Yi + h
m∑

k=1

wkvk.

But using (3.4), v0
j can be written as:

v0
j = g(tij) + q(tij)

[
ui + h

m∑
k=1

wjkv0
k

]

+
n∑

l=1

al(tij)
[
zi
l + h

m∑
k=1

wjkvl
k

]
, j = 1, . . . , m

which implies

(3.9) v0
j = F0

(
tij , Yi + h

m∑
k=1

wjkvk

)
,

and, in the same way, it turns out that

(3.10) vl
j = Fl

(
tij , Yi+1 + h

m∑
k=1

wjkvk

)
.
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The proof is completed by observing that (3.9) together with (3.10)
and (3.8) represents the associated Runge-Kutta ODE method applied
to the system (3.7).

4. The basic test equation. In this section we will consider the
particular case of the basic test equation

(4.1)
y′(t) = λy(t) + μ

∫ t

t0

y(s) ds, t ∈ (t0, T ]

y(t0) = y0, λ < 0, μ < 0.

Referring to [6] we give the following

Definition 4.1. A region R of the {hλ, h2μ} plane is said to be the
region of absolute stability of a method if for all (hλ, h2μ) ∈ R the
numerical solutions tend to zero.

4a. The exact collocation methods. In order to characterize,
in the {hλ, h2μ} plane, the stability regions of these methods we will
proceed analogously to [9 and 11]. Theorem 2.2 in [11] shows that
some results obtained there also hold for the exact collocation method.
To make the paper self-contained, let us report the statements of the
theorems (proofs can be found in [11]).

Let η1 and η2 be the solution of the equation:

η2 − hλη − h2μ = 0,

and let

V (t) =
m∏

j=1

(t − cj),

Θ(t, x) =
m∑

k=0

V k(t)xk,

Γ(t, x) =
m+1∑
k=0

[kV k−1(t) + V k(t)]xk,

Δ = Γ(0, 1/η1)Θ(0, 1/η2) − Γ(0, 1/η2)Θ(0, 1/η1),
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m11 = 1/(Δ(η2 − η1)){[η1Γ(0, 1/η2) − η2Γ(0, 1/η1)]
[Θ(0, 1/η1) − Θ(0, 1/η2)] + [η2Θ(0, 1/η1) − η1Θ(0, 1/η2)]
[Γ(1, 1/η1) − Γ(1, 1/η2)]},

m12 = h/(Δ(η2 − η1)){[Γ(0, 1/η2) − Γ(0, 1/η1)]
[Θ(1, 1/η1) − Θ(1, 1/η2)] + [Θ(0, 1/η1) − Θ(0, 1/η2)]
[Γ(1, 1/η1) − Γ(1, 1/η2)]},

m21 = −(η1η2)/(hΔ(η2 − η1)){[η1Γ(0, 1/η2) − η2Γ(0, 1/η1)]
[Θ(1, 1/η1)/η1 − Θ(1, 1/η2)/η2] + [η2Θ(0, 1/η1) − η1Θ(0, 1/η2)]
[Γ(1, 1/η1)/η1 − Γ(1, 1/η2)/η2]},

m22 = −(η1η2)/(Δ(η2 − η1)){[Γ(0, 1/η2) − Γ(0, 1/η1)]
[Θ(1, 1/η1)/η1 − Θ(1, 1/η2)/η2] + [Θ(0, 1/η1) − Θ(0, 1/η2)]
[Γ(1, 1/η1)/η1 − Γ(1, 1/η2)/η2]}.

Then the following theorem holds

Theorem 4.1. The stability region of the exact collocation method
for VIDE is the set of values {hλ, h2μ} such that the eigenvalues of the
matrix M∗ = (mij), i, j = 1, 2, are in modulus less than 1.

Proof. See [11, Theorem 2.7].

Theorem 4.2. If the parameters cj are symmetric in [0, 1] the
exact collocation method cannot be A0-stable and its stability region
is unbounded along the direction of the horizontal axis μ = 0.

Proof. See [11, Theorem 2.9].

Now set

d11(z) =
[m/2]∑
k=0

V (2k+1)(1)z[(m+1)/2]−k

d12(z) =
[m/2]∑
k=0

[(2k + 1)V (2k)(1) + V (2k+1)(1)]z[(m+1)/2]−k
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d21(z) =
[m/2]∑
k=0

V (2k)(1)z[(m+1)/2]−k

d22(z) =
[m+1/2]∑

k=0

[(2k)V (2k−1)(1) + V (2k)(1)]z[(m+1)/2]−k

R(z) = d11(z)d21(z)[2d12(z) − d11(z)][2d22(z) − d21(z)]

Theorem 4.3. Let r be the largest negative zero of odd multiplicity
of the polynomial R(z). The boundary of the stability regions of the
exact collocation method contains the range{

hλ = 0
r ≤ h2μ ≤ 0.

Proof. See [11, Theorem 2.10].

Finally, putting

g(α, m) = 4[2m2 + m(2α + 1) + 2α − 1]/[m2 + mα + α]

there results:

Theorem 4.4. If the collocation parameters are the zeros of an
ultraspherical polynomial P

(α)
m (t) the boundary of the stability regions

of the exact collocation method contains at least{
hλ = 0
−g(α, m) ≤ h2μ ≤ 0.

Proof. See [11, Theorem 2.12].

Corollary 4.1. If the collocation parameters are the zeros of an
ultraspherical polynomial, then the boundary of the stability region
contains at least {

hλ = 0
−8 ≤ h2μ ≤ 0.
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Proof. For every α, g(α, m) is decreasing with respect to m and its
lower bound is 8.

In the particular case of m = 1, Theorem 4.1 leads to:

Corollary 4.2. If m = 1, there exists only one A0-stable exact
collocation method and it is the Backward-Euler-Trapezoidal method.

Proof. In this case the characteristic polynomial of the stability
matrix is:

(4.3) x2 −
[
(4 − hλ(4c1 − 2)) + h2μ

(−2c2
1 + 2c1 + 1)

(2 − 2hλc1 − h2μc2
1)

]
x

+
hλ(−2c1 + 2) + h2μ(12 − c1)2 + 2)

(2 − 2hλc1 − h2)
= 0

and applying the Routh-Hurwitz conditions it can easily be seen that
c1 = 1 is the only value such that the roots of (4.3) are in modulus less
than one for every λ < 0 and μ < 0.

In consequence of (4.3), it can be easily seen that:

Corollary 4.3. The stability region of the exact collocation method
with m = 1 and c1 = 1/2 is the following strip of the {hλ, h2μ} plane{−∞ < hλ ≤ 0

−8 ≤ h2μ ≤ 0.

Remark 4.1. As is known, in each interval [ti, ti+1] the solution ui(t)
furnished by the exact collocation method is equal to the solution yi of
the second order differential equation⎧⎨

⎩
y′′

i (t) − λy′
i(t) − μyi(t) = [τ i

0 + τ i
1(t − ti)]

∏m
j=1(t − tij)

yi(ti) = yi−1(ti)
y′

i(ti) = y′
i−1(ti)

and, therefore, M∗ is also the stability matrix for the ODE collocation
method based on the collocation parameters cj , j = 1, . . . , m, and
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applied to the test equation y′′ − λy′ − μy = 0. Therefore, all of the
above theorems also hold for these methods.

4b. Fully implicit discretized methods. As we remarked in
Section 2, these methods coincide with de Hoog and Weiss implicit
Runge-Kutta methods, whose stability analysis has been performed in
[11].

4c. Implicit discretized collocation methods. First, we recall
that these methods are extended Pouzet Runge-Kutta methods. It can
be easily proved that the stability matrix Mi, given in (3.1) coincides,
in the case of the basic test equation, with the stability matrix of the
Runge-Kutta methods derived in [5, p. 490] and [15, Theorem 5.2].
Then, recalling Definition 3.1, we get

Theorem 4.5. If the associated ODE Runge-Kutta method is A-
stable, the implicit discretized collocation method is A0-stable.

Proof. The thesis follows from the equivalence of the implicit dis-
cretized collocation Pouzet Runge-Kutta methods, taking account of a
result of Baker [3, Theorem 4.1, 5, Theorem 7.6].

Finally, in the particular case of only one collocation point, we obtain:

Corollary 4.4. Every one-point implicit discretized collocation
method with c1 ≥ 1/2 is A0-stable.
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